JPS59117336A - Driving circuit of laser diode - Google Patents

Driving circuit of laser diode

Info

Publication number
JPS59117336A
JPS59117336A JP57225823A JP22582382A JPS59117336A JP S59117336 A JPS59117336 A JP S59117336A JP 57225823 A JP57225823 A JP 57225823A JP 22582382 A JP22582382 A JP 22582382A JP S59117336 A JPS59117336 A JP S59117336A
Authority
JP
Japan
Prior art keywords
current
laser diode
temperature
circuit
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225823A
Other languages
Japanese (ja)
Inventor
Masayuki Goto
後藤 昌之
Kazuto Takagi
高城 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57225823A priority Critical patent/JPS59117336A/en
Publication of JPS59117336A publication Critical patent/JPS59117336A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain a constant optical output independently of temperature in driving a VSD LD (V-grooved substrate varied heterostructure laser diode) or the like by controlling a bias current and an input pulse amplitude inputted to a laser diode both in response to temperature. CONSTITUTION:A temperature is converted into a current value by a thermistor 16, a bias circuit 18 gives a proper bias current Ib is given to a laser diode 14 of the VSB LD or the like in response to this current value, a photodiode 20 receives a back light of the diode 14 and converts the light into a current and the result is given to a peak detecting circuit 22. The detecting circuit 22 compares a current value from the diode 20 with a reference value REF, and the compared value is inputted to a current variable amplifier 12 via a pulse current control circuit 24. Then, since the amplifier 12 gives a pulse input current of a proper amplitude, a constant optical output is obtained independently of temperature fluctuation .

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は温度によシしきい値化流と微分量子効率が共に
変化するレーザダイオードを駆動するレーザダイオード
駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a laser diode drive circuit for driving a laser diode whose threshold current and differential quantum efficiency both change with temperature.

(2)発明の背景 レーザダイオードとして従来からSAS LD (セル
ファラインドストラクチュア・レーデダイオード)が知
られているが、これに替えて、最近注目されているのが
VSB LD (V−グルーブトサブストレートペリイ
ドへテロストラクチュア・レーザダイオード)である。
(2) Background of the Invention Although SAS LD (self-aligned structure laser diode) has traditionally been known as a laser diode, VSB LD (V-groove substrate) has recently been attracting attention as an alternative to this. It is a peridot heterostructured laser diode).

(エレクトロニクス・レターズ・1981年6月25日
、 Vol、 17Al 3 PP465−467参照
)このVSB LDは、SAS LD等の従来のレーデ
ダイオードに比べて、シキい値化流が低いだめ、その、
他動回路の低電力化に適しており、かつ鼓形応答か良い
ため、高速変調特性が良好であり、1.3 ttnr帯
の光伝送用光源として好適である。しかしながら、この
VSB LDは、温度によってしきい値化流のみならず
、後述の如く微分子6−子効率も変化する。このように
、温度によってしきい@電流と微分量子効率が共に変化
するレーザダイオードの駆動回路が要望されている。
(Refer to Electronics Letters, June 25, 1981, Vol. 17Al 3 PP465-467) Compared to conventional radar diodes such as SAS LDs, this VSB LD has a low value conversion current, so
It is suitable for reducing the power consumption of passive circuits, has a good hourglass-shaped response, has good high-speed modulation characteristics, and is suitable as a light source for optical transmission in the 1.3 ttnr band. However, in this VSB LD, not only the threshold flow but also the micromolecular 6-molecule efficiency changes depending on the temperature as described below. Thus, there is a need for a laser diode drive circuit in which both the threshold current and the differential quantum efficiency change with temperature.

(3)従来技術と問題点 従来のレーザダイオード駆動回路は、温度にょってしき
い値電流のみが変化するSAS LDのようなレーザダ
イオードを駆動するものであった。
(3) Prior Art and Problems Conventional laser diode drive circuits drive laser diodes such as SAS LDs in which only the threshold current changes with temperature.

