JPS59118213A - Equipment for controlling looper in continuous rolling mill - Google Patents

Equipment for controlling looper in continuous rolling mill

Info

Publication number
JPS59118213A
JPS59118213A JP57225541A JP22554182A JPS59118213A JP S59118213 A JPS59118213 A JP S59118213A JP 57225541 A JP57225541 A JP 57225541A JP 22554182 A JP22554182 A JP 22554182A JP S59118213 A JPS59118213 A JP S59118213A
Authority
JP
Japan
Prior art keywords
value
control
deviation
looper
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57225541A
Other languages
Japanese (ja)
Other versions
JPH0261324B2 (en
Inventor
Toshihiro Koyama
敏博 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57225541A priority Critical patent/JPS59118213A/en
Publication of JPS59118213A publication Critical patent/JPS59118213A/en
Publication of JPH0261324B2 publication Critical patent/JPH0261324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/50Tension control; Compression control by looper control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a device capable of controlling the variation of a tension between stands to a lower level and excellent in responsiveness by introducing the outputs of a looper angle and a material tension from the inputs of the speed of a motor for driving a looper and the speed of a motor for driving a main machine, and combining them with the detection of tension in consideration of the mutual interference between respective variables. CONSTITUTION:An integrator 10A performs an integrating action about the deviation DELTATf of a detected value Tf of interstand tension from its target value TfR, and a proportional gain 21 performs a proportional control action about the deviation of Tf from its value Tf* at the time of starting a control. The same actions are performed about an acting angle of looper, an armature current of looper driving motor 2A, a rotational speed of the motor 2A, and respective detected values theta, I, N. These values are added to synthesize the amount of correction DELTAIREF of current target of a current controlling device 1A of looper, which is added to a target value IREF* of current at the time of starting the control to synthesize a current target value IREF. On the other hand, a speed target value NREF of a speed controlling device 4A of main machine is synthesized in the same manner by an integrator 9A and a proportional gain 11, etc.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は連続圧延機に係り、とくにルー/e動作角度お
よびスタンP間張力の制御を行なうためのルーパ制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a continuous rolling mill, and more particularly to a looper control device for controlling the loop/e operating angle and the tension between stamps P.

〔発明の技術的背景〕[Technical background of the invention]

連続圧延機において、製品品質を評価する重要な要素は
、板厚、板幅、板クラウン量および板平担度であるが、
スタンP間長力値はこれらの要素に及ぼす影響が大きい
ため、これを出来る限り一定に保つことが望ましい。こ
のため、熱間連続圧延機では各圧延スタンド間に設けら
れたルー・ξ機構によって張力値の変化分を吸収するよ
うな制御が行なわれている。また、圧延作業上、ルー、
e動作角度の振れ幅を小さく抑えることも要求されるた
め、このルー/eに隣接するスタンrのロール速度の修
正も併せて行なわれている。
In continuous rolling mills, the important factors for evaluating product quality are plate thickness, plate width, plate crown amount, and plate flatness.
Since the stun P length force value has a large influence on these factors, it is desirable to keep it as constant as possible. For this reason, in a continuous hot rolling mill, control is performed to absorb changes in the tension value by means of a loop mechanism provided between each rolling stand. In addition, during rolling work, roux,
Since it is also required to keep the fluctuation of the operating angle of e small, the roll speed of stun r adjacent to this rue/e is also corrected.

ルーパの基本的表構成とこれを制御する従来の制御装置
のブロック図を第1図に示す。
FIG. 1 shows the basic table configuration of the looper and a block diagram of a conventional control device that controls the looper.

被圧延材料101は圧延ロール102aおよび102b
を具える圧延スタンr2を通過した後、圧延ロール10
3aおよび103bを具える圧延メタンr103へ進行
するが、この間でルー・ぐ機構104と接触している。
The material to be rolled 101 is rolled by rolling rolls 102a and 102b.
After passing through the rolling stand r2 comprising the rolling roll 10
3a and 103b, between which it is in contact with the rug mechanism 104.

ルー”+11104のルーパ動作角度θはルーツク動作
角度検出器105によって検出され、ルー・ぐ動作角度
θに対応して常に目標張力値を保持するようなルーパト
ルク量の演算が演算装置106によって行なわれる。
The looper operating angle θ of 11104 is detected by the looper operating angle detector 105, and the computing device 106 calculates a looper torque amount corresponding to the looper operating angle θ such that the target tension value is always maintained.

しかして、上記ルーパトルク量の発生に必要なルーA駆
動電動機の電流目標値が演算装置106からルー/e駆
動電動機の電流制御装置107に加えられ、この電流制
御装置107によってルー/e駆動電動機108が駆動
される。
Therefore, the current target value of the Lou/e drive motor necessary for generating the looper torque amount is applied from the calculation device 106 to the current control device 107 of the Lou/e drive motor, and the current control device 107 causes the Lou/e drive motor 108 is driven.

