JPS59118132A - Hydrogen clearance type measrurement of body fluid amount - Google Patents

Hydrogen clearance type measrurement of body fluid amount

Info

Publication number
JPS59118132A
JPS59118132A JP57232493A JP23249382A JPS59118132A JP S59118132 A JPS59118132 A JP S59118132A JP 57232493 A JP57232493 A JP 57232493A JP 23249382 A JP23249382 A JP 23249382A JP S59118132 A JPS59118132 A JP S59118132A
Authority
JP
Japan
Prior art keywords
body fluid
hydrogen
current
tissue
polaro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57232493A
Other languages
Japanese (ja)
Inventor
斎藤 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57232493A priority Critical patent/JPS59118132A/en
Publication of JPS59118132A publication Critical patent/JPS59118132A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、薬剤の作用等による血管やリンパ腺内の体
液流fflの痩化を動物実験によって測定する際なとに
利用される水素クリアランス式体液流++t ?i!U
定方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention is a hydrogen clearance type body fluid flow ++t? which is used in animal experiments to measure thinning of body fluid flow ffl in blood vessels and lymph glands due to the action of drugs, etc. i! U
This paper relates to improvements in the method of determination.

従来の水素クリアランス式体液流量測定方法は、生体組
織内に水素を飽和させた後、この水素が体液流によって
洗い出される時間を測定し、この測定値から生体組織内
における体藤流量を算出するものである。生体組織中の
水素濃度の処化は、水素がイオン化することによって生
ずるいわゆるポーラロ電流の変化を該組織に刺入ないし
接触させた関電極と生体の他の部分に装置された不関電
極とによって検出し、この電流値の半減時間から組織中
の体液流量を求めている。生体組織中に水素を生成させ
る手段としては、従来、呼吸器から水素ガスを吸入させ
る方法や水素を溶解させた液を血管内に注入する方法が
用いられていたが、近時、生体組織に通電電極(陰極)
を刺入ないし接触して該組織に微弱な電流を流し、電気
分解の原理によって水素を発生させる方法が提唱されて
いる。
The conventional hydrogen clearance method for body fluid flow measurement involves saturating biological tissue with hydrogen, then measuring the time it takes for this hydrogen to be flushed out by body fluid flow, and calculating the body fluid flow rate within the biological tissue from this measured value. It is something. Hydrogen concentration in living tissue can be controlled by changing the so-called polaro current caused by ionization of hydrogen by using a related electrode inserted into or in contact with the tissue and an indifferent electrode placed in another part of the living body. The body fluid flow rate in the tissue is determined from the half-life time of this current value. Traditionally, methods for generating hydrogen in living tissues include inhaling hydrogen gas through the respiratory tract or injecting hydrogen-dissolved liquid into blood vessels, but recently, methods for producing hydrogen in living tissues have been used. Current-carrying electrode (cathode)
A method has been proposed in which hydrogen is generated by the principle of electrolysis by inserting or contacting the tissue and passing a weak electric current through the tissue.

ところで従来の水素クリアランス酸体液流t、21測定
方法は、上述した様に被検組織内に水素を発生させた後
のクリアランスによる半減時間から体液流量を算出して
いるので、生体組織内の体液流(itを連続的に測定す
ることはできなかった。即ち、例えば前述した電気分解
の原理によって水素を発生させる方法では、第1図に示
す定電流装置1からの微小電流を生体組織2に刺入され
た陰極3と生体に接触させた陽極4との間に流して該組
織2に水素を発生させた後スイッチ5を切って通電を停
止させる。一方生体組織2に刺入された関電極6と生体
に接触させた不関電極7との間に流れるポーラロ電流の
変化を第2図に示すクリアランスカーブaとして測定し
、その半減時間tから生体組織2内の体液流量を算出し
ていた。従って1個の測定値を得る為には水素を一定爪
発生させる為の時間と該水素がクリアランスによって半
減するまでの時間とが少なくとも必要であり、生体組織
2内の体節流敏を連続的に測定することは不可能である
。尚、第1図の8はポーラロ電流測定装置である。
By the way, in the conventional hydrogen clearance acid body fluid flow t,21 measurement method, the body fluid flow rate is calculated from the half-life time due to clearance after hydrogen is generated in the test tissue, as described above. It was not possible to continuously measure the current (it). In other words, for example, in the method of generating hydrogen using the principle of electrolysis described above, a minute current from a constant current device 1 shown in FIG. After hydrogen is generated in the tissue 2 by flowing between the inserted cathode 3 and the anode 4 in contact with the living body, the switch 5 is turned off to stop the electricity supply. The change in the polaro current flowing between the electrode 6 and the indifferent electrode 7 in contact with the living body is measured as a clearance curve a shown in FIG. 2, and the flow rate of body fluid in the living tissue 2 is calculated from the half-life time t. Therefore, in order to obtain one measurement value, at least the time required to generate a certain amount of hydrogen and the time required for the hydrogen to be reduced by half due to clearance are required, and the somatic flow sensitivity within the living tissue 2 is required. It is impossible to measure continuously. Note that 8 in FIG. 1 is a Polaro current measuring device.

