JPS5911663B2 - Manufacturing method for surface-coated cemented carbide parts - Google Patents

Manufacturing method for surface-coated cemented carbide parts

Info

Publication number
JPS5911663B2
JPS5911663B2 JP51078198A JP7819876A JPS5911663B2 JP S5911663 B2 JPS5911663 B2 JP S5911663B2 JP 51078198 A JP51078198 A JP 51078198A JP 7819876 A JP7819876 A JP 7819876A JP S5911663 B2 JPS5911663 B2 JP S5911663B2
Authority
JP
Japan
Prior art keywords
cemented carbide
carbon
coated
free carbon
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51078198A
Other languages
Japanese (ja)
Other versions
JPS533978A (en
Inventor
正明 飛岡
光雄 児玉
稔 中野
毅 浅井
孝春 山本
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP51078198A priority Critical patent/JPS5911663B2/en
Priority to US05/806,880 priority patent/US4150195A/en
Priority to DE2727250A priority patent/DE2727250C2/en
Publication of JPS533978A publication Critical patent/JPS533978A/en
Publication of JPS5911663B2 publication Critical patent/JPS5911663B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 Ti、Zに、Hf、V、Nb、Ta、Cに、Mo、Wの
炭化物および/もしくは炭窒化物を鉄族金属で結合した
いわゆる超硬合金を母材とし、表面に各種硬質化合物、
たとえばTi、Zr、Hfの炭化物、炭窒”5 化物を
数ミクロンの厚さに被覆した、いわゆるコーティングチ
ップは母材の靭性と表面の耐摩耗性を兼ねそなえており
、切削工具として従来の超硬合金よりもすぐれた性能を
有することは広く知られた事実である。
[Detailed description of the invention] The base material is a so-called cemented carbide in which carbides and/or carbonitrides of Ti, Z, Hf, V, Nb, Ta, C, Mo, and W are combined with iron group metals, Various hard compounds on the surface,
For example, so-called coated chips, which are coated with Ti, Zr, and Hf carbides and carbonitride pentoxides to a thickness of several microns, have both the toughness of the base material and the wear resistance of the surface, and are superior to conventional ultra-thin cutting tools. It is a widely known fact that it has better performance than hard metals.

ノo 本発明の目的はこのようなコーティングチップの
特性を一段と向上させたものを安定して提供することに
ある。
An object of the present invention is to stably provide such a coated chip with further improved characteristics.

各種硬質被膜は炭化チタンに代表されるので、以下炭化
チタンを例にして述べる。
Various hard coatings are typified by titanium carbide, so titanium carbide will be described below as an example.

Tiの炭化物、■5 炭窒化物を超硬合金に被覆するに
は通常Tiのハロゲン化物(一般には四塩化チタン)、
炭化水素(一般にはメタン)、窒素および水素ガスを所
定の割合で混合したガスから1、000℃近辺の高温に
て、炭化チタン、炭窒化チタンを析出させて超30硬合
金に被覆するいわゆる化学蒸着法が用いられ’’る。炭
窒化チタンについては、炭化チタンと同様であるので以
下炭化チタンを例にして述べる。
Ti carbide, ■5 To coat cemented carbide with carbonitride, Ti halide (generally titanium tetrachloride),
A so-called chemical process in which titanium carbide and titanium carbonitride are precipitated from a gas mixture of hydrocarbon (generally methane), nitrogen and hydrogen gas at a predetermined ratio at a high temperature of around 1,000°C to coat the super 30 hard alloy. A vapor deposition method is used. Titanium carbonitride is similar to titanium carbide, so titanium carbide will be described below as an example.

上記化学蒸着法による炭化チタンの析出反応の35反応
過程は非常に複雑ではあるが、簡単には以下の1式によ
る遊離チタンの生成と、2式の遊離チタンの炭化の2段
階によつて示される。
The 35 reaction process of the precipitation reaction of titanium carbide by the chemical vapor deposition method described above is very complicated, but it can be easily explained by the following two steps: generation of free titanium according to equation 1 and carbonization of free titanium according to equation 2. It will be done.

TiCl4+2H2→Ti+4HC1・・・・・・・・
・・・・1Ti+ C−+TiC・・・・・・・・・・
・・22式の遊離チタンの炭化は混合ガス中の炭化水素
の分解によつて生じる遊離炭素および超硬合金母材より
供給される炭素によつて行なわれる。
TiCl4+2H2→Ti+4HC1・・・・・・・・・
・・・・・・1Ti+C-+TiC・・・・・・・・・・・・
...The carbonization of free titanium in Type 22 is carried out by free carbon generated by decomposition of hydrocarbons in the mixed gas and carbon supplied from the cemented carbide matrix.