一方、ルーパ動作角度検出器105の検出信号が演算装
置109にも加えられ、この演算装置109ではスタン
ド間張力制御により上下したルーパ動作角度θを目標値
に復帰させるためロール駆動電動機120の速度目標値
の演算が行なわれる。この速度目標が演算装置109か
らロール駆動電動機120の速度制御装置110に加え
られ、この速度制御装置110によってロール駆動電動
機120が1駆動される。
On the other hand, the detection signal of the looper operating angle detector 105 is also applied to the arithmetic unit 109, and this arithmetic unit 109 sets the speed target of the roll drive motor 120 in order to return the looper operating angle θ, which has gone up and down due to the inter-stand tension control, to the target value. Value operations are performed. This speed target is applied from the arithmetic unit 109 to the speed control device 110 of the roll drive motor 120, and the roll drive motor 120 is driven one time by this speed control device 110.

〔背景技術の問題点〕[Problems with background technology]

かかる従来のルーパ制御装置にあっては、ロール駆動電
動機120の速度修正によってスタフ1間の材料長さが
変化することとなり、これに追随するようにルーバ動作
角制御が行なわれるため、このルーツR動作角度制御に
よるスタフ1間張力変動が大きく々るという欠点があっ
た。
In such a conventional looper control device, the material length between the staffs 1 changes by speed correction of the roll drive motor 120, and the louver operating angle is controlled to follow this. There was a drawback that the tension between the staffs 1 and 1 varied greatly due to the operating angle control.

捷だ、この張力変動を小さく抑えるべくルーバ動作角度
の制御を行なうと、制御の応答を低下させなければなら
ず、時間的変化の速い外乱に追随できないという欠点が
あった。
However, if the louver operating angle is controlled to keep this tension fluctuation small, the response of the control must be lowered, which has the disadvantage of not being able to follow disturbances that change quickly over time.

〔発明の目的〕[Purpose of the invention]

ここにおいて本発明は、従来装置の難点を克服するため
になされたもので、被圧延材のスタンr間張力変動を十
分に低く抑さえ得、かつ応答性も優れた連続圧延機のル
ーパ制御装置を提供することを、その目的とする。
The present invention has been made in order to overcome the difficulties of conventional devices, and is a looper control device for a continuous rolling mill that can sufficiently suppress inter-stan r tension fluctuations of a rolled material and has excellent responsiveness. Its purpose is to provide.

〔発明の概要〕[Summary of the invention]

本発明は、ルーパ制御系を2人力2出力の多変数制御系
としており、その制御目標としてはルーパ角度変動量お
よび張力変動量を最小にすることである。そのための操
作量としては1つはルー、e駆動電動機電流であり、も
う1つは主機電動機速度が挙げられる。これら2つの入
力から所要演算が行なわれ、ルーA角度、張力の2出力
が導出される。また、スタンド間張力の検出による実績
張力に基づくルーツク制御もなされている。このように
して制御系を構成し、各変数間の相互干渉を考慮した構
成となっている。
In the present invention, the looper control system is a two-man power, two-output, multivariable control system, and its control objective is to minimize the amount of variation in the looper angle and the amount of variation in tension. One of the manipulated variables for this purpose is the roux and e drive motor current, and the other is the main engine motor speed. Required calculations are performed from these two inputs to derive two outputs: the Roux A angle and the tension. Furthermore, root torque control is also performed based on the actual tension by detecting the tension between the stands. The control system is constructed in this manner, and is constructed in consideration of mutual interference between variables.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第2図に表わす一実施例について述べる。 An embodiment of the present invention shown in FIG. 2 will be described below.

第2図は、本発明に係るルーパ制御装置の構成を示す制
御ブロック図である。なお、第2図は制御信号の流れを
主体的に示しており、主機電動機及びルー、6電動機と
圧延系統との関連については、さきに説明しであるから
ここでは省略する。
FIG. 2 is a control block diagram showing the configuration of the looper control device according to the present invention. Note that FIG. 2 mainly shows the flow of control signals, and the relationship between the main motor, the 6 motors, and the rolling system is omitted here because it has already been explained.

第2図において、ルーパ電流制御装置IAに入力される
電流目標値IREFは制御開始時の値に相当する電流目
標値■REFと電流目標値修正量ΔTう、とを加算する
ことにより合成されている。
In FIG. 2, the current target value IREF input to the looper current control device IA is synthesized by adding the current target value REF corresponding to the value at the start of control and the current target value correction amount ΔT. There is.

