JPS59117433A - Stator winding unit for direct cooling rotary electric machine - Google Patents
Stator winding unit for direct cooling rotary electric machineInfo
- Publication number
- JPS59117433A JPS59117433A JP22589582A JP22589582A JPS59117433A JP S59117433 A JPS59117433 A JP S59117433A JP 22589582 A JP22589582 A JP 22589582A JP 22589582 A JP22589582 A JP 22589582A JP S59117433 A JPS59117433 A JP S59117433A
- Authority
- JP
- Japan
- Prior art keywords
- cooling medium
- conductor
- coolant
- main pipe
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/22—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of hollow conductors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Windings For Motors And Generators (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は直接冷却回転電機の固定子巻線装置の改良に係
シ、特に固定子導体と口出し端子とを結んでいる亘シ線
が中空に形成され、この亘υ線も冷却媒体に直接冷却さ
れるように形成されているこの種固定子巻線装置の改良
に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an improvement in a stator winding device for a directly cooled rotating electrical machine, and in particular, to an improvement in a stator winding device for a directly cooled rotating electrical machine, and in particular, to improve a stator winding device for a directly cooled rotating electrical machine. The present invention relates to an improvement of a stator winding device of this kind, in which the wires are also designed to be directly cooled by a cooling medium.
一般に大容量回転電機、特に大容量のタービン発電機に
おいては、固定子巻線に1万アンペアを越える大電流が
流れるので、その発熱量も大きく巻線の導体絶縁上よシ
冷却する間接的な冷却では限界に達している。最近では
この導体を中空状の導体となし、この中空部に水や油等
の冷却媒体を流通せしめ、導体を直接冷却することが行
なわれている。多数並設されている中空導体に夫々冷却
媒体を供給おるいは中空導体より排出するには数多くの
配管が必要でsb複雑化してしまうので、一般には導体
の端部近傍に冷却媒体供給母管及び冷却媒体排出母管を
設け、これら母管よシ冷却媒1、体を給排するようにし
ているのが普通である。In general, in large-capacity rotating electric machines, especially in large-capacity turbine generators, a large current of over 10,000 amperes flows through the stator windings, so the amount of heat generated is large and indirect cooling is required due to the conductor insulation of the windings. Cooling has reached its limit. Recently, this conductor is formed into a hollow conductor, and a cooling medium such as water or oil is allowed to flow through the hollow portion to directly cool the conductor. Supplying cooling medium to and discharging cooling medium from a large number of parallel hollow conductors requires a large number of piping, which complicates the design process, so generally a cooling medium supply main pipe is installed near the end of the conductor. Normally, a coolant discharge main pipe is provided, and the coolant 1 and body are supplied and discharged through these main pipes.
一方これら導体のうち、口出し端子に接続される導体に
はその端部に亘9線が設けられる。したがってこの亘り
線をも冷却する関係上、この亘υ線を有する導体におい
ては、たとえば特開昭53−49206号公報にも示さ
れているように冷却媒体供給母管から直接冷却媒体が供
給されるのではなく、亘シ線の中空部を流通して亘υ線
を冷却した冷却媒体が供給されることになる。すなわち
この関係を図面を用いてもう少し詳しく説明する。On the other hand, among these conductors, nine wires are provided across the ends of the conductor connected to the output terminal. Therefore, in order to cool this crossover wire as well, in a conductor having this crossover wire, a cooling medium is directly supplied from the cooling medium supply main pipe, as shown in, for example, Japanese Patent Application Laid-open No. 53-49206. Instead, a cooling medium that cools the wire is supplied by flowing through the hollow part of the wire. That is, this relationship will be explained in more detail using the drawings.