混合ガス中の炭化水素濃度が低いと炭化チタン生成に必
要な大部分が超硬合金母材の炭素の拡散によつて供給さ
れると、炭化チタン被覆層直下にη相とよばれる脆い脱
炭層が形成され、コーテイングチツプの靭性を著しく阻
外する。一力混合ガス中の炭化水素濃度を上げると、炭
化チタン生成に必要な炭素は大部分気相より供給され、
上記η相もほとんど存在しない。
When the hydrocarbon concentration in the mixed gas is low, and most of the hydrocarbons required to generate titanium carbide are supplied by diffusion of carbon in the cemented carbide matrix, a brittle decarburized layer called the η phase forms immediately below the titanium carbide coating layer. is formed, which significantly impairs the toughness of the coating chip. When the hydrocarbon concentration in the mixed gas is increased, most of the carbon necessary for titanium carbide production is supplied from the gas phase.
The above η phase also hardly exists.

コーテイングチツプを作ることが可能であるものの、炭
化水素濃度が一定量以上になると、遊離炭素が被覆膜中
に生成し、これも著しくコーテイングチツプの靭性、耐
摩耗性を阻外する。又、このように炭化チタンを生成す
るに要する炭素の大部分を気相より供給されたコーテイ
ングチツプでは、被覆TiC層と超硬合金母材との間で
ハク離が起りやすく、これも著しくコーテイングチツプ
の耐摩耗性を阻外する。そこで発明者は、以上で述べて
きたη相の発生及び被覆層のハク離の両者を解決する為
に以下のように考えた。
Although it is possible to make a coated chip, when the hydrocarbon concentration exceeds a certain level, free carbon is generated in the coating film, which also significantly impairs the toughness and wear resistance of the coated chip. Furthermore, in a coating chip in which most of the carbon required to generate titanium carbide is supplied from the gas phase, flaking tends to occur between the coating TiC layer and the cemented carbide base material, which also causes significant damage to the coating. Inhibits the wear resistance of the chip. Therefore, the inventor considered the following in order to solve both the above-described problems of the occurrence of the η phase and peeling of the coating layer.

被覆層のハク離を防ぐ為に、超硬合金母材よりの拡散に
よる炭素供給を十分に保ちつつη相の発生を防ぐには、
超硬合金母材に遊離炭素の形で炭素を化学蒸着法によつ
てTlCを被覆する前に蓄積しておけばよいと考えた。
In order to prevent peeling of the coating layer and to prevent the generation of η phase while maintaining sufficient carbon supply through diffusion from the cemented carbide base material,
It was considered that carbon could be accumulated in the form of free carbon in the cemented carbide matrix prior to coating with TLC by chemical vapor deposition.

一般に超硬合金に於ては遊離炭素が存在すると、著しく
耐摩耗性が損なわれることが知られているが、本発明の
場合、耐摩耗性は表面被覆層によるところが大な為、遊
離炭素を含んだ超硬合金母材を用いても耐摩耗性はあま
り低下しないと考えた。以上のような考えに従つて遊離
炭素を含む超硬合金母材に炭化チタンを化学蒸着法によ
つて被覆したところ、η相が全く存在しない。
It is generally known that the presence of free carbon in cemented carbide significantly impairs wear resistance, but in the case of the present invention, wear resistance largely depends on the surface coating layer, so free carbon is reduced. It was thought that the wear resistance would not decrease much even if a cemented carbide base material containing the above-mentioned properties was used. When a cemented carbide base material containing free carbon was coated with titanium carbide by chemical vapor deposition in accordance with the above idea, no η phase was present at all.

かつ被覆層のハク離が殆んど切削中に起らないコーテイ
ングチツプを作成することが可能となつた。なお、炭化
チタン生成に寄与する超硬合金母材中の遊離炭素は通常
の化学蒸着法による被覆条件では表面よりほマ50μま
でということが判明したので、それ以上の深さまで遊離
炭素が析出していればよいことが判明した。
Moreover, it has become possible to create a coating chip in which peeling of the coating layer hardly occurs during cutting. Furthermore, it has been found that free carbon in the cemented carbide base material, which contributes to the formation of titanium carbide, is limited to about 50 μm from the surface under coating conditions using the normal chemical vapor deposition method, so free carbon will precipitate to a deeper depth. It turns out that it's fine if you do it.