しかして、電流目標値修正量ΔIREFは次に記す■〜
◎で表わされる各手段、す々わち ■ スタンド間の被圧延材の張力検出値T、と張力目標
値TfRとの偏差について積分ゲインに21と積分器1
.0 Aによる積分動作と、張力検出値T、と制御開始
時の張力検出値T との偏差ΔT、について比例ゲイン
f2□による比例動作を行なう手段。
Therefore, the current target value correction amount ΔIREF is as follows:
Each means represented by ◎, ■ 21 for the integral gain and 1 for the integrator for the deviation between the detected tension value T of the rolled material between the stands and the target tension value TfR.
.. Means for performing an integral operation by 0 A and a proportional operation by a proportional gain f2□ for the deviation ΔT between the detected tension value T and the detected tension value T at the start of control.

■ ルーパ動作角度検出値θとルーパ動作角度検出器θ
、との偏差について積分ゲインに2□と積分器10Aに
よる積分動作と、ルー、e動作角度検出値θとルー、?
動作角度検出値θとの偏差Δθについて比例ゲインf2
□による比例動作を行なう手段。
■ Looper operating angle detection value θ and looper operating angle detector θ
, the integral gain is 2□, the integral operation by the integrator 10A, and the detected operating angle value θ and the rue, ?
Proportional gain f2 for the deviation Δθ from the detected operating angle value θ
□Means for performing proportional action.

■ 主機電動機の回転速度検出値NR9主機電動機電機
子電流■ 、主機速度制御装置4入内の速度制御用PI
コントローラの積分動作出力Z11主機速度制御装置4
A内のマイナ電流制御用PIコントローラの積分動作出
力Z2+ルーツR駆動電動機2人炬転速度検出値N、ル
ー/e駆動電動機2Aの電機子電流I、ルーパ電流制御
装置IA内の電流制御用PIコントローラの積分動作出
力z3と、それらオノオノ制御開M時(2)値N:l 
Ill z7. z:、 N”II 、 Z3との偏差
であるΔNR9Δ工、、Δz1.Δz2゜ΔN、ΔI、
Δ2 についてそれぞれ比例ゲインf23゜f24・f
25・f269 f271 f28” 29による比例
動作を行々う手段。
■ Main engine motor rotational speed detection value NR9 Main engine motor armature current■, Main engine speed control device 4 input speed control PI
Controller integral operation output Z11 Main engine speed control device 4
Integral operation output Z2 of PI controller for minor current control in A + Roots R drive motor 2-person rotary rotation speed detection value N, armature current I of Lu/e drive motor 2A, PI for current control in looper current control device IA The integral operation output z3 of the controller and the value N:l when the ono-ono control is open M (2)
Ill z7. z:, N”II, ΔNR9Δ which is the deviation from Z3, Δz1.Δz2゜ΔN, ΔI,
Proportional gain f23゜f24・f for Δ2 respectively
25・f269 f271 f28" Means for performing proportional operation based on 29.

を加算することにより合成される。It is synthesized by adding .

一方、主機速度制御装置4Aに入力される速度目標値N
REFは速度設定値N“ と速度目標値修KF 正量ΔNRKFとを加算することにより合成されている
On the other hand, the speed target value N input to the main engine speed control device 4A
REF is synthesized by adding the speed set value N'' and the speed target value correction KF positive amount ΔNRKF.

そして、速度目標値修正量ΔNRF、Fは次のの〜0で
示される各平部、つまり の スタンド間の被圧延材の張力検出値Tfと張力目標
値TfRとの偏差について積分ゲインに1、と積分器9
Aによる積分動作と、張力検出値T、と制御開始時の張
力検出値T との偏差ΔT、につい(11) て比例ゲインf1□による比例動作を行なう手段。
Then, the speed target value correction amount ΔNRF,F is the integral gain of 1, F for the deviation between the detected tension value Tf of the rolled material between the stands and the tension target value TfR at each flat part, that is, shown by ~0 in the following. and integrator 9
Means for performing an integral operation by A and a proportional operation by a proportional gain f1□ regarding the deviation ΔT between the detected tension value T and the detected tension value T at the start of control (11).

■ ルーパ動作角度検出値θとルー・ぐ動作角度目標値
θ8との偏差について積分ゲインに1゜と積分器9Aに
よる積分動作と、ルー・e動作角度検出値θと制御開始
時のルーパ動作角度検出値θ との偏差Δθについて比
例ゲインf12による比例動作を行なう手段。
■ Regarding the deviation between the looper operating angle detection value θ and the looper operating angle target value θ8, the integral gain is 1°, the integral operation by the integrator 9A, the looper operating angle detection value θ and the looper operating angle at the start of control. Means for performing a proportional operation using a proportional gain f12 regarding the deviation Δθ from the detected value θ.