この発明は、上述した従来の水素クリアランス弐体液流
(71,測定方法の欠点を解決して、生体組織および管
腔内の体液流量を連続的に測定する方法を提供するもの
である。
The present invention solves the drawbacks of the conventional hydrogen clearance measurement method described above and provides a method for continuously measuring the flow rate of body fluid in living tissues and lumens.

生体組織中に生成させた水素のクリアランスによる半減
時間が該組織内での体液の流量と相関関係を有すること
は従来より公知であり、上述した従来の体液流量測定方
法は、この相関関係を利用したものであるが、本願発明
者の詳細な研究の結果、水素生成用の陰極とポーラロ電
流検出用の関電極とを生体組織ないし管腔内に一定の間
隔で刺入して陰極に一定値の微小電流を通電した場合、
その通電時における関電極のポーラロ電流値と該組織な
いし管腔内の体液流量との間にも一定の相関関係がある
ことが見出ブされた。f、!IJち、生体組織ないし管
腔内に微細な電極を刺入してこの電極に数マイクロアン
ペア以下の微弱な定′市流を連続的に流しながらその近
傍に置いたポーラロ電流検出用の電極で水素濃度を測定
すると、該組織ないし管腔内の体液流量が多くなればポ
ーラロ′市流(11′Jは低下し、体液流量が少なくな
ればポーラロ電流値が増大することが認められ、陰極と
関’+’fZ 極との間隔およびこれらの構造、寸法が
一定であれば、この場合に測定されるポーラロ電流値と
該組織ないし管腔内の体液流量に一定の相関関係がある
ことが認められた。
It has long been known that the half-life time due to clearance of hydrogen generated in biological tissue has a correlation with the flow rate of body fluid within the tissue, and the conventional body fluid flow measurement method described above utilizes this correlation. However, as a result of detailed research by the inventor of the present application, a cathode for hydrogen generation and a dielectric electrode for detecting polaro current were inserted into living tissue or a lumen at regular intervals to maintain a constant value at the cathode. When a minute current of
It has been found that there is a certain correlation between the polaro current value of the electrode and the flow rate of body fluid in the tissue or lumen when the current is applied. F,! IJ is a polaro current detection electrode in which a fine electrode is inserted into a living tissue or a lumen, and a weak constant current of several microamperes or less is continuously passed through the electrode and placed near it. When measuring the hydrogen concentration, it was found that when the body fluid flow rate in the tissue or lumen increases, the Polaro current (11'J) decreases, and when the body fluid flow rate decreases, the Polaro current value increases. It is recognized that there is a certain correlation between the polaro current value measured in this case and the body fluid flow rate in the tissue or lumen, provided that the distance from the +'fZ electrode and their structure and dimensions are constant. It was done.

この発明は、上述の知見に基づいてなされたもので、第
3図に示す様な陰極9と関電極10とを所定の間隔に設
けて絶縁材11で保護した検出針12を被検組織の組織
ないし管腔内に刺入し、陰極9に微小な一定値の電流を
連続的に流しながらポーラロ電流を測定することにより
、当該組織ないし管腔内の体液流量を測定することを特
徴とするものである。この方法により測定されたポーラ
ロ電流は、測定される組織ないし管腔内の体液流片1と
一定の相関関係を有する電流値となり、使用される検出
0112の特性を体外で校正しておくことにより、被検
組織ないし管腔内の体液の絶対流;I′1の測定も可能
であった。尚、この場合の定電流装置およびポーラロ電
流測定装置としては、従来の装置をそのまま用いること
ができ、第3図の実施例における陰極9は直径75ミク
ロンのpt−Ir線であり、ポーラロ電極10は25ミ
クロンのP t−1r線である。
This invention was made based on the above-mentioned findings, and a detection needle 12, which has a cathode 9 and a related electrode 10 spaced apart from each other as shown in FIG. It is characterized by measuring the body fluid flow rate in the tissue or lumen by inserting it into the tissue or lumen and measuring the polaro current while continuously passing a small constant current through the cathode 9. It is something. The polaro current measured by this method has a certain correlation with the body fluid flow piece 1 in the tissue or lumen to be measured, and by calibrating the characteristics of the detection 0112 used outside the body, It was also possible to measure I'1, the absolute flow of body fluid within the test tissue or lumen. In this case, conventional devices can be used as the constant current device and the polaro current measuring device, and the cathode 9 in the embodiment shown in FIG. 3 is a PT-Ir wire with a diameter of 75 microns, is a 25 micron Pt-1r line.

