JPS59117457A - Superconductive rotary electric machine - Google Patents

Superconductive rotary electric machine

Info

Publication number
JPS59117457A
JPS59117457A JP57224900A JP22490082A JPS59117457A JP S59117457 A JPS59117457 A JP S59117457A JP 57224900 A JP57224900 A JP 57224900A JP 22490082 A JP22490082 A JP 22490082A JP S59117457 A JPS59117457 A JP S59117457A
Authority
JP
Japan
Prior art keywords
inner cylinder
helium
liquid
pressure
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57224900A
Other languages
Japanese (ja)
Other versions
JPH0440939B2 (en
Inventor
Kazuo Sato
和雄 佐藤
Shigeo Nonaka
野中 重夫
Takashi Oishi
大石 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57224900A priority Critical patent/JPS59117457A/en
Publication of JPS59117457A publication Critical patent/JPS59117457A/en
Publication of JPH0440939B2 publication Critical patent/JPH0440939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To accurately detect the liquid surface in an inner cylinder by forming an auxiliary hole in a bore side of an L-shaped pipe which is opened at one end at the inner periphery of the inner cylinder of a rotor and opening the other end with a constant-pressure chamber which has lower pressure than the static pressure in the inner cylinder. CONSTITUTION:One end of an L-shaped pipe is opened at 11a in the vicinity of the inner peripheral surface of the interior 10 of a rotor inner cylinder 2, on which a field winding 1 is wound for a superconductive rotary electric machine, and an auxiliary hole 11b is formed in the bore side. The other end is connected to an exhaust hole 13 formed at the outer periphery of a rotational shaft 4a. The hole 13 communicates with a constant-pressure chamber 16 which has lower pressure than the interior 10 of the inner cylinder. When liquid helium is fed under pressure to the interior 10 of the inner cylinder as designated by an arrow 19, the helium is urged by the centrifugal force to the inner periphery to cool the coil 1, and the evaporated helium is flowed to the directions of arrows 20, 21, but cooling is proceeded, and when the liquid helium reaches the hole 11a, the gaseous helium is flowed from the auxiliary hole 11b, and when the helium reaches R4 at the liquid surface, the gaseous helium does not flow. The liquid surface in the inner cylinder 10 can be detected accurately by detecting the variation in the dynamic pressure in this case.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は液面検出装置の構造を改良した超電導回転電機
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting rotating electrical machine with an improved structure of a liquid level detection device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導発電機のような大容量超電導回転電機は運転効率
が高く、早期実用化が望まれている。そして回転子の超
電導界磁巻線を冷却する為に、冷媒として液体ヘリウム
を使用している。運転中は所定の量の液体ヘリウムを超
電導界磁巻線を備えた内筒の中に備蓄する必要があり、
この為に信頼性の高い備蓄量の液面検出装置が望まれて
いる。
Large-capacity superconducting rotating electric machines such as superconducting generators have high operating efficiency, and early commercialization is desired. Liquid helium is used as a coolant to cool the rotor's superconducting field windings. During operation, a predetermined amount of liquid helium must be stored in an inner cylinder equipped with superconducting field windings.
For this reason, a highly reliable liquid level detecting device is desired.

この検出装置として従来は第1図又は第2図に示すよう
なものがあった。第1図の装置では、内周(2)内の液
体ヘリウム(221備蓄量を検出するためにカーボン抵
抗(ハ)を液面計として用い、液面の位置を検出してい
た。又、第2図の装置では、ゲルマニウム抵抗温度計等
の温度分解能の良好な素子(財)を内向(2)内に複数
設置することにより、径方向の温阜分布、すなわち、液
面位置の検出をしていた。
Conventionally, there has been a detection device as shown in FIG. 1 or 2. In the device shown in Fig. 1, in order to detect the amount of liquid helium (221) stored in the inner circumference (2), a carbon resistor (c) was used as a liquid level gauge to detect the position of the liquid level. In the device shown in Figure 2, the temperature distribution in the radial direction, that is, the position of the liquid level, can be detected by installing multiple elements (properties) with good temperature resolution, such as germanium resistance thermometers, inward (2). was.