■ 主機電動機5Aの回転速度検出値NR9主機電動機
5Aの電機子電流Ia、主機速度制御装置4A内の速度
制御用PIコントローラの積分動作出カZ、l主機速度
制御装置4A内のマイナ電流制御用PIコントローラの
積分動作量カz2.ルーパ駆動電動機2人の回転速度検
出値N、ルーパ駆動電動機2人の電機子電流■、シル−
e電流制御装置IA内の電流制御用PIコントローラの
積分動作出力I”l Z”l Z”I N”t I”T
 Z”ト(7)偏差JN 1812         
   3           RΔIa、Δz1.Δ
z2.ΔN、ΔI、ΔZ3についてそれぞれ比例ゲイン
’131 f141 f151 f161 f17” 
181f19による比例動作を行なう手段。
■ Rotation speed detection value of main engine motor 5A NR9 Armature current Ia of main engine motor 5A, integral operation output Z of PI controller for speed control in main engine speed control device 4A, l for minor current control in main engine speed control device 4A Integral operation amount of PI controller z2. Rotation speed detection value N of the two looper drive motors, armature current of the two looper drive motors ■, sill
e Integral operation output of the current control PI controller in the current control device IA I"l Z"l Z"I N"t I"T
Z” (7) Deviation JN 1812
3 RΔIa, Δz1. Δ
z2. Proportional gain '131 f141 f151 f161 f17'' for ΔN, ΔI, and ΔZ3, respectively.
181f19 means for performing proportional action.

(12) を加算することにより合成される。(12) It is synthesized by adding .

次に上述のように構成した本発明の連続圧延機のルーJ
R制御装置の作用を説明する。
Next, the continuous rolling mill of the present invention configured as described above will be explained.
The operation of the R control device will be explained.

連続圧延機のルー/e動特性モデルは非線形モデルであ
るが、これをある定常状態の近傍でテーラ−展開するこ
とにより、線形状態方程式の形で表現すると(1式)及
び(2式)のようになる。
The Roux/e dynamic characteristic model of a continuous rolling mill is a nonlinear model, but by Taylor expansion in the vicinity of a certain steady state, it can be expressed in the form of a linear equation of state, as shown in (Equation 1) and (Equation 2). It becomes like this.

x=A−x+B・u+w  ・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(1式)y=C
−X      ・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(2式)ただし、姿は時間微
分dX/dtを童味し、X、u 。
x=A−x+B・u+w ・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(1 formula) y=C
-X ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(Equation 2) However, the figure is based on the time differential dX/dt, and X, u.

yは各々(3式)、(4式)、(5式)で示されるベク
トル、Wは外乱ベクトル、A、B、Cはそれぞれ9X9
19X212X9の定数行列である。
y is a vector shown by (Equation 3), (Equation 4), and (Equation 5), respectively, W is a disturbance vector, and A, B, and C are each 9X9
It is a constant matrix of 19x212x9.

x=〔ΔTf、Δθ、ΔNR9ΔTalΔZ□lΔz2
゜ΔN、Δ■、Δz3〕7 (状態ベクトル)・・・・・・・・・・・・・・・・・
・・・・・・・(3式)u=〔ΔNIF+Δ工REF〕
T(操作ベクトル)・・・・・・・・・・・・・・・・
・・・・・・・・(4式)y=〔ΔT7.Δθ〕 (出
力ベクトル)・・・・・・(5式)ここにTは転置を表
わす。
x=[ΔTf, Δθ, ΔNR9ΔTalΔZ□lΔz2
゜ΔN, Δ■, Δz3〕7 (state vector)・・・・・・・・・・・・・・・・・・
・・・・・・・・・(3 formula) u=[ΔNIF+Δengineering REF]
T (operation vector)・・・・・・・・・・・・・・・
・・・・・・・・・(Formula 4) y=[ΔT7. Δθ] (Output vector) (Formula 5) Here, T represents transposition.

ルーツR制御の制御目的は、スタンド間張力の目標値か
らの偏差ΔT、と、ルー・ぐ動作角度の目標値からの偏
差Δθを極力小さく抑えることにある。
The purpose of the roots R control is to suppress the deviation ΔT of the inter-stand tension from the target value and the deviation Δθ of the root movement angle from the target value as small as possible.

このような問題は積分形線形レギュレータ問題とされ、
次の(6式)に従って操作ベクトルUを構成すればよい
とされている。
Such a problem is called an integral linear regulator problem,
It is said that the operation vector U may be constructed according to the following (Equation 6).