第1図はその巻線装置の一部を示すもので、図には固定
子鉄心の巻線溝(図示なし)に収納された中空状の導体
1,2があシ、これら導体はその端部近傍に配置されて
いる冷却媒体供給母管3及び冷却媒体排出母管4に液的
に結合されている。尚この場合、特に口出し端子5に接
続される導体2は直接冷却媒体供給母管3に結合され−
るのではなく亘シ線6をも冷却するため亘シ線6を介し
て結合される。このような構成であると冷却媒体は図中
矢印で示すように流通する。すなわち1つの流れは冷却
媒体供給母管3よp絶縁ホース7を介して導体1内に流
入し、そこで導体の熱をうばい、やがて絶縁ホース8を
通り冷却媒体排出母管4に至る。もう1つの流れは、冷
却媒体供給母管3よシ絶縁ホース9を介して亘シ線6内
に入シ、亘υ線を冷却したのち導体2に入る。そして導
体2を冷却した後前記導体1と同一絶縁ホース8を通っ
て冷却媒体排出母管4に至るわけであるっ尚との図では
、説明上亘シ線をもっている導体と亘り線をもっていな
い導体が代表して1つあげられているが、実際には数多
くあるわけである。Figure 1 shows a part of the winding device.The figure shows hollow conductors 1 and 2 housed in the winding grooves (not shown) in the stator core. The cooling medium supply main pipe 3 and the cooling medium discharge main pipe 4 are arranged in the vicinity of the cooling medium supply pipe 3 and the cooling medium discharge main pipe 4, respectively. In this case, in particular, the conductor 2 connected to the outlet terminal 5 is directly connected to the cooling medium supply main pipe 3.
In order to cool the crossing wire 6 as well as cooling the crossing wire 6, it is coupled via the crossing wire 6. With such a configuration, the cooling medium flows as shown by the arrows in the figure. That is, one flow flows from the coolant supply main pipe 3 through the insulating hose 7 into the conductor 1, absorbs the heat of the conductor there, and eventually passes through the insulated hose 8 to reach the coolant discharge main pipe 4. The other flow enters the cross wire 6 from the cooling medium supply main pipe 3 via the insulating hose 9, cools the cross wire, and then enters the conductor 2. After the conductor 2 is cooled, it passes through the same insulated hose 8 as the conductor 1 and reaches the cooling medium discharge main pipe 4. is listed as one representative, but in reality there are many.
前述した冷却媒体の流れによシ導体1,2及び亘シ線6
は夫々冷却されるわけであるが、しかしこの構成である
と、亘り線6に結合されている導体2と亘シ線の無い導
体1とでは冷却される程度が異なってしまう、すなわち
亘シ線のある導体2は亘シ線6を冷却しておる程度温ま
った冷却媒体にて冷却されることになシ、導体1.2間
では温度差がでてしまう。通常亘シ線のある部分は三相
交流タービン発電機では少くとも9ケ所存在するから、
この9ケ所の導体だけは他の導体よシも温度が高くなる
ことになる。したがって、この構成では導体相互間に熱
膨張の差が生じ、温度上昇の高い導体に集中して熱応力
がかかシ、導体を被覆している絶縁物に無理な力が加わ
って絶縁物を損傷させる嫌いがある。Due to the flow of the cooling medium described above, the conductors 1 and 2 and the cross wire 6
However, with this configuration, the degree of cooling is different between the conductor 2 connected to the crossover wire 6 and the conductor 1 without the crossover wire. A certain conductor 2 is not cooled by the cooling medium that is warm enough to cool the crossing wire 6, and a temperature difference occurs between the conductors 1 and 2. Normally, there are at least nine parts of the Wataru line in a three-phase AC turbine generator, so
The temperature of these nine conductors will be higher than that of the other conductors. Therefore, in this configuration, a difference in thermal expansion occurs between the conductors, and thermal stress is concentrated on the conductor with a high temperature rise, and unreasonable force is applied to the insulator covering the conductor, causing the insulator to deteriorate. I hate causing damage.
本発明はこれにかんがみなされたものであり、したがっ
てその目的とするところは、このような巻線装置、すな
わシ亘9線と結合されている導体と、亘シ線と結合され
ていない導体とを有し、亘シ線も直接冷却されるような
巻線装置であっても、すべての導体が同様に熱伸縮し、
熱伸縮差による応力を充分緩和するようになしたこの種
の巻線装置を提供するにある。The present invention has been conceived with this in mind, and its object is therefore to provide a winding device of this kind, that is, a conductor coupled with a wire across the wire and a conductor not coupled with a wire across the wire. Even in a winding device in which the wire is directly cooled, all conductors expand and contract in the same way,
It is an object of the present invention to provide a winding device of this type that sufficiently relieves stress caused by differences in thermal expansion and contraction.