第1図に従来のSAS LDの16、流(r)−光出力
(L)特性を示す。同図において、曲線(−+(Tt)
は温度TlにおけるI−L特性を示しており、C1(I
2)はTI より高い温度T2におけるI−L特性を示
している。一定の光出力LOを得るためのしきい値電流
は、温度T1の場合は工lであり、温度T2の場合ばI
1より大のI2となっている。このように、SAS L
Dの場合は、しきい値′に流は温度変化に応じて変化す
るが、電流変化に対する光出力変化の割合、すなわち、
微分量子効率は温度変化に対してほぼ一定である。従っ
て光出力LOを得るためには、温度T、の場合はバイア
ス電流をIb1として駆動回路の入力に入力データI)
rNを与えればよく、温度T2の場合はIb1より大の
バイアス電流Ib2を与えて同じ振幅の入力データDI
Nを入力すればよい。なお、5AsLDのバイアス電流
は、25℃で約100 mAである。
FIG. 1 shows the current (r)-light output (L) characteristics of a conventional SAS LD. In the same figure, the curve (-+(Tt)
indicates the IL characteristic at temperature Tl, and C1(I
2) shows the IL characteristic at a temperature T2 higher than TI. The threshold current for obtaining a constant optical output LO is 1 at temperature T1, and 1 at temperature T2.
I2 is greater than 1. In this way, S.A.S.L.
In the case of D, the current at the threshold ' changes with the temperature change, but the ratio of the light output change to the current change, i.e.
Differential quantum efficiency remains almost constant with respect to temperature changes. Therefore, in order to obtain the optical output LO, when the temperature is T, the bias current is set to Ib1 and the input data I) is input to the input of the drive circuit.
If the temperature is T2, a bias current Ib2 larger than Ib1 is applied to input data DI with the same amplitude.
Just enter N. Note that the bias current of the 5AsLD is approximately 100 mA at 25°C.

第2図は従来のレーザダイオード駆動回路の1例を示す
ブロック図である。同図において、フリップフロップ1
に入力データDINとクロック信号CLが入力さり1、
その出力の°IA′捷たは°′0″の信号は1」?流増
幅回路2と比較回路3の第1人力とに与えられる。J流
増幅回路2の出力はSAS LD 4に入力される。S
AS LD 4の背面光はフォトダイオード5に入光さ
れ、その出力が比較器3の第2人力に入力される。比較
器3はフリップフロップ1からの7.J、<流11+と
フォトダイオード5からの電流■、を比較して、その差
に応じてバイアス回路6を’dill til L、そ
れにより、I、 〉T、のときはバイアス電流Ibを大
きくし、T、 < I、のときはバイアス電流■bを小
さり[7て、温度変化によらない一定の光出力LOを得
るよってしている。
FIG. 2 is a block diagram showing an example of a conventional laser diode drive circuit. In the same figure, flip-flop 1
Input data DIN and clock signal CL are input to 1,
Is the output °IA' or °'0" signal 1"? The current is applied to the current amplification circuit 2 and the first power of the comparison circuit 3. The output of the J-flow amplifier circuit 2 is input to the SAS LD 4. S
The backlight of the AS LD 4 is input to the photodiode 5, and its output is input to the second input of the comparator 3. Comparator 3 receives 7.0 from flip-flop 1. J, <current 11+ and current from photodiode 5 ■, are compared, and the bias circuit 6 is 'dill til L' according to the difference, thereby increasing bias current Ib when I, >T. , T, < I, the bias current b is reduced [7] in order to obtain a constant optical output LO that is not affected by temperature changes.

しかしながら、第2図の従来回路では、第3図に示した
よりなI−L特性を持つレーザダイオードに対しては一
定の光出力を得ることが出来ない。
However, with the conventional circuit shown in FIG. 2, it is not possible to obtain a constant optical output for the laser diode having the more IL characteristics shown in FIG.

第3図ばVSB LDのI−L特性を示すグラフである
。同図に示されるように、VSB LDの微分量子効率
、すなわち電流に対する光出力の変化率は温度が高くな
るて従、って小さくなる。従って曲線C2(Tt)の傾
きより曲線C2(I2)の・傾きが小さくなっている。
FIG. 3 is a graph showing the IL characteristics of the VSB LD. As shown in the figure, the differential quantum efficiency of the VSB LD, that is, the rate of change of optical output with respect to current, decreases as the temperature increases. Therefore, the slope of curve C2 (I2) is smaller than the slope of curve C2 (Tt).

このため、第2図の従来回路によって単にバイアス電流
のみを変化させたのでは一定振幅の光出力が得られない
。図においては、バイアス電流Ib1を与えた、温度T
、における光出力Lotの振幅は、バイアス電流Ib2
を与えた、温度T2における光出力LO,の振幅よυ大
となっている。
Therefore, if only the bias current is changed using the conventional circuit shown in FIG. 2, a light output with a constant amplitude cannot be obtained. In the figure, the temperature T
The amplitude of the optical output Lot at , is the bias current Ib2
is larger than the amplitude of the optical output LO at temperature T2.