−R”BTP  (x−x ) + u  、、、、、
、、、、、、、 (6式)%式% ここで、Rは2×2対角行列(対角要素は全て正)、y
Rは出力ベクトルyの目標値ベクトル、xoは状態ベク
トルXの初期値4クトル、uoは操作ベクトルVの初期
値4クトルである。
-R”BTP (x-x) + u,,,,,
, , , , , (Formula 6)%Formula% Here, R is a 2x2 diagonal matrix (all diagonal elements are positive), y
R is the target value vector of the output vector y, xo is the initial value of the state vector X, 4 vectors, and uo is the initial value of the operation vector V, 4 vectors.

また、R21” 2□は次式 P^+XTp+q−p百11fP=0・・・開開・(7
式)で示されるR1cca目方程式の解Pの部分行列で
あり、PとP2□、P2゜との関係は、 である。hお、(7式)中A、Bは各々(9式)。
In addition, R21'' 2□ is calculated by the following formula P^+XTp+q-p111fP=0...open/open/(7
It is a submatrix of the solution P of the R1cca-th equation shown by the formula (Equation), and the relationship between P and P2□ and P2° is as follows. hOh, A and B in (7 formula) are each (9 formula).

(10式)で示されるllXl1. 、 IIX 2の
定数行列であり、Qば11次元対角行列(対角要素は正
または零)である。
llXl1. shown by (Formula 10). , IIX is a constant matrix of 2, and Q is an 11-dimensional diagonal matrix (diagonal elements are positive or zero).

上 以上、(1式)〜(10式)で述べたことがら主機速度
制御装置4人に対する速度目標値修正量ΔNRF、Fと
ルーツR電流制御装置IAに対する電流目標値修正量Δ
■RF、Fから構成される操作ベクトルU=〔ΔNR□
、ΔIRカ〕1を(6式)に従って決定すればよいこと
がわかる。
As described above in (Formula 1) to (Formula 10), the speed target value correction amount ΔNRF, F for the main engine speed controller 4 people and the current target value correction amount Δ for the Roots R current control device IA.
■Operation vector U consisting of RF and F = [ΔNR□
, ΔIR]1 can be determined according to Equation (6).

(6式)中、次式の置換 ・・・・・・・・・・・・・・・・・・(12式)を行
なって、(6式)を具体的に書き下すと(13式)のよ
うになる。
In (6 formula), replace the following formula (12 formula) and concretely write down (6 formula) (13 formula )become that way.

・・・・・・・・・・・・・・・・・・(13式)ただ
し、ΔNREF及びΔI詮、は各々ΔNRF、F’ΔI
R。
・・・・・・・・・・・・・・・・・・(Formula 13) However, ΔNREF and ΔI are ΔNRF and F'ΔI, respectively.
R.

の初期値を表わす。represents the initial value of

上記(13式)をブロック図化したものが第2図であり
、各信号のつながりはさきに述べた通りである。
FIG. 2 is a block diagram of the above (Formula 13), and the connection of each signal is as described above.

(13式)に従って主機速度目標値修正量ΔNRF、F
及び電流目標値修正量Δ■R□2が決定されることによ
り主機電動機5Aの回転速度検出値NR及びルー・ぞ駆
動電動機2人の電機子電流■9回転速度検出値Nが修正
され、張力検出値Tf及びルーパ動作角度検出値θが目
標値近傍に制御される。
According to (formula 13), main engine speed target value correction amount ΔNRF, F
By determining the current target value correction amount Δ■R□2, the rotational speed detection value NR of the main engine motor 5A and the armature current ■9 rotational speed detection value N of the two driving motors are corrected, and the tension The detected value Tf and the detected looper operating angle value θ are controlled to be close to the target values.

なお、上述の構成では状態ベクトルXの要素が全て検出
可能として制御系を構成したが、Xの要素のうちΔ11
.Δ2工、Δz2.Δz3については検出不可能な場合
制御ループを省略してもかまわ々い。
In addition, in the above configuration, the control system was configured such that all the elements of the state vector
.. Δ2 engineering, Δz2. Regarding Δz3, if it cannot be detected, the control loop may be omitted.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、次のような効果が認められる
Thus, according to the present invention, the following effects are recognized.

■ 従来のルー・ぐ制御系ではメタンP間張力制御とル
ーA動作角度制御との間の相互干渉が考慮されておらず
安定性に問題があったが、本発明では(17)    
          、。
■ In the conventional loop control system, mutual interference between the methane P tension control and the loop A operating angle control was not taken into consideration, and there was a problem with stability, but in the present invention (17)
,.

ルーパ制御系を2人力2出力の多慶数制御系としてとら
えて制御系を構成したので、各変数間の相互干渉が考慮
されており安定性に優れたルーパ制御装置が得られる。
Since the looper control system is configured as a two-man power, two-output, multi-control system, a looper control device with excellent stability can be obtained in which mutual interference between variables is taken into consideration.