すなわち本発明は、亘シ線の近傍に冷却媒体中継母管を
設け、そしてこの母管に、亘シ線の冷却媒体排出側端を
連結するとともに、この冷却媒体中継母管と冷却媒体排
出母管との間に両者を結ぶ冷却媒体側路を設け、巻線の
導体と亘シ線とを並列的に冷却するようになして所期の
目的を達成するようにしたものである。That is, the present invention provides a coolant relay main pipe near the cross line, connects the coolant discharge side end of the cross line to this main pipe, and connects the coolant relay main pipe and the coolant discharge main pipe. A cooling medium bypass is provided between the tube and the tube to cool the conductor of the winding and the wire in parallel, thereby achieving the desired purpose.
以下図示した実施例に基づいて本発明の詳細な説明する
。The present invention will be described in detail below based on the illustrated embodiments.
第2図はその巻線装置の一部を示すものである。FIG. 2 shows a part of the winding device.
同第1図と同一の部品については同一符号を付し説明は
省略する。この場合亘#)線6を有する導体2も亘υ線
をもっていない導体1も冷却媒体供給母管3よシ冷却媒
体が供給されるわけでちるが、特に亘り線を有する導体
2の場合、その供給は亘9線6と導体2の結合部へ絶縁
ホース10によシ供給される。そして亘υ線6の他方端
は、冷却媒体供給母管3に隣接して設けられている冷却
媒体中継母管11に絶縁ホース12を介して結合されて
いる。またこの冷却媒体中継母管11は冷却媒体側路1
3を介して冷却媒体排出母管4に結合されている。Components that are the same as those in FIG. 1 are designated by the same reference numerals and explanations will be omitted. In this case, the cooling medium is supplied from the cooling medium supply main pipe 3 to both the conductor 2 having the crossing line 6 and the conductor 1 not having the crossing line, but especially in the case of the conductor 2 having the crossing line, The supply is provided by an insulated hose 10 to the junction of the wire 6 and the conductor 2. The other end of the cross-wire 6 is connected via an insulating hose 12 to a coolant relay main pipe 11 provided adjacent to the coolant supply main pipe 3 . Moreover, this cooling medium relay main pipe 11 is connected to the cooling medium side path 1.
3 to a coolant discharge main pipe 4 .
とのように形成された巻線装置は、図に矢印で示したよ
うに冷却媒体が流れ、導体1,2や亘シ線6の冷却が行
なわれる。すなわち一つの流れは従来同様冷却媒体供給
母管3よシ絶縁ホース7を介して導体1へ冷却媒体の供
給が行なわれ、絶縁ホース8を介して冷却媒体排出母管
4への排出が行なわれる。もう一つの流れは、冷却媒体
供給母管3よシ絶縁ホース10を介して導体2と亘p線
6の結合部に流入し、そのうち導体2側に流入した冷却
媒体は絶縁ホース8を介して冷却媒体排出母管4へ至シ
、他方亘p線6側に流入した冷却媒体は、冷却媒体中継
母管11及び冷却媒体側路13を介して冷却媒体排出母
管4に至る経路をとるわけである。In the winding device formed as shown in FIG. 1, a cooling medium flows as shown by the arrows in the figure, and the conductors 1 and 2 and the wire 6 are cooled. That is, in one flow, the coolant is supplied to the conductor 1 from the coolant supply main pipe 3 via the insulated hose 7, and is discharged to the coolant discharge main pipe 4 via the insulated hose 8, as in the conventional case. . The other flow flows from the cooling medium supply main tube 3 through the insulated hose 10 into the joint between the conductor 2 and the wire 6, and the cooling medium that has flowed into the conductor 2 side flows through the insulated hose 8. The coolant that flows into the coolant discharge main pipe 4 and on the other hand flows into the P line 6 side takes a route leading to the coolant discharge main pipe 4 via the coolant relay main pipe 11 and the coolant side passage 13. It is.
このような構成であると、亘シ線を有する導体2と亘シ
線のもたない導体1とは冷却媒体供給母管3よシ直接的
に同様に冷却媒体が供給され、かつその排出経路も同様
となるので、側導体1,2は同様に冷却され、同様な熱
伸縮を行い、したがつて従来のように両者間で生じてい
た応力を充分緩和することができるのである。With such a configuration, the conductor 2 having a crossing wire and the conductor 1 having no crossing wire are similarly supplied with cooling medium directly from the cooling medium supply main pipe 3, and have a discharge route. are the same, so the side conductors 1 and 2 are cooled in the same way and undergo similar thermal expansion and contraction, so that the stress that occurs between them as in the prior art can be sufficiently alleviated.