又遊離炭素量の制限として0.01〜0.50重量%と
あるが0.01重量%以下では効果が認められず、又0
.50重量%では被覆後の耐摩耗性が損なわれる故であ
る。
In addition, the limit on the amount of free carbon is 0.01 to 0.50% by weight, but no effect is observed below 0.01% by weight, or 0.01% by weight or less.
.. This is because at 50% by weight, the abrasion resistance after coating is impaired.

次に、このような遊離炭素析出超硬合金の製造法に関し
説明する。
Next, a method for manufacturing such a free carbon precipitated cemented carbide will be explained.

超硬合金はその含有する炭素量によつて特性が大きく変
化し、一定量よりも炭素量が少いとη相とよばれる脱炭
相が析出し、大ぎく強度が低下し、又一定量よりも炭素
量が多くとも遊離炭素が析出して強度が低下、いずれも
好ましくなく、超硬合金製造業者にとつては、いかに超
硬合金の炭素量を適正範囲に調整するかが重大問題であ
つた。
The properties of cemented carbide vary greatly depending on the amount of carbon it contains.If the amount of carbon is less than a certain amount, a decarburized phase called η phase will precipitate, resulting in a significant decrease in strength; Even if the carbon content is high, free carbon will precipitate and the strength will decrease, both of which are undesirable.For cemented carbide manufacturers, how to adjust the carbon content of cemented carbide to an appropriate range is a serious problem. Ta.

しかし前述のごとく表面被覆超硬合金部品の製造では表
面より50μ以上の深さで0.01〜0.50重量?遊
離炭素の析出することが好ましいことがわかつたので、
以下いかにしてそのような遊離炭素析出合金を供給する
かについて述べる。遊離炭素析出超硬合金を製造するに
は、例えばあらかじめ原料の配合段階で必要とする炭素
を余分に配合しておき、合金全体に遊離炭素を析出させ
ればよい。
However, as mentioned above, in the manufacture of surface-coated cemented carbide parts, the weight is 0.01 to 0.50 at a depth of 50 μ or more from the surface. Since it was found that precipitation of free carbon is preferable,
How to supply such a free carbon precipitation alloy will be described below. In order to produce a free carbon precipitated cemented carbide, for example, an excess of the necessary carbon may be blended in advance at the raw material blending stage, and free carbon may be precipitated throughout the alloy.

しかしこの場合には被覆後も合金中心部には遊離炭素が
残存するという欠点がある。この遊離炭素は合金の靭性
を劣化させてしまう。本発明はこの欠点がなく、遊離炭
素含有合金の長所を生かした合金製造法を提供するもの
である。本力法の原理は表面層にのみ遊離炭素の存在す
るような超硬合金を作成しておき、表面被覆中にこの遊
離炭素を表面層へ供給することにある。以下詳しく説明
する。鋼を高温、浸炭雰囲気中にて処理すれば表面より
炭素が浸炭し、表面硬化されるということは広く知られ
ているものの、この力法を超硬合金に利用しても結合剤
として主として用いられるCO金属中に固溶する炭素量
は非常に微少であり、十分とはいえない。
However, this case has the disadvantage that free carbon remains in the center of the alloy even after coating. This free carbon deteriorates the toughness of the alloy. The present invention provides a method for producing an alloy that does not have this drawback and takes advantage of the advantages of free carbon-containing alloys. The principle of this force method is to prepare a cemented carbide in which free carbon exists only in the surface layer, and to supply this free carbon to the surface layer during surface coating. This will be explained in detail below. It is widely known that if steel is treated in a carburizing atmosphere at high temperatures, carbon will carburize from the surface and the surface will harden. The amount of carbon dissolved in solid solution in the CO metal is extremely small and cannot be said to be sufficient.