■ 従来のルーパ制御系では上記の相互干渉を抑えるた
めに制御応答を低下させねばならず高周波外乱に対する
追随性の悪化を招いていたが、本発明では各変数間の相
互干渉を考慮した構成となっているため制御応答を低下
させる必要はなく高周波外乱に対する追随性に優れてい
る。
■ In the conventional looper control system, the control response had to be lowered in order to suppress the mutual interference mentioned above, leading to deterioration in the ability to follow high-frequency disturbances, but the present invention has a configuration that takes mutual interference between variables into account. Therefore, there is no need to reduce the control response, and it has excellent followability to high-frequency disturbances.

■ 従来のルーパ制御系ではスタフ1間張力の検出を行
なっていなかったため実績張力に基づいたルーパ制御は
行なわれておらず製品品質の悪化を招いていたが、本発
明では張力検出器を設置することにより実績張力に基づ
いたルーパ制御が可能となり品質の向上につながる。
■ In the conventional looper control system, the tension between the staffs 1 and 1 was not detected, so looper control was not performed based on the actual tension, resulting in deterioration of product quality, but in the present invention, a tension detector is installed. This enables looper control based on actual tension, leading to improved quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の構成を表わすブロック図、第2図は
本発明の一実施例の構成を示すブロック(18) 図である。 IA・・・ルーツク電流制御装置、2A・・・ルーA駆
動電動機、3A・・・ルーツ機械系、4A・・・主機速
度制御装置(ロール駆動電動機速度制御装置)、5A・
・・主機電動機(ロール駆動電動機)、6A・・・スタ
ンド間張力発生機構、9A、10A・・・積分器、】】
〜19 、21〜29・・・比例ゲイン、30〜33・
・・加算器、詞〜37・・・積分ゲイン。 出願人代理人  猪  股    清 第1図
FIG. 1 is a block diagram showing the configuration of a conventional device, and FIG. 2 is a block diagram (18) showing the configuration of an embodiment of the present invention. IA... Rootske current control device, 2A... Luu A drive motor, 3A... Roots mechanical system, 4A... Main engine speed control device (roll drive motor speed control device), 5A...
...Main motor (roll drive motor), 6A...Tension generation mechanism between stands, 9A, 10A...Integrator, ]]
~19, 21~29...Proportional gain, 30~33.
... Adder, word ~ 37... Integral gain. Applicant's agent Kiyoshi Inomata Figure 1

Claims (1)