以上説明してきたように、本発明の巻線装置によれば、
亘シ線の近傍に冷却媒体中継母管を設け、そしてこの中
継母管に、亘シ線の冷却媒体排出側端を連結するととも
に、この中継母管と冷却媒体排出母管との間に両者を結
ぶ冷却媒体側路を設け、巻線の導体と亘シ線とを並列的
に冷却するようになしたから、亘り線と結合されている
導体であっても亘り線の冷却媒体に関係なく独立的に冷
却されるので、亘υ線の無い導体と同様な条件で冷却さ
れ、しだがって亘シ線の有無に関係なくすべての導体が
同様に熱伸縮し、従来生じがちであった熱伸縮による応
力を充分緩和することができる。As explained above, according to the winding device of the present invention,
A coolant relay main pipe is provided near the cross line, and the coolant discharge side end of the cross line is connected to this relay main pipe. A cooling medium bypass is provided to connect the winding conductor and the crossing wire, so that the conductor of the winding and the crossing wire are cooled in parallel. Because they are cooled independently, they are cooled under the same conditions as conductors without cross-wires, and therefore all conductors, regardless of the presence or absence of cross-wires, undergo thermal expansion and contraction in the same way, which previously tended to occur. Stress caused by thermal expansion and contraction can be sufficiently alleviated.
第1図は従来の直接冷却回転電機の固定子巻線装置の要
部を示す斜視図、第2図は本発明の直接冷却回転電機の
固定子巻線装置の要部を示す斜視図である。
1.2・・・導体、3・・・冷却媒体供給母管、4・・
・冷却媒体排出母管、5・・・口出し端子、6・・・亘
り線、7〜10.12・・・絶縁ホース、11・・・冷
却媒体中継14FIG. 1 is a perspective view showing main parts of a stator winding device for a conventional directly cooled rotating electrical machine, and FIG. 2 is a perspective view showing main parts of a stator winding device for a directly cooled rotating electrical machine according to the present invention. . 1.2...Conductor, 3...Cooling medium supply main pipe, 4...
・Cooling medium discharge main pipe, 5... Output terminal, 6... Cross line, 7-10.12... Insulated hose, 11... Cooling medium relay 14
Claims (1)
体が流通するように形成された多数の中空状の導体と、
これら導体の一部を口出し端子まで導ひき、かつ内部に
冷却媒体が流通するように形成された中空状の亘り線と
、この亘り線及び前記導体の端部近傍に配置され、この
亘シ線及び前記導体に冷却媒体を供給する冷却媒体供給
母管と、前記導体から排出された冷却媒体を集合排出す
る冷却媒体排出母管とを備え、冷却媒体によ多導体及び
亘p線を内部よシ直接冷却するようになした直接冷却回
転電機の固定子巻線装置において、前記亘り線の近傍に
冷却媒体中継母管を設け、かつこの冷却媒体中継母管に
前記亘シ線の冷却媒体排出側端を連結するとともに、こ
の冷却媒体中継母管と前記冷却媒体排出母管との間に両
者を結ぶ冷却媒体側路を設け、導体と亘Diとを並列的
に冷却するようにしたことを特徴とする直接冷却回転電
機の固定子巻線装置。1. A large number of hollow conductors housed in the winding grooves of the stator core and formed so that a cooling medium flows therein;
A hollow crossover wire is formed to lead a part of these conductors to the output terminal and allow a cooling medium to flow therein, and a hollow crossover wire is arranged near the end of the conductor and the conductor. and a cooling medium supply main pipe that supplies a cooling medium to the conductor, and a cooling medium discharge main pipe that collects and discharges the cooling medium discharged from the conductor, and includes a cooling medium supply main pipe that supplies a cooling medium to the conductor, and a cooling medium discharge main pipe that collects and discharges the cooling medium discharged from the conductor. In a stator winding device for a directly cooled rotating electric machine, the stator winding device of a directly cooled rotating electric machine is provided with a coolant relay main tube near the crossover wire, and the coolant discharge of the crossover wire is provided in the coolant relay bus tube. In addition to connecting the side ends, a cooling medium bypass is provided between this cooling medium relay main pipe and the cooling medium discharge main pipe to connect both, so that the conductor and Wataru Di are cooled in parallel. This is a stator winding device for direct cooling rotating electric machines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22589582A JPS59117433A (en) | 1982-12-24 | 1982-12-24 | Stator winding unit for direct cooling rotary electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22589582A JPS59117433A (en) | 1982-12-24 | 1982-12-24 | Stator winding unit for direct cooling rotary electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59117433A true JPS59117433A (en) | 1984-07-06 |