これらの計測方法は、いずれもカーボン抵抗(231や
素子(24)が温度によって抵抗変化するという原理を
応用したものであり、液体ヘリウム(2望に浸漬した部
分の抵抗rtと浸漬しない部分の抵抗rgとの合成抵抗
を計測する為や、もしくは定電流を素子Q佃こ供給する
為に、一般的にはスリップリング(図示せず)が必要で
あった。またスリップリングを用いない場合は頃発信器
を用いていた。これらの電気的液面検出方法によると、
抵抗(23)や素子Q41の経年変化や、スリップリン
グを介した場合は機器が高速回転である為、刷子の摩耗
が多く、液面検出装置の保守に少なからぬ労力を要して
いた。又、FM発信器を用いる場合は装置が複雑で高価
なものとなった。
These measurement methods all apply the principle that the resistance of the carbon resistor (231) and the element (24) change depending on the temperature. Generally, a slip ring (not shown) is required to measure the combined resistance with rg or to supply a constant current to the element Q.Also, if a slip ring is not used, According to these electrical liquid level detection methods,
Due to aging of the resistor (23) and element Q41, and the high-speed rotation of the device when using a slip ring, the brush is often worn, and maintenance of the liquid level detection device requires considerable effort. Furthermore, when an FM transmitter is used, the device becomes complicated and expensive.

しかして、現在迄は前述の液面装置に代わる、信頼性の
高い、保守の容易な機械的液面検出装置は発表されてい
ない。
However, to date, no mechanical liquid level detection device that is highly reliable and easy to maintain has been announced as a replacement for the above-mentioned liquid level device.

〔発明の目的〕[Purpose of the invention]

本発明は、簡単な構造で、安価で信頼性の高い液面検出
装置を備えた超電導回転電機を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting rotating electric machine that has a simple structure, is inexpensive, and has a highly reliable liquid level detection device.

〔発明の概要〕[Summary of the invention]

