JPS59117470A - Power control circuit - Google Patents

Power control circuit

Info

Publication number
JPS59117470A
JPS59117470A JP22506982A JP22506982A JPS59117470A JP S59117470 A JPS59117470 A JP S59117470A JP 22506982 A JP22506982 A JP 22506982A JP 22506982 A JP22506982 A JP 22506982A JP S59117470 A JPS59117470 A JP S59117470A
Authority
JP
Japan
Prior art keywords
transformer
inverters
load
parallel
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22506982A
Other languages
Japanese (ja)
Inventor
Toshihiro Onodera
小野寺 利浩
Yoichi Masuda
増田 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22506982A priority Critical patent/JPS59117470A/en
Publication of JPS59117470A publication Critical patent/JPS59117470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To eliminate an unnecessary transient response by displacing and superposing the phases of AC outputs of a plurality of voltage resonance type high frequency inverters and supplying the powers to a load, thereby smoothing the output current wave. CONSTITUTION:Voltage resonance inverters of respective series are connected in parallel with an input power source 1. The inverters are connected to the power source 1 through main switches 5, 6 at the primary side of a tansformer 7 which has leakage inductances between the primary side and the secondary side, a diode 2 is connected in anti-parallel with the switches 5, 6, and a capacitor 4 is connected in parallel with the primary side of the transformer 7 or the diode 2. The secondary side of the transformer 7 is connected in parallel or in series, and the same load 8 is connected. The output power is controlled by altering the opening or closing phase of the switches 5, 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕      ′ この発明は霜;圧共振形高周波・インバータの出力電力
の制御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control circuit for output power of a pressure resonance type high frequency inverter.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電圧共振形高周波インバータは抵抗負荷に交流電力を供
給できるので高周波誘導加熱装置等に用いられている。
Voltage resonance type high frequency inverters can supply alternating current power to resistive loads, so they are used in high frequency induction heating devices and the like.

しかしスイッチの6断”期間が共振電圧波形の弧で決め
られるためにスイッチのパルス幅で出力電力の制御をす
ると出力電力の可変範囲が狭い。電圧共振の条件を守り
ながら変えられる電力の可変範囲は最大−最小で数分の
一程度で実用上不十分である。
However, since the switch disconnection period is determined by the arc of the resonant voltage waveform, controlling the output power by the switch pulse width has a narrow output power variable range.The power variable range can be changed while maintaining voltage resonance conditions. is about a fraction of the maximum to minimum, which is insufficient for practical use.

この狭い電力制御範囲を広げるために主スィッチの他に
補助スイッチを用いる手法がある。この補助スイッチは
主スィッチと同定格の容量を持ったものが必要となシ、
コスト、構造上の点で必ずしも実用的と言えない。
In order to widen this narrow power control range, there is a method of using an auxiliary switch in addition to the main switch. This auxiliary switch must have the same rated capacity as the main switch.
This is not necessarily practical in terms of cost and structure.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の事情に基つきなされたもので、同容
量の電力を制御するに当シ、主スィッチの半分以下の容
量のスイッチを用いた複数系列の電圧共振形高周波イン
パークの電力制御回路を提供することを目的とする。
The present invention has been made based on the above circumstances, and is aimed at controlling the power of multiple series of voltage resonant high frequency impulses using switches with a capacity less than half of the main switch in order to control the same amount of power. The purpose is to provide circuits.

〔発明の概要〕[Summary of the invention]

この発明は電圧共振形高周波インバータを複数系統用意
し、共通の抵抗負荷を有し、各系統のインバータの励振
位相を変えて角荷への供給電力を制御するものである。
This invention prepares a plurality of systems of voltage resonance type high frequency inverters, has a common resistance load, and controls the power supplied to the square load by changing the excitation phase of the inverters of each system.