そこで発明者は以下のように考えた。第1図はRaut
ala,NOrtOnによるW−C−COの三元状態図
における84WC−16C0における切断面であるが、
これによると液相出現温度(1,3000C)以上、例
えば1,400℃に於てはWC+L+CとWC+Lとの
境界は合金の炭素量で5.3%あり、そのまま室温まで
冷却すると0.15%の遊離炭素を含有することが判る
Therefore, the inventor thought as follows. Figure 1 shows Raut
The cut plane at 84WC-16C0 in the ternary phase diagram of W-C-CO by ala, NOrtOn,
According to this, at temperatures above the liquid phase appearance temperature (1,3000C), for example at 1,400℃, the boundary between WC+L+C and WC+L is 5.3% in terms of carbon content in the alloy, and when cooled to room temperature, it is 0.15%. It is found that it contains free carbon.

一力、1,300℃以下例えば1,250℃で滲炭する
と、第1図の点線で示される5,15%程度の炭素しか
含有されずかつ常温に冷却された場合は最大0.01〜
0.02重量?の遊離しか含有させられない。したがつ
て液相出現温度1,300℃以上に加熱し、かつ浸炭雰
囲気中に超硬合金をさらせば一定量まで遊離炭素を含有
さすことが可能であることが判つた。なおこの含有遊離
炭素の限界は、ほゾ超硬合金中のCO量によつて支配さ
れると考えられ、近似的にはCO量をX重量?とすると
、x 一×0.15% で表わされると考えられる。
If carbon is milled at a temperature below 1,300°C, for example 1,250°C, it will contain only about 5.15% of carbon, as shown by the dotted line in Figure 1, and if it is cooled to room temperature, the maximum carbon content will be 0.01~
0.02 weight? It can only contain free. Therefore, it has been found that it is possible to contain free carbon up to a certain amount by heating the cemented carbide to a liquid phase appearance temperature of 1,300° C. or higher and exposing it to a carburizing atmosphere. The limit of free carbon content is thought to be controlled by the amount of CO in the tenon cemented carbide, and approximately the amount of CO can be expressed as X weight? Then, it is considered to be expressed as x 1 x 0.15%.

なお温度に関しては1,500℃以上では処理すべき超
硬合金が変形してしまい好ましくない。
Regarding the temperature, a temperature of 1,500°C or higher is not preferable because the cemented carbide to be treated will be deformed.

又浸炭雰囲気に関しては雰囲気中の炭素の活性度をAO
としたとき(1気圧下での遊離炭素の活性度を1とする
と)、UO−RTlnaO で表わされる、いわゆるカーボンポテンシヤルが0Kc
a1/MOl以上であれば理論上では浸炭可能であるが
、工業上では4Kca1/冨01以上が好ましい。
Regarding the carburizing atmosphere, the activity of carbon in the atmosphere is expressed as AO.
(assuming that the activity of free carbon under 1 atmosphere is 1), the so-called carbon potential expressed as UO-RTlnaO is 0Kc.
Theoretically, carburization is possible if it is a1/MO1 or more, but industrially it is preferably 4Kca1/Mo1 or more.

なおこの浸炭雰囲気のカーボンポテンシヤル、処理温度
、処理時間を適当に調整することによつて浸炭深さ、浸
炭量を調整出来ることはいうまでもない。
It goes without saying that the depth of carburization and the amount of carburization can be adjusted by appropriately adjusting the carbon potential of this carburizing atmosphere, treatment temperature, and treatment time.

以下実施例によつて説明する。This will be explained below using examples.

但し本発明は実施例に限定されるものではない。実施例
1 市販のISOP−30超硬合金(型番TNMG432E
NU)、遊離炭素を全く含まぬもの、を1,350′C
に加熱、浸炭雰囲気中にて(雰囲気のカーボンポテンシ
ヤルを5Kca1/MOleに選定)5分間浸炭処理を
おこなつた。
However, the present invention is not limited to the examples. Example 1 Commercially available ISOP-30 cemented carbide (model number TNMG432E
NU), containing no free carbon, at 1,350'C
Carburizing treatment was performed for 5 minutes in a carburizing atmosphere (the carbon potential of the atmosphere was selected to be 5Kca1/MOle).