(4)発明の目的 本発明の目的は、上述の従来技術における問題にかんが
み、VSB LDの如く温度によりしきい値電流のみな
らず微分量子効率も変化するレーザダイオードを駆動し
て温度に無関係に一定振幅の光出力を得ることが出来る
レーザダイオード駆動回路を提供することにある。
(4) Purpose of the Invention In view of the problems in the prior art described above, the purpose of the present invention is to drive a laser diode, such as a VSB LD, in which not only the threshold current but also the differential quantum efficiency changes depending on the temperature, so as to be independent of the temperature. An object of the present invention is to provide a laser diode drive circuit that can obtain a constant amplitude optical output.

(5)発明の構成 上記の目的達成のための本発明の要旨は、光出力振幅が
常に一定となるようにレーザダイオードを駆動するレー
ザダイオード駆動回路において、該レーザダイオードに
駆動箱流を与える可変増幅器、該レーザダイオードの光
出力を電気信号に変換する光検出素子、該光検出素子の
出力電流と基準電流との差に応じて該可変増幅器の増幅
率を制御する電流割引1手段、温度検出手段、および該
温度検出手段の出力に応じて該レーザダイオードのバイ
アス電流を制御するバイアス電流制御手段を具備するこ
とを特徴とするレーザダイオード駆動回路にある。
(5) Structure of the Invention The gist of the present invention to achieve the above-mentioned object is to provide a laser diode drive circuit that drives a laser diode so that the optical output amplitude is always constant. An amplifier, a photodetection element that converts the optical output of the laser diode into an electrical signal, a current discount means for controlling the amplification factor of the variable amplifier according to the difference between the output current of the photodetection element and a reference current, and temperature detection. and bias current control means for controlling the bias current of the laser diode according to the output of the temperature detection means.

(6)発明の実施例 以下、本発明の実施例を第4図および第5図によって説
明する。
(6) Embodiments of the Invention Hereinafter, embodiments of the present invention will be explained with reference to FIGS. 4 and 5.

第4図は本発明の一実施例によるレーザダイオード駆動
回路を示すブロック図、第5図は第4図の回路の動作説
明用波形図である。第4図において、フリップフロップ
10に入力データD4とクロック信号CLが入力され、
その出力は電流可変増幅器12に与えられる。温度変化
に対するバイアス電流■bの制御は、サーミスタ16等
の温度検出手段とバイアス回路18により行なう。温度
変化に対する光出力の振幅の制御は、フォトダイオード
20、ピーク検出器22、および・ぐルス電流制御回路
24により行なう。すなわち、サーミスタ16により郡
度力鈴1−流値に変換され、この電流値に応じてバイア
ス回路18はVSB LD等のレーザダイオード14に
適切なバイアス電流イ流■bを与えると共に、フォトダ
イオード20はレーザダイオード14の背面光を受けて
これを電流に変換し、ピーク検出回路22に与える。ピ
ーク検出回路22はフォトダイオード20からの電流値
と基準値REF”を比較して、その比較値をパルス電流
制御回路24に与える。パルス電流制御回路24はこの
比較値に応じた制御電流を電流可変増幅器12の制御端
子に入力する。電流可変増幅器12はこの制御電流に応
じて適切な振幅のパルス入力電流をレーザダイオード1
4に与える。こうして、第5図に示されるように、温度
がT1のときは、バイアス回路18から出力されるバイ
アス電、流■bはIblであり、かつ可変増幅器12か
ら出力される・ぐルス入力電流の振幅はAM、であるが
、温度がT2と高くなると、これに応じてバイアス電流
はT52、・々ルス入力電流の振幅はAM2と共に大き
くなる。バイアス回路18、パルス電流制値1回路24
、および電流可変増幅器12は、レーザダイオード14
からの光出力A?ルスの振幅が常に一定となるように設
計されている。
FIG. 4 is a block diagram showing a laser diode drive circuit according to an embodiment of the present invention, and FIG. 5 is a waveform diagram for explaining the operation of the circuit of FIG. 4. In FIG. 4, input data D4 and a clock signal CL are input to the flip-flop 10,
Its output is given to a variable current amplifier 12. Control of the bias current (1b) with respect to temperature changes is performed by a temperature detection means such as a thermistor 16 and a bias circuit 18. The amplitude of the optical output with respect to temperature changes is controlled by a photodiode 20, a peak detector 22, and a current control circuit 24. That is, it is converted into a current value by the thermistor 16, and according to this current value, the bias circuit 18 gives an appropriate bias current (i) to the laser diode 14 such as a VSB LD, and also applies an appropriate bias current (i) to the photodiode 20. receives the backlight from the laser diode 14, converts it into a current, and supplies it to the peak detection circuit 22. The peak detection circuit 22 compares the current value from the photodiode 20 with the reference value REF" and provides the comparison value to the pulse current control circuit 24. The pulse current control circuit 24 controls the current value according to the comparison value. It is input to the control terminal of the variable amplifier 12.The variable current amplifier 12 applies a pulse input current of an appropriate amplitude to the laser diode 1 according to this control current.
Give to 4. In this way, as shown in FIG. 5, when the temperature is T1, the bias current, current b, output from the bias circuit 18 is Ibl, and the input current output from the variable amplifier 12 is Ibl. The amplitude is AM, but as the temperature increases to T2, the bias current becomes T52, and the amplitude of the input current increases with AM2. Bias circuit 18, pulse current limit 1 circuit 24
, and the variable current amplifier 12 includes a laser diode 14
Light output from A? It is designed so that the amplitude of the pulse is always constant.