〔発明の効果〕〔Effect of the invention〕

この発明によれば複数系列の電圧共振形高周波インバー
タの交流出力を互いに位相をずらせて重ね合せて負荷に
電力を供給するために、合成された出力電流波が消らか
で不要な過渡応答がなく、低雑音の交流出力が得られる
。また複数系列のインパークの出力の位相が互いに逆位
相になれば、出力電力を完全に零にしほれしかも一次側
のスイッチにかかる電圧共振条件を変えることもない。
According to this invention, in order to supply power to a load by superimposing the AC outputs of multiple series of voltage resonant high frequency inverters with their phases shifted from each other, the combined output current wave is smooth and unnecessary transient response is generated. AC output with low noise can be obtained. Furthermore, if the phases of the outputs of the imparks in the plurality of series are opposite to each other, the output power can be completely reduced to zero, and the voltage resonance condition applied to the primary side switch does not change.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において1は入力電源で、この電源に各系列の電
圧共振形インバータを並列に接続する。一つの系列のイ
ンバータは電源1に主スィッチ5を介し一次二次間に洩
れインダクタンスを持つ変成器7の一次側を接続し、主
スィッチ5に逆並列にダイオード2を接続し、変成器7
の一次側またはダイオード2に並列にコンデンサ4を接
続し、それぞれの変成器7の二次側は並列または直列に
接続し同一の負荷8を接続する。
In FIG. 1, reference numeral 1 denotes an input power source, to which voltage resonant inverters of each series are connected in parallel. In one series of inverters, the primary side of a transformer 7 having leakage inductance between the primary and secondary is connected to the power supply 1 through a main switch 5, a diode 2 is connected in antiparallel to the main switch 5, and the transformer 7
A capacitor 4 is connected in parallel to the primary side or the diode 2, and the secondary side of each transformer 7 is connected in parallel or in series to the same load 8.

次にこの実施例の動作を説明する。各系列の電圧共振形
インバータの変成器の巻線比を1”とし−次二次間の洩
れインダクタンス9の値をLe  とすると変成器二次
側から見た共振回路の特性インピーダンスZoはJLe
/Cとなる。この特性インピーダンスZoよりも負荷8
の値RLは115以下と小さいものとする。この場合各
系列のインバータの出力は主に負荷8に出力電力を消費
し、他のインバータへの電力の回シ込みは動作上無視で
き、各インバータは独立になる。最後に変成器7の励磁
インダクタンスは洩れインダクタンス9に比べ十分大き
くし動作上無視できる構成とする。
Next, the operation of this embodiment will be explained. If the turns ratio of the transformer of each series of voltage resonant inverters is 1", and the value of the leakage inductance 9 between the transformer and the secondary is Le, the characteristic impedance Zo of the resonant circuit as seen from the transformer secondary side is JLe
/C. The load 8 is higher than this characteristic impedance Zo.
The value RL is assumed to be small, 115 or less. In this case, the output power of each series of inverters is mainly consumed by the load 8, and the transfer of power to other inverters can be ignored in terms of operation, and each inverter becomes independent. Finally, the excitation inductance of the transformer 7 is made sufficiently larger than the leakage inductance 9 so that it can be ignored in terms of operation.

各インバータが定常状態になるとスイッチ5が閉じる寸
前にはコンデンサ4の端子電圧は電源1の電圧E五nに
なっている。
When each inverter reaches a steady state, the terminal voltage of the capacitor 4 becomes the voltage E5n of the power supply 1 just before the switch 5 closes.

以上の条件を念頭に置いて動作の説明に入る。The operation will be explained with the above conditions in mind.

始めに主スィッチ5が閉じる。そのときコンデンサ4の
端子電圧は電源電圧になっているのでコンデンサ4は電
源1に含めて考えてよい。従ってスイッチ5が閉じてい
る期間(Ton )のスイッチ回路は第2図(a)にな
っている。そして流れる電流は実線のように流れる。こ
の変化の様子は第3図(a)に示す。すなわち電流は 直線的に増加する。この状態はスイッチ5が閉じている
期間継続する。その後スイッチ5が開くと洩インダクタ
ンス9に蓄っていた′電流は負荷8を経由してコンデン
サ4に流れ込み共振を始める。
First, the main switch 5 is closed. At this time, the terminal voltage of the capacitor 4 is the power supply voltage, so the capacitor 4 can be considered to be included in the power supply 1. Therefore, the switch circuit during the period (Ton) when the switch 5 is closed is as shown in FIG. 2(a). The current flows as shown by the solid line. The state of this change is shown in FIG. 3(a). That is, the current increases linearly. This state continues while switch 5 is closed. Thereafter, when the switch 5 is opened, the current stored in the leakage inductance 9 flows into the capacitor 4 via the load 8 and begins to resonate.