本発明においては、回転子の超電導界磁巻線を冷却する
極低温冷媒を備蓄する内筒の内部に一端が主開口部とし
て開口され、その主開口部よりも内径側に位置して補助
開口部が開口されたL字形の通風管を配設し、前記回転
子の軸方向にその通風管を導き、回転軸の外周面の一部
に外気から遮断され、しかも内筒の内部静圧よりも低い
定圧室を介して、内筒内の極低温冷媒を排出させ、その
排出量の変化により、前記冷媒の液面位簡、を検出する
ことを特徴とするもので、液体冷媒の蒸発したガスを超
電導回転電機の回転軸の外周孔から回転軸を経由し、内
筒内へ連凧管を導き、内周内に備蓄した液体冷媒の液面
と通風管の端部開口部の位置関係ζこよって、通風管を
通る蒸発したガスの量が変化することを利用して液面検
出を簡単な構造で、安価で信頼性高く行なわせるもので
ある。
In the present invention, one end is opened as a main opening inside the inner cylinder storing cryogenic refrigerant for cooling the superconducting field winding of the rotor, and an auxiliary opening is located on the inner diameter side of the main opening. An L-shaped ventilation pipe with an open end is provided, and the ventilation pipe is guided in the axial direction of the rotor, so that the ventilation pipe is shielded from the outside air on a part of the outer peripheral surface of the rotating shaft, and is further removed from the internal static pressure of the inner cylinder. The cryogenic refrigerant in the inner cylinder is discharged through a constant pressure chamber with low pressure, and the liquid level of the refrigerant is detected based on the change in the discharge amount. Gas is guided from the outer circumferential hole of the rotating shaft of the superconducting rotating electric machine to the inner cylinder through the rotating kite tube, and the positional relationship between the liquid refrigerant level stored in the inner circumference and the opening at the end of the ventilation pipe is determined. ζThus, by utilizing the change in the amount of evaporated gas passing through the ventilation pipe, liquid level detection can be performed with a simple structure, at low cost, and with high reliability.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について、幀3図および第4図を
参照して説明する。尚、”X 1図および第2図にも対
応する符号を付しておくから、従来例の理解の参考にし
て頂きだい。第3図は本発明の一実施例の回転子の縦断
面図である。固定子は図示を省略する。超電導界磁巻線
(1)を備えた内筒(2)とトルクチューブ(3)が一
端は反匣結側回転軸(4a)と直接接続さね、他端は軸
方向に自由度を持たせたサポート(5)な介して直結側
回転軸(4b)と接続されている。内向(2)はダンパ
ー(6)で覆われ、七の周囲の輻射熱を防ぐ為のラデイ
エイションシールド板(7)が配設され、外周(8)に
よって閉じられた空間(9)は真空状態にしである。こ
の内筒(2)の内部α物に液体ヘリウム(24が供給・
備蓄されており、L字形の通風管(IJが径方向にその
主開口部(1,i a )を向けて設けられる。通風管
(11)は反直結側回転軸(4a)の中心孔(L2)の
中に沿って配置され、その回転軸(4a)の外周に設け
られた排気孔03)に接続される。排気孔α3)はシー
ル(15) ?こよりて外気と遮断され、しかも内筒内
部α0)の静圧よりも低い一定の圧力に保たれた低圧室
(L6)ζこよって17IIまれている。低圧室(6)
には調圧弁(16a)とIJ IJ−フ弁(16b)が
設置され、ポンプ(L7)と低圧室(L6)の間には弁
(へ)が配置しである。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. Note that the corresponding symbols are also given to Figures 1 and 2, so please use them as a reference for understanding the conventional example. Figure 3 is a vertical cross-sectional view of a rotor according to an embodiment of the present invention. The stator is not shown. An inner cylinder (2) equipped with a superconducting field winding (1) and a torque tube (3) have one end directly connected to the rotating shaft (4a) on the non-casing side. , the other end is connected to the direct rotation shaft (4b) through a support (5) that has a degree of freedom in the axial direction.The inward direction (2) is covered with a damper (6), and the A radiation shield plate (7) is provided to prevent radiant heat, and the space (9) closed by the outer periphery (8) is kept in a vacuum state.Liquid helium is contained inside the inner cylinder (2). (24 is supplied/
The L-shaped ventilation pipe (IJ) is provided with its main opening (1, i a ) facing in the radial direction.The ventilation pipe (11) is installed in the center hole ( L2), and is connected to an exhaust hole 03) provided on the outer periphery of its rotating shaft (4a). Is the exhaust hole α3) sealed (15)? A low pressure chamber (L6) ζ is thus isolated from the outside air and kept at a constant pressure lower than the static pressure inside the inner cylinder α0). Low pressure chamber (6)
A pressure regulating valve (16a) and an IJ-F valve (16b) are installed in the pump, and a valve is placed between the pump (L7) and the low pressure chamber (L6).

第2図は通風管Iの内管内部θ0)に突出した部分の拡
大図である。主たる開口部(lla)はL字形の先端部
がそれであり、補助開口部(1lb )は、それよりも
内径側、すなわち回転子の中心軸に近い側においている
。尚、液面が補助開口部(llb)を閉塞した場合は直
ちに弁叫が閉じ、同時に液体ヘリウムの供給を停止する
構造としである。
FIG. 2 is an enlarged view of a portion of the ventilation pipe I that protrudes into the inner pipe interior θ0). The main opening (lla) is the L-shaped tip, and the auxiliary opening (1lb) is located on the inner diameter side, that is, on the side closer to the central axis of the rotor. In addition, when the liquid level closes the auxiliary opening (llb), the valve is immediately closed and the supply of liquid helium is stopped at the same time.

次にこのような構成における作用について述べる。Next, the operation in such a configuration will be described.