このチツプを冷却後調べて見ると、チツプの表面より1
00μの深さ迄均一に0.08重量?遊離炭素が析出し
ていた。このチツプをインコネル製反応容器中にて1,
000℃に加熱、[1286%TiCl47%CH47
%(容量%)の混合ガスを4011mHgにて流し、炭
化チタンを5μ被覆した、および市販1S0P−30超
硬合金(型番TNMG432ENU)に本発明のチツプ
と全く同じ条件にて炭化チタンを5μ被覆して、以下の
条件にて切削試験を行なつた。切削条件1被 削 材
S55C鍛造材(HB−250)被削材寸法 φ50m
m><1300mm切削速度140m/Min 送 り 0.40mm/Rev切り込み2〜
5mTL にて切削したところ本発明のチツプでは112本加工可
能であつたのに対して、通常の炭化チタン被覆チツプで
は被覆層ハク離の為65本しか加工出来なかつた。
When this chip was examined after cooling, it was found that 1.
Uniform weight of 0.08 to a depth of 00μ? Free carbon was precipitated. This chip was placed in an Inconel reaction vessel for 1.
Heat to 000 °C, [1286% TiCl47% CH47
% (volume %) of mixed gas was flowed at 4011 mHg, and a commercially available 1S0P-30 cemented carbide (model number TNMG432ENU) was coated with 5 μm of titanium carbide under exactly the same conditions as the chip of the present invention. A cutting test was conducted under the following conditions. Cutting conditions 1 Work material
S55C forged material (HB-250) Work material dimensions φ50m
m><1300mm Cutting speed 140m/Min Feed 0.40mm/Rev Depth of cut 2~
When cutting at 5 mTL, the chip of the present invention could process 112 chips, whereas the conventional titanium carbide coated chip could only process 65 chips due to peeling of the coating layer.

切削条件2被 削 材 SCM2l鍛造材追B−180
)被削材寸法 φ50mmX1300mw!切削速度1
30/Min 送 り 0.30m7!L/Rev切り込み
2mmにて切削したところ、本発明のチツプでは142
本加工可能であつたのに対して通常の炭化チタン被覆チ
ツプでは98本しか加工出来なかつた。
Cutting conditions 2 Work material SCM2l forged material B-180
) Work material dimensions φ50mmX1300mw! Cutting speed 1
30/Min feed 0.30m7! When cutting with an L/Rev depth of 2 mm, the chip of the present invention had a diameter of 142 mm.
While this process was possible, only 98 chips could be processed using a conventional titanium carbide coated chip.

実施例 2市販のISOP−30超硬合金(型番SNU
432)・・・・・・遊離炭素を全く含まぬもの・・・
・・・を、実施例1と同一条件にて浸炭処理したチツプ
、及び原料状態ですでに炭素を添加し、0.08重量%
遊離炭素が析出しているチツプ及び市販のISOP−3
0超硬合金チツプの三者にそれぞれ実施例1の条件にて
TiCを5μ被覆した。
Example 2 Commercially available ISOP-30 cemented carbide (model number SNU
432) ...Contains no free carbon...
... were carburized under the same conditions as in Example 1, and carbon was already added in the raw material state, and 0.08% by weight.
Chips with free carbon deposits and commercially available ISOP-3
Each of the three cemented carbide chips was coated with 5μ of TiC under the conditions of Example 1.

それぞれのチツプをA,B,Cとし、以下の切削条件に
て切削テストを行なつた。切削条件1被 削 材 SC
M3(HB−280)切削速度170m/Min送
り 0.36mm/Re 切り込み2.0mm ブランク摩耗が0.20mmをもつて寿命と判定すると
、A26分間、B27分間、C27分間と三者特に差が
なかつた。
A cutting test was conducted using each chip as A, B, and C under the following cutting conditions. Cutting conditions 1 Work material SC
M3 (HB-280) Cutting speed 170m/Min feed
0.36 mm/Re, depth of cut 2.0 mm, and when the blank wear was determined to be 0.20 mm, there was no particular difference between the three, A26 minutes, B27 minutes, and C27 minutes.