【特許請求の範囲】 1、ルーツξ駆動電動機に流れる電機子電流を制御する
ルー・ぞ電流制御装置とルーツにに隣接する圧延スタン
Pのロールを駆動する主機電動機の回転速度を制御する
主機速度制御装置を有する連続圧延機において、 次の各手段 ■ スタンド間の被圧延材の張力検出値と張力目標値と
の備差について第1の積分動作を行なう手段と、張力検
出値と制御開始時の張力検出値との偏差について第1の
比例動作を行かう手段。 ■ ルー、e動作角度検出値とルー)e動作角度目標値
との偏差について第2の積分動作を行ガう手段と、ルー
パ動作角度検出値と制御開始時のルー、e動作角度検出
値との偏差について第2の比例動作を行なう手段、 ■ 前記ルー・ぐ駆動電動機に流れる電機子電流の検出
値と制御開始時の値との偏差について第3の比例動作を
行々う手段、 ■ 前記ルーA駆動電動機の回転速度検出値と制御開始
時の値との偏差について第4の比例動作を行なう手段、 を加算することにより前記ルーパ電流制御装置の電流目
標値修正量を合成し前記ルーパ電流制御装置に対し出力
する部分と、 下記の各手段 ■ スタンド間の被圧延材の張力検出値と張力目標値と
の偏差について第1の比例積分動作を行なう手段と、張
力検出値と制御開始時の張力検出値との偏差について第
5の比例動作を行なう手段、 ■ ルー・ぞ動作角度検出値とルーパ動作角度目標値と
の偏差について第2の比例積分動作を行なう手段と、ル
ー・ぞ動作角度検出値と制御開始時のルー・ぞ動作角度
検出値との偏差について第6の比例動作を行なう手段、 ■ 前記ルー・ぐ駆動電動機に流れる電機子電流の検出
値と制御開始時の値との偏差について第7の比例動作を
行なう手段。 ■ 前記ルーA駆動電動機の回転速度検出値と制御開始
時の値との偏差について第8の比例動作を行々う手段、 を加算することにより前記主機速度制御装置の速度目標
値修正量を合成し前記主機速度制御装置に出力する部分
と、 から構成されることを特徴とする連続圧延機のルーツぞ
制御装置。 2、 i流目標値修正量として、 ■ 前記主機電動機の回転速度検出値と制御開始時の値
との偏差について第9の比例動作を行なう手段。 を加え、 速度目標値修正量として、 ■ 前記主機電動機の回転速度検出値と制御開始時の値
との偏差について第10の比例動作を行なう手段、 を加えてなる特許請求の範囲第1項記載の連続圧延機の
ルーパ制御装置。 3、電流目標値修正量として、 ■ 前記主機電動機に流れる電機子電流の検出値と制御
開始時の値との偏差に対し第11の比例動作を行なう手
段、 を加え、 速度目標値修正量として、 ■ 前記主機電動機に流れる電機子電流の検出値と制御
開始時の値との偏差について第12の比例動作を行なう
手段、 を加えてなる特許請求の範囲第2項記載の連続圧延機の
ルーパ制御装置。 4、電流目標値修正量として、 e 前記ルー・ソ電流制御装置内の電流制御用PIコン
トローラの積分動作出力と制御開始時の値との偏差につ
いて第13の比例動作を行なう手段、■ 前記主機速度
制御装置内の速度制御用PIコントローラの積分動作出
力と制御開始時の値との偏差について第14の比例動作
を行なう手段、■ 前記主機速度制御装置内のマイナ電
流制御用PIコントローラの積分動作出力と制御開始時
の値との偏差について第15の比例動作を行なう手段、 を加え、 速度目標値修正量として、 ■ 前記ルーパ電流制御装置内の電流制御用prコント
ローラの積分動作出力と制御開始時の値との偏差につい
て第16の比例動作を行なう手段、■ 前記主機速度制
御装置内の速度制御用PIコントローラの積分動作出力
と制御開始時の値との偏差について第17の比例動作を
行なう手段、■ 前記主機速度制御装置内のマイナ電流
制御用P■コントローラの積分動作出力と制御開始時の
値との偏差について第18の比例動作を行なう手段、 を加えてなる特許請求の範囲第3項記載の連続圧延機の
ルーパ制御装置。
[Scope of Claims] 1. A current control device for controlling the armature current flowing through the roots ξ drive motor, and a main machine speed for controlling the rotational speed of the main motor for driving the rolls of the rolling mill P adjacent to the roots. In a continuous rolling mill having a control device, each of the following means (1) A means for performing a first integral operation on the difference between the detected tension value of the material to be rolled between stands and the target tension value, and a means for performing a first integral operation on the difference between the detected tension value and the tension target value, and the detected tension value and the control start time. Means for performing a first proportional operation regarding the deviation from the detected tension value. ■ Means for performing a second integral operation on the deviation between the detected value of the looper operating angle and the target value of the operating angle; (2) means for performing a third proportional action regarding the deviation between the detected value of the armature current flowing through the loop drive motor and the value at the start of the control; means for performing a fourth proportional operation on the deviation between the rotational speed detection value of the loop A drive motor and the value at the start of control; The part that outputs to the control device, and each of the following means; Means for performing the first proportional-integral operation on the deviation between the detected tension value of the material to be rolled between stands and the target tension value; means for performing a fifth proportional operation with respect to the deviation from the detected tension value; ■ means for performing a second proportional-integral operation regarding the deviation between the detected value of the looper movement angle and the target value of the looper operation angle; means for performing a sixth proportional operation on the deviation between the detected angle value and the detected value of the loop-and-groove movement angle at the time of starting the control; Means for performing a seventh proportional action on the deviation of. (1) means for performing an eighth proportional operation on the deviation between the rotational speed detection value of the Lue A drive motor and the value at the start of the control; A roots control device for a continuous rolling mill, characterized in that it is comprised of: a portion for outputting information to the main machine speed control device; 2. Means for performing a ninth proportional operation on the deviation between the rotational speed detection value of the main engine motor and the value at the start of control, as the i-stream target value correction amount. and, as the speed target value correction amount, (1) means for performing a tenth proportional operation on the deviation between the rotation speed detection value of the main engine motor and the value at the time of control start. continuous rolling mill looper control device. 3. As the current target value correction amount, ■ Means for performing an eleventh proportional operation on the deviation between the detected value of the armature current flowing through the main engine motor and the value at the start of control, and as the speed target value correction amount. A looper for a continuous rolling mill according to claim 2, further comprising: (1) means for performing a twelfth proportional operation on the deviation between the detected value of the armature current flowing through the main motor and the value at the start of control. Control device. 4. As the current target value correction amount, e means for performing a thirteenth proportional operation on the deviation between the integral operation output of the current control PI controller in the Rouxo current control device and the value at the start of control; means for performing a fourteenth proportional operation on the deviation between the integral operation output of the speed control PI controller in the speed control device and the value at the start of control; (1) integral operation of the minor current control PI controller in the main engine speed control device; means for performing a 15th proportional operation on the deviation between the output and the value at the start of control, and as the speed target value correction amount, ■ the integral operation output of the current control pr controller in the looper current control device and the control start means for performing a 16th proportional operation regarding the deviation from the value at the time of control; (1) performing a 17th proportional operation regarding the deviation between the integral operation output of the speed control PI controller in the main engine speed control device and the value at the start of the control; Claim 3 further comprising: means for performing an eighteenth proportional action on the deviation between the integral action output of the P controller for minor current control in the main engine speed control device and the value at the start of the control. A looper control device for a continuous rolling mill as described in 1.
JP57225541A 1982-12-22 1982-12-22 Equipment for controlling looper in continuous rolling mill Granted JPS59118213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225541A JPS59118213A (en) 1982-12-22 1982-12-22 Equipment for controlling looper in continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225541A JPS59118213A (en) 1982-12-22 1982-12-22 Equipment for controlling looper in continuous rolling mill