回転子を回転し、液体ヘリウム(22)を第1図におけ
る反直結側回転軸端部卸から矢印のように圧送し、内筒
内部(L(1)に貯えると、液体ヘリウム(22)は内
筒(2)の内周に遠心力で押しつけられ、超電導界磁巻
線(1)に循環し、超電導界磁巻線(1)の冷却を行な
う。一部はこの後、電流リード(図示せず)を冷却しな
がらパス(20)を通り、反直結側回転軸(4a)の一
部から回収する。また一部はトルクチューブ(3)を冷
却し、パス(21)で反直結側回転軸(4a)の一部か
ら回収する。ここではパス(20)と(29の詳細と回
収装置については従来から公知のものを使用するから説
明しない。ところで液体ヘリウム(22iの内周内部(
10)への供給開始時、回転電機を構成する部材のほと
んどが室温に近いから、蒸発潜熱の小さい液体ヘリウム
(22)は直ちに気化する。従って内周内部θ0)はヘ
リウムガスで論だされている。一方バス(20)、(2
])等の径路の半径差とヘリウムガスの温度差(密度差
)によって、回転中ば内筒(2)の内部静圧はQ、5b
ar 程度に下がる。通風管(11)の出口である排気
孔(13)にはそれよりも低く一定の圧力を保つ低圧室
α6)が配置されているので、通風管側の開口部(ha
)と(11b)からヘリウムガスはポンプα7)の方向
に誘導される。そして排気孔03)の排出側に設置した
ピトー管(図示せず)で排出流速が動圧として検出でき
る。内管(2)その他が冷却されると液体ヘリウム(2
2)が徐々に備蓄され、液面が第4図における半径R8
から半径R0の位置まで変化しても、前述の動圧は変化
しない。ところが、液体ヘリウム(社)がさらに供給さ
れて、液面が半径R2の位置、すなわち、主開口部(l
la)に接すると内筒内部(10)に充満するヘリウム
ガスは補助開口部(llb)を入口にして排出される。
When the rotor is rotated and liquid helium (22) is pumped as shown by the arrow from the opposite end of the rotating shaft in Fig. 1 and stored in the inner cylinder (L(1)), liquid helium (22) is It is pressed against the inner periphery of the inner cylinder (2) by centrifugal force and circulates around the superconducting field winding (1) to cool the superconducting field winding (1). (not shown) passes through the path (20) while being cooled and is collected from a part of the rotating shaft (4a) on the non-direct coupling side.A part of the torque tube (3) is also cooled and collected from the non-direct coupling side in the pass (21). It is recovered from a part of the rotating shaft (4a).Here, the details of the paths (20) and (29) and the recovery device will not be explained because conventionally known ones are used.By the way, liquid helium (inside the inner periphery of the
10), since most of the members constituting the rotating electric machine are close to room temperature, the liquid helium (22), which has a small latent heat of vaporization, immediately vaporizes. Therefore, the inner periphery θ0) is assumed to be helium gas. On the other hand, bus (20), (2
)) and the temperature difference (density difference) of the helium gas, the internal static pressure of the rotating inner cylinder (2) is Q, 5b.
It drops to about ar. The exhaust hole (13), which is the outlet of the ventilation pipe (11), is provided with a low pressure chamber α6) that maintains a constant pressure lower than that, so the opening on the ventilation pipe side (ha
) and (11b), helium gas is guided in the direction of pump α7). The exhaust flow velocity can be detected as a dynamic pressure by a pitot tube (not shown) installed on the exhaust side of the exhaust hole 03). When the inner tube (2) and others are cooled, liquid helium (2
2) is gradually stockpiled, and the liquid level reaches the radius R8 in Fig. 4.
Even if the dynamic pressure changes from to the position of radius R0, the above-mentioned dynamic pressure does not change. However, when more liquid helium is supplied, the liquid level reaches the position of radius R2, that is, the main opening (l
When the helium gas comes into contact with the inner cylinder (10), the helium gas that fills the inner cylinder (10) is discharged using the auxiliary opening (llb) as an inlet.