Family
ID=16836558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22589582A Pending JPS59117433A (en) | 1982-12-24 | 1982-12-24 | Stator winding unit for direct cooling rotary electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59117433A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012052618A3 (en) * | 2010-10-18 | 2013-08-15 | Lappeenrannan Teknillinen Yliopisto | A stator of an electrical machine and an electrical machine |
CN104868628A (en) * | 2014-02-21 | 2015-08-26 | 斗山重工业株式会社 | Separated Coolant Circulation Structure For Water-cooled Power Generator And Cooling Method Thereof |
-
1982
- 1982-12-24 JP JP22589582A patent/JPS59117433A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012052618A3 (en) * | 2010-10-18 | 2013-08-15 | Lappeenrannan Teknillinen Yliopisto | A stator of an electrical machine and an electrical machine |
CN103444055A (en) * | 2010-10-18 | 2013-12-11 | 拉普兰塔理工大学 | A stator of an electrical machine and an electrical machine |
US9712011B2 (en) | 2010-10-18 | 2017-07-18 | Lappeenrannan Teknillinen Yliopisto | Electric machine with modular stator coils and cooling tubes |
CN103444055B (en) * | 2010-10-18 | 2018-02-13 | 拉普兰塔理工大学 | The Stator and electrical machine of motor |
CN104868628A (en) * | 2014-02-21 | 2015-08-26 | 斗山重工业株式会社 | Separated Coolant Circulation Structure For Water-cooled Power Generator And Cooling Method Thereof |
JP2015159718A (en) * | 2014-02-21 | 2015-09-03 | 斗山重工業株式会社 | Separation type coolant circulation structure of water cooling power generator and cooling method using the same |
EP2911277A3 (en) * | 2014-02-21 | 2016-05-25 | Doosan Heavy Industries & Construction Co. Ltd. | Separated coolant circulation structure for water-cooled power generator and cooling method thereof |
US9985489B2 (en) | 2014-02-21 | 2018-05-29 | Doosan Heavy Industries & Construction Co., Ltd. | Separated coolant circulation structure for water-cooled power generator and cooling method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2695368A (en) | Dynamoelectric machine stator winding with fluid-cooling passages in conductor bars | |
US11764629B2 (en) | In-slot cooling system for an electric machine with hairpin windings | |
GB1273773A (en) | Dynamoelectric machine | |
JPH0614483A (en) | Method for adjusting solid phase connector and half coil of stator phase winding | |
CA1091741A (en) | Fluidly cooled flat plate neutral bus | |
US3112415A (en) | Control of winding temperatures of liquid cooled generators | |
US5055729A (en) | Integral water-cooled circuit ring/bus bar assembly for high frequency generators | |
JPS59117433A (en) | Stator winding unit for direct cooling rotary electric machine | |
JPH10243608A (en) | Gas-cooled electric machine | |
US4117358A (en) | Combined electrical and coolant distribution system for dynamoelectric machines having internally cooled stator windings | |
US11349373B2 (en) | Radial counter flow jet cooling system | |
US3243616A (en) | Dynamo-electric machines | |
US3214617A (en) | Dynamo-electric machines | |
US3483396A (en) | Polyphase electrical couplings | |
US3749952A (en) | Rotor for electric machines, particularly turbogenerators | |
JPH0510023B2 (en) | ||
Alfredson et al. | Assembly of generators with rated voltage higher than 100 kV | |
US2121593A (en) | Cooling and mounting of collectors for unipolar generators | |
JP2001339890A (en) | Stator winding machine of dynamo-electric machine | |
US5103552A (en) | Method of forming an integral water-cooled circuit ring bus bar assembly for high frequency generators | |
JPS6181151A (en) | Lead unit of rotary electric machine | |
JPH0723540A (en) | Stator winding for electric rotating machine | |
US6688136B1 (en) | Generator system including an electric generator and a centrifugal chiller | |
US3067278A (en) | Liquid cooled metal enclosed isolated phase bus | |
JPH04241A (en) | Stator winding cooler |