切削条件2被 削 材 SCM34溝材(HB−280
)被削材形状第2図切削速度100m/Min 送 り 0.20mm/Rev切り込み4
mm切削時間3分間 各10切片テストしたところ、Aのチツプは8切片、B
のチツプも同様8切片切削可能であつたが、Cのチツプ
では4切片しか切削出来なかつた。
Cutting conditions 2 Work material SCM34 groove material (HB-280
) Workpiece shape Figure 2 Cutting speed 100m/Min Feed 0.20mm/Rev Depth of cut 4
When testing 10 sections each for 3 minutes cutting time, A chip had 8 sections, B
Similarly, the tip C was able to cut 8 sections, but the tip C could only cut 4 sections.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はW−CO−C三元状態図における84WC−1
6C0断面である。
Figure 1 shows 84WC-1 in the W-CO-C ternary phase diagram.
It is a 6C0 cross section.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化物、窒化物、および/又はこれらの固溶体、混
合物の一種またはそれ以上によつて一層もしくは多層に
被覆されている表面被覆超硬合金部品を製造するにあた
り、表面被覆前の超硬合金部品を液相出現温度以上、好
ましくは1,325℃以上1,500℃以下の浸炭雰囲
気中にて加熱し、かつその浸炭雰囲気としては雰囲気の
カーボンポテンシャルを4Kcal/mol以上とし、
その後カーボンポテンシャルを0Kcal/mol以上
の状態で冷却することにより該超硬合金の主として表面
に遊離炭素を析出させて後該遊離炭素の一部又は全部を
化学蒸着法にて表面被覆を行う際に形成される被覆膜に
供給することを特徴とする表面被覆超硬合金部品の製造
法。
1. When manufacturing surface-coated cemented carbide parts coated with one or more layers of carbides, nitrides, and/or solid solutions or mixtures thereof, the cemented carbide parts before surface coating are Heating in a carburizing atmosphere at a temperature higher than the liquid phase appearance temperature, preferably 1,325°C or higher and 1,500°C or lower, and the carburizing atmosphere has a carbon potential of 4 Kcal/mol or higher,
After that, free carbon is precipitated mainly on the surface of the cemented carbide by cooling the carbon potential to 0 Kcal/mol or more, and then part or all of the free carbon is coated on the surface by chemical vapor deposition. A method for producing a surface-coated cemented carbide component, comprising supplying a coating film to be formed.
JP51078198A 1976-06-18 1976-06-30 Manufacturing method for surface-coated cemented carbide parts Expired JPS5911663B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP51078198A JPS5911663B2 (en) 1976-06-30 1976-06-30 Manufacturing method for surface-coated cemented carbide parts
US05/806,880 US4150195A (en) 1976-06-18 1977-06-15 Surface-coated cemented carbide article and a process for the production thereof
DE2727250A DE2727250C2 (en) 1976-06-18 1977-06-16 Surface coated cemented carbide article and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51078198A JPS5911663B2 (en) 1976-06-30 1976-06-30 Manufacturing method for surface-coated cemented carbide parts

Publications (2)

Publication Number Publication Date
JPS533978A JPS533978A (en) 1978-01-14
JPS5911663B2 true JPS5911663B2 (en) 1984-03-16

Family

ID=13655303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51078198A Expired JPS5911663B2 (en) 1976-06-18 1976-06-30 Manufacturing method for surface-coated cemented carbide parts

Country Status (1)

Country Link
JP (1) JPS5911663B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124414A (en) * 1983-12-09 1985-07-03 Tokai Rika Co Ltd Press metallic die

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832732A (en) * 1971-09-02 1973-05-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832732A (en) * 1971-09-02 1973-05-02

Also Published As

Publication number Publication date
JPS533978A (en) 1978-01-14

Similar Documents

Publication Publication Date Title
US3999954A (en) Hard metal body and its method of manufacture
US4150195A (en) Surface-coated cemented carbide article and a process for the production thereof
US5451469A (en) Cemented carbide with binder phase enriched surface zone
US4269899A (en) Surface hafnium-titanium carbide coated hard alloy and method
JPH02197569A (en) Coated sintered hard alloy and production thereof
JP4153301B2 (en) Manufacturing method of coated cemented carbide cutting tool
JP2009028894A (en) Coated cutting tool
KR20080072586A (en) Improved alumina coated grade
EP0264448B1 (en) Method of treating the surface of iron alloy materials
JP2008238393A5 (en)
JP3955635B2 (en) Coated cutting insert
US3999953A (en) Molded articles made of a hard metal body and their method of production
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
JPH07112306A (en) Surface coating cutting tool
JPS5911663B2 (en) Manufacturing method for surface-coated cemented carbide parts
JP5419668B2 (en) Surface covering member
Konyashin Activated nitriding of TiCN-based cermets
US2332441A (en) Carburized article
KR100388759B1 (en) Coated turning insert
JPS5824501B2 (en) Method for manufacturing tungsten carbide coating layer
JPH0645880B2 (en) Method for producing surface-coated cemented carbide
JPS6119777A (en) Abrasion and heat resistant coated cemented hard alloy meterial
JP2668221B2 (en) Coated cemented carbide
JPS63103069A (en) Surface coated sintered hard alloy
JPS6312135B2 (en)