々お、VSBLDのバイアス電流は25℃で約20 m
A とSAS LDのそれr比べて小さく、従って前述
の如く1駆動回路は低電力化される。
The bias current of VSBLD is approximately 20 m at 25°C.
A is smaller than that of the SAS LD, and therefore, as described above, the power consumption of one driving circuit can be reduced.

(7)発明の詳細 な説明したように、本発明によりレーザダイオードに入
力されるバイアス電流と入力パルス振幅を共に温度に応
じて制御したことによ、9、VSBLDの如く温度によ
りしきい値電流のみならず微分駄子効率も変化するレー
ザダイオ−1’を駆動して温度に無関係に一定の光出力
を得ることが出来るレーザダイオード駆動回路が得られ
る。
(7) As described in detail, by controlling both the bias current and the input pulse amplitude input to the laser diode according to the temperature according to the present invention, the threshold current can be adjusted according to the temperature as in 9. VSBLD. In addition, a laser diode drive circuit is obtained which can drive a laser diode 1' whose differential efficiency changes and obtain a constant optical output regardless of temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のSAS LDの箱;流−光出力特性を示
スゲラフ、第2図は従来のレーザダイオード駆動回路の
1例を示すブロック図、第3図はVSBLDの電流−光
出力特性と従来回路の問題点を説明するだめのグラフ、
第4図は本発明の一実施例によるレーザダイオード駆動
回路を示すブロック図、そして第5図は第4図の回路の
動作説明用波形図である。 10・・・フリップ70ツデ、12・・・電流可変増幅
器、14・・・レーザダイオード、16・・・サーミス
タ、18・・・バイアス回路、20・・・フォトダイオ
ード、22・・・ピーク検出回路、24・・・パルス電
流制御回路。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青  木     朗 弁理士 西 舘 和 之 弁理士 内  1) 幸  男 弁理士 山  口  昭  之 第1図 第2図 b         J          b第3図 第4図 Hヒヒ 第5図 192−
Figure 1 shows the current-light output characteristics of a conventional SAS LD box; Figure 2 is a block diagram showing an example of a conventional laser diode drive circuit; Figure 3 shows the current-light output characteristics of a VSBLD. A graph that explains the problems of conventional circuits,
FIG. 4 is a block diagram showing a laser diode drive circuit according to an embodiment of the present invention, and FIG. 5 is a waveform diagram for explaining the operation of the circuit of FIG. 4. DESCRIPTION OF SYMBOLS 10... Flip 70 tripod, 12... Variable current amplifier, 14... Laser diode, 16... Thermistor, 18... Bias circuit, 20... Photodiode, 22... Peak detection Circuit, 24... Pulse current control circuit. Patent applicant Fujitsu Limited Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate 1) Yukio Patent attorney Akira Yamaguchi Figure 1 Figure 2 b J b Figure 3 Figure 4 H Baboon Figure 5 192-

Claims (1)