この時は通風管側の通風抵抗が大きくなるので′排出量
は低下し、検出される動圧も低下する。さらに液面が半
径R3の位置まで変化すると、補助開口部(1lb )
が液体ヘリウム(2匂によって閉塞され始め、液面が半
径瓜に至る(補助開口部(llb)の直径に相当する液
位の変化)まで急激に排出量の低下が検出され、液面が
半径R4の位置で括出量はほぼ無い状態となる。液位が
半径馬より小になると通風管(11)内が内筒内部([
0)よりも負圧であることから液体ヘリウム(22)が
くみ出されてしまうことを防止する為、装置の構成の説
明で述べた如く、弁α8)を液位半径R2から半径R4
の中間位置で作動させる。
At this time, the ventilation resistance on the ventilation pipe side increases, so the discharge amount decreases and the detected dynamic pressure also decreases. When the liquid level further changes to the position of radius R3, the auxiliary opening (1lb)
begins to be blocked by liquid helium (2 odors), and a sudden decrease in the discharge amount is detected until the liquid level reaches the radius (change in liquid level corresponding to the diameter of the auxiliary opening (llb)), and the liquid level reaches the radius. At position R4, there is almost no discharge amount.When the liquid level becomes smaller than the radius, the inside of the ventilation pipe (11) is inside the inner cylinder ([
In order to prevent the liquid helium (22) from being pumped out because the pressure is more negative than 0), the valve α8) is moved from the liquid level radius R2 to the radius R4, as described in the explanation of the device configuration.
Operate at an intermediate position.

前述の状態を横軸に時間、縦軸に動圧をとって表わした
のが第5図である。もちろん、これは液体ヘリウム(2
21が増加する時を表わしたもので、液が減少する時も
同様である。第5図中のR8−R4を伺した矢印で示し
ているのが概ね液体ヘリウムの各半径R8−R4の位置
に対応している。このようにしてヘリウムガスの排出量
を検出することによって、明確に動圧変化を認識できる
ので信頼性の高い液面検出可能な超電導回転電機を提供
できる。
FIG. 5 shows the above-mentioned state with time on the horizontal axis and dynamic pressure on the vertical axis. Of course, this is liquid helium (2
21 indicates when the number increases, and the same applies when the liquid decreases. The arrows pointing from R8 to R4 in FIG. 5 roughly correspond to the positions of each radius R8 to R4 of liquid helium. By detecting the amount of helium gas discharged in this manner, changes in dynamic pressure can be clearly recognized, so that a superconducting rotating electric machine capable of highly reliable liquid level detection can be provided.

さらに、本夾施例によると、通風管0])、低圧室(1
6)、調圧弁(16a)、リリーフ弁(16b)、ポン
プσ7)バルブ(18)等からなる液面検出装置は、事
故時の緊急排気系として使用できるので、超電や回転電
板回転子の安全性を窩めるのに役立つ。ず々わち、超電
導界磁巻線(1)のクエンチ時等にはその巻わii(]
)の温度上昇と共に内筒内gBQo)の圧力が上昇する
。この時、通風管01)を通過して、ヘリウムガスは低
圧室(16)へ流れ、リリーフ弁(16b)が開き外気
にμi;放されるか、バルブ(I8)がその時、開いて
いる状態であるならばポンプ(17)によって排気され
る。従って、本実施例は液面の検4出装置として作動す
るはかりで々く、事故時の緊急りI焦光として作動し機
器の信頼性を高める。
Furthermore, according to this example, ventilation pipes (0]), low pressure chambers (1)
6) The liquid level detection device, which consists of a pressure regulating valve (16a), a relief valve (16b), a pump σ7) valve (18), etc., can be used as an emergency exhaust system in the event of an accident. This will help you understand the safety of your vehicle. When the superconducting field winding (1) is quenched, the winding ii(]
) The pressure in the inner cylinder gBQo) rises as the temperature rises. At this time, the helium gas passes through the ventilation pipe 01) and flows into the low pressure chamber (16), and the relief valve (16b) opens and is released to the outside air, or the valve (I8) is open at that time. If so, it is evacuated by the pump (17). Therefore, this embodiment is a scale that operates not only as a liquid level detection device, but also as an emergency light in the event of an accident, thereby increasing the reliability of the device.