Publications (2)

Publication Number Publication Date
JPS59118213A true JPS59118213A (en) 1984-07-07
JPH0261324B2 JPH0261324B2 (en) 1990-12-19

Family

ID=16830906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225541A Granted JPS59118213A (en) 1982-12-22 1982-12-22 Equipment for controlling looper in continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS59118213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003548A1 (en) * 1989-02-07 1990-08-09 Toshiba Kawasaki Kk Looper control regulates looper angle and tension between roll stands - using current or speed control to compensate for variations in roller process characteristics and thereby improve rolling quality
JPH04322810A (en) * 1991-04-22 1992-11-12 Nippon Steel Corp Device for controlling angle of tension looper between stands of continuous rolling mill
EP0710513A1 (en) * 1993-10-08 1996-05-08 Kawasaki Steel Corporation Interstand tension controller for a continuous rolling mill
US5660066A (en) * 1993-10-08 1997-08-26 Kawasaki Steel Corporation Interstand tension controller for a continuous rolling mill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564307A (en) * 1979-06-20 1981-01-17 Mitsubishi Electric Corp Looper controller for continuous rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564307A (en) * 1979-06-20 1981-01-17 Mitsubishi Electric Corp Looper controller for continuous rolling mill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003548A1 (en) * 1989-02-07 1990-08-09 Toshiba Kawasaki Kk Looper control regulates looper angle and tension between roll stands - using current or speed control to compensate for variations in roller process characteristics and thereby improve rolling quality
US5040395A (en) * 1989-02-07 1991-08-20 Kabushiki Kaisha Toshiba Looper control system for continuous rolling mill
JPH04322810A (en) * 1991-04-22 1992-11-12 Nippon Steel Corp Device for controlling angle of tension looper between stands of continuous rolling mill
EP0710513A1 (en) * 1993-10-08 1996-05-08 Kawasaki Steel Corporation Interstand tension controller for a continuous rolling mill
US5660066A (en) * 1993-10-08 1997-08-26 Kawasaki Steel Corporation Interstand tension controller for a continuous rolling mill

Also Published As

Publication number Publication date
JPH0261324B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
US4566299A (en) Control method and apparatus for rolling mill
JPS59118213A (en) Equipment for controlling looper in continuous rolling mill
JPH0223243B2 (en)
JPH02207910A (en) Looper controller for continuous rolling mill
JPS59118214A (en) Equipment for controlling looper in continuous rolling mill
US5660066A (en) Interstand tension controller for a continuous rolling mill
JPH0811245B2 (en) Looper control device for continuous rolling mill
JP3298024B2 (en) Process control method and process control device
JPH0523847B2 (en)
US3275918A (en) Control system for a plural motor drive with load equalization
JPS6343164B2 (en)
JP2740618B2 (en) Looper control device
JPS5951364B2 (en) Looper control device for hot rolling mill
JPS637846B2 (en)
JPS59189004A (en) Manuacture of differential thickness plate and its rolling mill
JPH05337529A (en) Multivariable controller for looper
JP2839814B2 (en) Tension control method for continuous hot rolling mill
JP2899458B2 (en) Looper multivariable controller
JP3071300B2 (en) Looper height control device
JPS609391A (en) Speed controller of motor
Larbah et al. Design and Simulation of Torque Control for Hot Rolling Steel Mill
JPH06135609A (en) Strip tensile force controller
JPH04200915A (en) Method for controlling plate thickness in rolling mill
JPS62259968A (en) Tension controller
JPS62227514A (en) Control method for reel motor of rolling mill