以上の様に本発明は、新たな知見に基づいて生体組織な
いし管腔内の体液流量を連続的に測定することかできる
簡単な方法を提供するもので、蓄理効果や生体組織の機
能変化等を研究する際に極めて好適な方法である。
As described above, the present invention provides a simple method that can continuously measure the flow rate of body fluids in living tissues or lumens based on new knowledge, and it aims to improve the storage effect and functional changes in living tissues. This is an extremely suitable method for researching such matters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素クリアランス式体液流(Tl測定装置を模
式的に示すブロック図、第2図は従来測定されていた水
素クリアランスカーブを示す図、第3図は本発明方法で
採用される体液流量測定用電極の一実施例を模式的に示
した斜視図である。 図中、1は定電流装置、2は生体組織、3は陰極、4は
陽極、6は関電極、7は不関′市極、8はポーラロ電流
測定装置、9は陰極、10は関電極、11は絶縁材、1
2は検出側である。 代理人 弁理士 西 序[1
Figure 1 is a block diagram schematically showing a hydrogen clearance type body fluid flow (Tl measuring device), Figure 2 is a diagram showing a conventionally measured hydrogen clearance curve, and Figure 3 is a body fluid flow rate adopted in the method of the present invention. 1 is a perspective view schematically showing an example of a measurement electrode. In the figure, 1 is a constant current device, 2 is a biological tissue, 3 is a cathode, 4 is an anode, 6 is a related electrode, and 7 is an indifferent electrode. City pole, 8 is Polaro current measuring device, 9 is cathode, 10 is electrode, 11 is insulating material, 1
2 is the detection side. Agent Patent Attorney Masaru Nishi [1

Claims (1)

【特許請求の範囲】[Claims] (1)人間以外の動物生体組織ないし管腔内に微細な通
?il用陰極とポーラロ電流測定用の関電極とを互いに
近接させて刺入ないし感触せしめ、前記通電用陰極に一
定値の微力\電流を通電させながらポーラロ電流値を測
定することにより、当該管腔r、4Niし 会十等組織内の体液流量を連続的に測定することを特徴
とする、水素クリアランス式体液流量測定方法。
(1) Microscopic passages in living tissues or lumens of animals other than humans? A cathode for il and a electrode for measuring polaro current are inserted or felt in close proximity to each other, and the polaro current value is measured while passing a constant current through the cathode for energization. A hydrogen clearance method for measuring body fluid flow rate, characterized by continuously measuring the flow rate of body fluid in a 4Ni tissue.
JP57232493A 1982-12-23 1982-12-23 Hydrogen clearance type measrurement of body fluid amount Pending JPS59118132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232493A JPS59118132A (en) 1982-12-23 1982-12-23 Hydrogen clearance type measrurement of body fluid amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232493A JPS59118132A (en) 1982-12-23 1982-12-23 Hydrogen clearance type measrurement of body fluid amount

Publications (1)

Publication Number Publication Date
JPS59118132A true JPS59118132A (en) 1984-07-07

Family

ID=16940178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232493A Pending JPS59118132A (en) 1982-12-23 1982-12-23 Hydrogen clearance type measrurement of body fluid amount

Country Status (1)

Country Link
JP (1) JPS59118132A (en)

Similar Documents

Publication Publication Date Title
US4197853A (en) PO2 /PCO2 sensor
Carter et al. Measurement of intracellular pH of skeletal muscle with pH-sensitive glass microelectrodes
Davies The oxygen cathode
US5030333A (en) Polarographic method for measuring both analyte and oxygen with the same detecting electrode of an electroenzymatic sensor
Stosseck et al. Determination of local blood flow (microflow) by electrochemically generated hydrogen: Construction and application of the measuring probe
KR970011449B1 (en) Device for iontophoretic non-invasive sampling or delivery of substances
Hahn Tutorial Review. Electrochemical analysis of clinicalblood-gases, gases and vapours
JPH05509392A (en) Electrochemical measurement method for oxygen concentration
US3973555A (en) Electrode cell assembly for the continuous determination of ion concentrations in living tissues
JPS6154410B2 (en)
US5040422A (en) Procedure for flow measurement and equipment therefor
Lawrence et al. Cochlear potentials and oxygen associated with hypoxia
JPS6363858B2 (en)
US20120077258A1 (en) Diagnostic device
US3497442A (en) Fluid testing device
Eőry In-vivo skin respiration (CO2) measurements in the acupuncture loci
O'Hare et al. Electrochemical method for direct measurement of oxygen concentration and diffusivity in the intervertebral disc: electrochemical characterization and tissue-sensor interactions
JP3416138B2 (en) Measurement of gas concentration
Koide et al. XXVII Studies on the Oxigraphic Measurement of the Oxygen Tension in the Labyrinth: Preliminary Report
JPS59118132A (en) Hydrogen clearance type measrurement of body fluid amount
Zeuthen et al. Microelectrode recording of ion activity in brain
US9354250B1 (en) Nanoscale probe structure and application thereof
Lawrence et al. Oxygen availability in tunnel of Corti measured by microelectrode
US4893625A (en) Insertion type electrode arrangement for continuous pO2 measurement in living skin tissue
Brooks et al. On-line PO2 and PN2O analysis with an in vivo catheter electrode