このときコンデンサ4の端子電圧は電源電圧Einから
正弦波の弧を描きながら降下し負値の最小値を経由して
再び電源電圧E j nに戻る。さらに第3図(b)の
点線で示すように電源電圧Einを越えようとするその
ときダイオードこの極性からコンデンサ4の端子電圧が
電源電圧Einより高くなれば順バイアスされ導通状態
になり第2図(a)の回路と同じになる。どのダイオー
ド2が導通している期間中、電流は直線的に増加し零に
なるオで継続する。
At this time, the terminal voltage of the capacitor 4 drops from the power supply voltage Ein while drawing a sinusoidal arc, returns to the power supply voltage E j n again via the minimum value of the negative value. Furthermore, as shown by the dotted line in FIG. 3(b), when the power supply voltage Ein is about to be exceeded, the diode becomes forward biased and becomes conductive if the terminal voltage of the capacitor 4 becomes higher than the power supply voltage Ein due to this polarity. The circuit is the same as that in (a). While any diode 2 is conducting, the current increases linearly and continues at zero.

その間コンデンサ4の端子電圧は電源電圧Einに固定
される。以上で定常状態における一周期の動作は終る。
During this time, the terminal voltage of the capacitor 4 is fixed to the power supply voltage Ein. This completes one cycle of operation in the steady state.

始めの動作条件によれば負荷8の値とんと第3図(a)
のような波形になる。そこで一つの系列の′1圧共振形
コンバータの出力電圧波形を第4図Iで示す。そして他
の系列の電圧共振形コンバータの出力゛噛;圧波形が6
■′°から位相θ1.θ2遅tしてe+n1”6■2”
なる波形になる。このIと■1やIと■2の合成波形が
負荷8に消費される波形になる。つま9Iと■1.の合
成波形Iと■が一致した場合よシ波高値はホブくなシ、
負荷への伝送電力は少なくなる。
According to the initial operating conditions, the value of load 8 is as shown in Fig. 3(a).
The waveform will look like this. Therefore, the output voltage waveform of one series of 1-voltage resonant converter is shown in FIG. 4I. The output voltage waveform of the other series of voltage resonant converters is 6.
■ From '° to phase θ1. θ2 delay t and e+n1”6■2”
The waveform becomes The composite waveform of I and ■1 or I and ■2 becomes the waveform consumed by the load 8. Tsume 9I and ■1. If the composite waveform I and ■ match, the wave height value will not be too high.
Less power is transmitted to the load.

またIと■2の合成は位相が互いに逆になるので負荷へ
の伝送電力は最小になる。一方インノクータ■と■の極
性を互いに逆にして同一負荷に接続すると負荷に出力さ
れる電圧波形は第5図のようになる。すなわち、インバ
ータIと■1の位相差零で動作しているときは完全に出
力は打ち消し合い出力は零となる。セしてIと■2のよ
うに位相がずれてくると出力が出始める。
Furthermore, since the phases of the combination of I and 2 are opposite to each other, the power transmitted to the load is minimized. On the other hand, if the polarities of Innocutors (2) and (2) are reversed and they are connected to the same load, the voltage waveform output to the load will be as shown in FIG. That is, when operating with zero phase difference between inverters I and 1, the outputs completely cancel each other out and the output becomes zero. When the phase is shifted as shown in I and ■2, the output starts to be output.