次に異なる実施例として第6図を示すが、この場合は賜
3図で示しだ通風管01)の先端主開口部(1la)の
回転子の中心軸からの径方向位置が異なる( R2\R
4)2つの互に独立した通風系とし、低圧室図示せずも
互に独立した室とした点が違うだけで他は第3図に示し
た実施例と同様であり、モデル化して示しだものである
Next, Fig. 6 is shown as a different embodiment, but in this case, the radial position of the main opening (1la) at the tip of the ventilation pipe 01) shown in Fig. 3 is different from the central axis of the rotor (R2\ R
4) The only difference is that there are two mutually independent ventilation systems and a low-pressure chamber (not shown) is provided as mutually independent rooms, but the rest is the same as the embodiment shown in Figure 3, and is modeled and shown. It is something.

このようにしても第3図の実施例と同様の作用効果があ
る。なお、本発明は、通風管(11)は、内筒(2)の
端面壁内に通風路を設けることによって、通風管側の代
用としても良い等、上記し、かつ図面に示した実施例の
みに限定されず、その要旨を変更しない範囲において、
種々変形して実施できることは勿論である。
Even in this case, the same operation and effect as the embodiment shown in FIG. 3 can be obtained. In addition, the present invention provides that the ventilation pipe (11) may be used as a substitute for the ventilation pipe by providing a ventilation passage in the end wall of the inner cylinder (2), etc. without changing the gist of the content, including but not limited to:
Of course, it can be implemented with various modifications.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、信頼性の高い液体ヘ
リウムの内筒内の液面位置の検出ができ、且つ同時に緊
急排気系としても作動させることができる超電導回転電
機を提供することができる。
As described above, according to the present invention, it is possible to provide a superconducting rotating electrical machine that can detect the level of liquid helium in an inner cylinder with high reliability and can also be operated as an emergency exhaust system. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ異なる従来の超・電導回
転電機の液面検出装置要部をモデル化した説明図、第3
図は本発明の超電導回転電機の−実5図は第3図の装置
の液面位置の検出信号を示す曲線図、第6図は異なる実
施例の横面検出装置要部をモデル化した説明図である。 2・・内筒、4a 、 4b・・・回転軸、10・・・
内周内部、11・・・通風管、lla・・・主開口部、
llb・・・補助開口部、13・・・排気孔、16・・
・低圧室、16a・・・調圧弁、16b・・・リリーフ
弁、17・・・ポンプ、18・ 弁、22・・・極低温
冶媒である液体ヘリウム。 代理人 弁理士 井 上 −男 第  4 図 第  5 図 舜 間 第  6 図
Figures 1 and 2 are explanatory diagrams modeling the main parts of liquid level detection devices of different conventional superconducting rotating electric machines, respectively.
The figure shows the superconducting rotating electric machine of the present invention. Figure 5 is a curve diagram showing the detection signal of the liquid level position of the device in Figure 3, and Figure 6 is a modeled explanation of the main parts of the side surface detection device of a different embodiment. It is a diagram. 2...Inner cylinder, 4a, 4b...Rotating shaft, 10...
Inner circumference interior, 11... Ventilation pipe, lla... Main opening,
llb...Auxiliary opening, 13...Exhaust hole, 16...
-Low pressure chamber, 16a...pressure regulating valve, 16b...relief valve, 17...pump, 18. valve, 22...liquid helium which is a cryogenic reagent. Agent Patent Attorney Mr. Inoue Figure 4 Figure 5 Shunma Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)回転子の超電導界磁巻線を冷却する極低温冷媒を
備蓄する内筒の内部に一端が主開口部として開口されそ
の主開口部よりも内径側に位置して補助開口部が開口さ
れたL字形の通風管を配設し、前記回転子の軸方向正そ
の通風管を尋き、回転軸の外周面の一部に外気から遮断
され、しかも内筒の内部静圧よりも低い定圧室を介して
、内筒内の極低温冷媒を排出させ、その排出量の変化に
より、前記冷媒の液面位置を検出することを特徴とする
超電導回転電機。
(1) One end is opened as a main opening inside the inner cylinder that stores the cryogenic refrigerant that cools the superconducting field winding of the rotor, and an auxiliary opening is opened at the inner diameter side of the main opening. An L-shaped ventilation pipe is arranged in the axial direction of the rotor, and the ventilation pipe is located in a part of the outer circumferential surface of the rotating shaft, which is shielded from the outside air and whose internal static pressure is lower than the internal static pressure of the inner cylinder. A superconducting rotating electric machine characterized in that a cryogenic refrigerant in an inner cylinder is discharged through a constant pressure chamber, and a liquid level position of the refrigerant is detected based on a change in the discharge amount.
(2)定圧室はポンプと調圧弁とを備え、内筒内部の液
体の極低温冷媒の定圧室への吸込みを防止する為の弁を
設置し、超電導界磁巻線のクエンチ時等に発生する内筒
の内部静圧上昇に対して緊急排気系とすることを特徴と
する特許請求の範囲第1項記載の超電、等回転電機。
(2) The constant pressure chamber is equipped with a pump and a pressure regulating valve, and a valve is installed to prevent the liquid cryogenic refrigerant inside the inner cylinder from being sucked into the constant pressure chamber, which occurs when the superconducting field winding is quenched, etc. 2. A superelectric, constant rotation electrical machine according to claim 1, characterized in that an emergency exhaust system is provided in response to an increase in internal static pressure of the inner cylinder.
JP57224900A 1982-12-23 1982-12-23 Superconductive rotary electric machine Granted JPS59117457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224900A JPS59117457A (en) 1982-12-23 1982-12-23 Superconductive rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224900A JPS59117457A (en) 1982-12-23 1982-12-23 Superconductive rotary electric machine