【特許請求の範囲】 1、光出力娠1陥が常に一定となるようにレーザダイオ
ードを紀Qj!lするレーザダイオード9駆動回路にお
いて、該レーザダイオードに用軸電流を与える可変増幅
器、該レーザダイオードの光出力をN。 気信号に変換する光検出素子、該光検出素子の出力電流
と基準電流との差に応じて該可変増幅器の増幅率を制御
する電流制御手段、温度検出手段、および該温度検出手
段の出力に応じて該レーデダイオードのバイアス知;流
を制御するバイアス電流制御手段を具備することを特徴
とするレーデダイオード駆動回路。
[Claims] 1. The laser diode is controlled so that the optical output voltage is always constant. In the laser diode 9 drive circuit, a variable amplifier provides a shaft current to the laser diode, and a variable amplifier that controls the optical output of the laser diode. a photodetection element for converting into an optical signal, a current control means for controlling the amplification factor of the variable amplifier according to the difference between the output current of the photodetection element and a reference current, a temperature detection means, and an output of the temperature detection means. A radar diode drive circuit comprising bias current control means for controlling the bias current of the radar diode accordingly.
JP57225823A 1982-12-24 1982-12-24 Driving circuit of laser diode Pending JPS59117336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225823A JPS59117336A (en) 1982-12-24 1982-12-24 Driving circuit of laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225823A JPS59117336A (en) 1982-12-24 1982-12-24 Driving circuit of laser diode

Publications (1)

Publication Number Publication Date
JPS59117336A true JPS59117336A (en) 1984-07-06

Family

ID=16835355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225823A Pending JPS59117336A (en) 1982-12-24 1982-12-24 Driving circuit of laser diode

Country Status (1)

Country Link
JP (1) JPS59117336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683067A1 (en) * 1991-10-23 1993-04-30 Rexroth Sigma Method of compensating for drift in an opto-electronic circuit, opto-electronic circuit applying the method and electrical remote-control device thus equipped
EP0664591A2 (en) * 1994-01-24 1995-07-26 Siemens Aktiengesellschaft Diode lasertransmitter with burst control
EP3591861A1 (en) * 2018-07-06 2020-01-08 Signify Holding B.V. Optical data transmission system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683067A1 (en) * 1991-10-23 1993-04-30 Rexroth Sigma Method of compensating for drift in an opto-electronic circuit, opto-electronic circuit applying the method and electrical remote-control device thus equipped
EP0664591A2 (en) * 1994-01-24 1995-07-26 Siemens Aktiengesellschaft Diode lasertransmitter with burst control
EP0664591A3 (en) * 1994-01-24 1996-01-03 Siemens Ag Diode lasertransmitter with burst control.
EP3591861A1 (en) * 2018-07-06 2020-01-08 Signify Holding B.V. Optical data transmission system and method
WO2020007740A1 (en) * 2018-07-06 2020-01-09 Signify Holding B.V. Optical data transmission system and method
JP2021523652A (en) * 2018-07-06 2021-09-02 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Optical data transmission system and method
JP2021184650A (en) * 2018-07-06 2021-12-02 シグニファイ ホールディング ビー ヴィSignify Holding B.V. System and method for transferring optical data
US11646799B2 (en) 2018-07-06 2023-05-09 Signify Holding B.V. Optical data transmission system and method

Similar Documents

Publication Publication Date Title
US8718107B2 (en) Bias circuit of electro-absorption modulated laser and calibration method thereof
US5850409A (en) Laser modulation control method and apparatus
US7542684B2 (en) Light emitting diode driving device and optical transmission device including the same
JP3130571B2 (en) Semiconductor laser array device
US4995045A (en) Laser control circuit
KR101184836B1 (en) Semiconductor laser drive apparatus, semiconductor laser drive method, optical transmitter, optical wiring module, and electronic device
JPH0680853B2 (en) Optical transmission device
JP2000068946A (en) Optical transmitter
JP2001326569A (en) Led driving circuit and optical transmission module
JP2002511658A (en) Laser diode temperature compensation
US20020009109A1 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
JPH11119176A (en) Driving circuit for electric field absorption type optical modulator and optical transmitter using the same
US8705979B2 (en) LD driver with an improved falling edge of driving signal and optical transmitter providing the same
JP3739341B2 (en) LASER DEVICE, CONTROL DEVICE AND CONTROL METHOD THEREOF
US4339822A (en) Diode laser digital modulator
US7236506B2 (en) Method and apparatus for compensating for temperature characteristics of laser diode in optical communication system
JPS59117336A (en) Driving circuit of laser diode
JPH04249930A (en) Low distortion optical communication system
JP2000299498A (en) Light transmitter and light communication system
JPH0738185A (en) Drive circuit for light emitting element
JPH05259563A (en) Controlling circuit for optical output of semiconductor
JP2009123959A (en) Optical transmitter and control method thereof
JPH11238932A (en) Semiconductor laser device and laser-light receiver
WO1999034542A1 (en) An optical transmitter
KR20040085128A (en) A laser diode driver integrated circuit with automatic temperature compensation, and a method thereof