以上の説明から明かなように、本発明によれば複数系列
のインバータの励振位相を変えて出力電力をスムースに
制御することができる。しかもパルス幅制御等による場
合には直流を強引にスイッチするために出力波形に不敦
な過渡応答が重畳するが本発明の制準j方式は出力の交
流波形に位相差をつけて重畳するので制御による不要応
答は一済出ない。また出力電圧が大きくなるとこの方法
は増々実用的になる。すなわち、大出力インバータは通
常単一回路で構成せず信頼性および部品の容量の観点か
ら複数系列のインバータで構成するからである。またそ
れぞれの系列のインバータは同一周波数、同一パルス幅
一定条件で動作させておいてそれぞれの励振位相を変え
るだけでよいので制御の信頼性がパルス幅変調方式によ
るよりも格段に上げられる。
As is clear from the above description, according to the present invention, the output power can be smoothly controlled by changing the excitation phase of multiple series of inverters. Moreover, when using pulse width control, etc., an unsatisfactory transient response is superimposed on the output waveform due to forcibly switching the DC, but the standard j method of the present invention superimposes the output AC waveform with a phase difference. There are no unnecessary responses caused by control. Also, as the output voltage increases, this method becomes increasingly practical. That is, a large output inverter is usually not constructed from a single circuit, but from the viewpoint of reliability and component capacity, it is constructed from multiple series of inverters. Furthermore, since the inverters in each series are operated under the same frequency and constant pulse width conditions, and only the respective excitation phases are changed, the reliability of control is much improved compared to the pulse width modulation method.

尚、本発明は上記実施例に限定プれるものでは寿い。例
えば三系列、四系列と増やし、位相差をそれぞれ等分割
して励振すれば同様の効果が得られる。
It should be noted that the present invention is not limited to the above embodiments. For example, the same effect can be obtained by increasing the number of series to three or four series and exciting the phase difference by equally dividing each series.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2図は動作
を説明するための等価回路図、第3図。 第4図および第5図はそれぞれ動作波形図である。 1・・・入力電源、2・・・ダイオード、4・・・コン
デンサ、5,6・・・スイッチ、7・・・変成器、8・
・・負荷、9・・・洩れインダクタンス。 代理人 弁理士   則 近 憲 佑 (ほか1名)第
1図 第2図 tlI−>             。ム。 r′7 第a図
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram for explaining the operation, and FIG. 3 is a diagram. FIGS. 4 and 5 are operation waveform diagrams, respectively. DESCRIPTION OF SYMBOLS 1... Input power supply, 2... Diode, 4... Capacitor, 5, 6... Switch, 7... Transformer, 8...
...Load, 9...Leakage inductance. Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 tlI->. Mu. r'7 Figure a

Claims (1)

【特許請求の範囲】[Claims] (1)入力直流電源に所定周期およびパルス幅で開閉す
るスイッチを介し洩れインダクタンスを有する変成器を
接続し、変成器またはスイッチに並列にコンデンサを接
続した霜;圧共振形インバータを複数系列用意i〜、そ
れらを同一負荷に接続し、各電圧共振形インバータの励
振位相を変えて負荷への電力の調節をできるようにした
ことを特徴とする電力制御回路。 (1)変成器の洩れインダクタンスとコンデンサの特性
インピーダンスより負荷の価を数分の一以下に設定した
ことを特徴とする特許請求の範囲第1項記載の電力制御
回路。
(1) A transformer with leakage inductance is connected to the input DC power source via a switch that opens and closes at a predetermined period and pulse width, and a capacitor is connected in parallel to the transformer or switch; multiple series of pressure-resonant inverters are prepared. A power control circuit characterized in that the voltage resonant inverters are connected to the same load and the excitation phase of each voltage resonance inverter is changed to adjust the power to the load. (1) The power control circuit according to claim 1, wherein the load value is set to be a fraction or less of the leakage inductance of the transformer and the characteristic impedance of the capacitor.
JP22506982A 1982-12-23 1982-12-23 Power control circuit Pending JPS59117470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22506982A JPS59117470A (en) 1982-12-23 1982-12-23 Power control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22506982A JPS59117470A (en) 1982-12-23 1982-12-23 Power control circuit

Publications (1)

Publication Number Publication Date
JPS59117470A true JPS59117470A (en) 1984-07-06

Family

ID=16823541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22506982A Pending JPS59117470A (en) 1982-12-23 1982-12-23 Power control circuit

Country Status (1)