Publications (2)

Publication Number Publication Date
JPS59117457A true JPS59117457A (en) 1984-07-06
JPH0440939B2 JPH0440939B2 (en) 1992-07-06

Family

ID=16820909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224900A Granted JPS59117457A (en) 1982-12-23 1982-12-23 Superconductive rotary electric machine

Country Status (1)

Country Link
JP (1) JPS59117457A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087178A1 (en) 2009-01-30 2010-08-05 国立大学法人九州工業大学 Wind turbine generator

Also Published As

Publication number Publication date
JPH0440939B2 (en) 1992-07-06

Similar Documents

Publication Publication Date Title
US20210010479A1 (en) Vacuum pump
US4265589A (en) Method and apparatus for surge detection and control in centrifugal gas compressors
US6644938B2 (en) Turbo molecular pump
KR102268282B1 (en) Turbo compressor and Refrigerating device having the same
US4432253A (en) Unbalance compensator
US4363596A (en) Method and apparatus for surge detection and control in centrifugal gas compressors
CN103032352A (en) Motor housing thermal sensing
US20030185272A1 (en) Radiation temperature measuring apparatus and turbo-molecular pump equipped with the same
JPS59117457A (en) Superconductive rotary electric machine
US5134877A (en) Portable, counterflow helium leak detector for testing an enclosure having its own pumping equipment
US2925736A (en) Gyroscopic accelerometer
US2821859A (en) Air bearing gyro and pickup
US4120169A (en) Multiphasic pump for rotating cryogenic machinery
US2854188A (en) Electric blower-vibrator
EP0305921A2 (en) Method of adjusting thermal balance of rotor
JPS63270518A (en) Detector for filter clogging
CA1086291A (en) Device for maintaining a vacuum in a compartment of a rotating member
US4329849A (en) Method and apparatus for replenishing the helium bath in the rotor of a superconducting generator
JPS59115494A (en) Trouble detector for scroll type compressor
US3102430A (en) Gyroscope
JPS6056061B2 (en) rotating cryostat
JPH03289345A (en) Current collector for superconducting electric rotating machine
CN110906608B (en) Air-cooled refrigerator
JPH08172767A (en) Superconducting generator
US1162707A (en) Speed-indicator for cream-separators.