Country Link
JP (1) JPS59117470A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419974A (en) * 1987-06-29 1989-01-24 Superuman Hai Buoruteeji Elect Multimode controller for radio frequency inverter
JPH0275997U (en) * 1988-11-25 1990-06-11
EP1102388A3 (en) * 1999-11-10 2001-10-04 Electromed International, Ltd. High-voltage X-ray generator
US6738275B1 (en) 1999-11-10 2004-05-18 Electromed Internationale Ltee. High-voltage x-ray generator
WO2007057619A1 (en) * 2005-11-21 2007-05-24 Renault S.A.S High-voltage power supply and a plasma reactor
US8571179B2 (en) 1999-11-10 2013-10-29 Robert Beland Computed tomography systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974349A (en) * 1972-11-22 1974-07-18
JPS541819A (en) * 1977-06-07 1979-01-09 Tabuchi Denki Kk Method of power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974349A (en) * 1972-11-22 1974-07-18
JPS541819A (en) * 1977-06-07 1979-01-09 Tabuchi Denki Kk Method of power supply

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419974A (en) * 1987-06-29 1989-01-24 Superuman Hai Buoruteeji Elect Multimode controller for radio frequency inverter
JPH0275997U (en) * 1988-11-25 1990-06-11
EP1102388A3 (en) * 1999-11-10 2001-10-04 Electromed International, Ltd. High-voltage X-ray generator
US6738275B1 (en) 1999-11-10 2004-05-18 Electromed Internationale Ltee. High-voltage x-ray generator
US6967559B2 (en) 1999-11-10 2005-11-22 Electromed Internationale Ltee Transformer for high-voltage X-ray generator
US7375993B2 (en) 1999-11-10 2008-05-20 Emd Technologies Inc. High-voltage X-ray generator
US7936544B2 (en) 1999-11-10 2011-05-03 Emd Technologies Inc. High-voltage X-ray generator
US8571179B2 (en) 1999-11-10 2013-10-29 Robert Beland Computed tomography systems
US8675378B2 (en) 1999-11-10 2014-03-18 Emd Technologies Inc. High-voltage X-ray generator
WO2007057619A1 (en) * 2005-11-21 2007-05-24 Renault S.A.S High-voltage power supply and a plasma reactor
FR2893788A1 (en) * 2005-11-21 2007-05-25 Renault Sas HIGH VOLTAGE POWER SUPPLY AND PLASMA REACTOR

Similar Documents

Publication Publication Date Title
JP5602021B2 (en) Power control
US7310254B2 (en) AC-to-AC (frequency) converter with three switches per leg
US5930122A (en) Inverter and DC power supply apparatus with inverter used therein
JP3904137B2 (en) Power flow controller with DC-DC converter linking parallel and series connected inverters
US6154378A (en) Polyphase inverter with neutral-leg inductor
JP2021035328A (en) Insulated dc/dc converter for wide output voltage range and control method thereof
US8044535B2 (en) Backup power system
US5719759A (en) DC/AC converter with equally loaded switches
US11496044B2 (en) DC/DC converter and neutral-point voltage balance control method thereof
US20090225569A1 (en) Multilevel power conversion
KR910007224A (en) AC-DC-AC Power Converter
JPS62501814A (en) Multiphase DC-DC series resonant converter
JPH04289782A (en) Single-phase ac power converter
EP2779403B1 (en) Power conversion system and method
EP0481456B1 (en) Power conversion apparatus
Costa et al. Quadruple Active Bridge DC-DC converter as the basic cell of a modular Smart Transformer
US7095634B2 (en) Arc welding set with power source and inverter
CN112014727B (en) Testing device for harmonic current switching capacity of tap switch
JPS59117470A (en) Power control circuit
JP3013697B2 (en) Switching power supply
US20050078497A1 (en) Three phase isolated vector switching AC to AC frequency converters
JP2677075B2 (en) Half-bridge type power conversion circuit
US11431240B2 (en) Frequency converter with reduced pre-charging time
WO1985001844A1 (en) Pulse width modulated inverter
CN115315893A (en) Inverter capable of switching between single-phase operation and three-phase operation