JPS59116625A - Optical pulse generator - Google Patents

Optical pulse generator

Info

Publication number
JPS59116625A
JPS59116625A JP23252082A JP23252082A JPS59116625A JP S59116625 A JPS59116625 A JP S59116625A JP 23252082 A JP23252082 A JP 23252082A JP 23252082 A JP23252082 A JP 23252082A JP S59116625 A JPS59116625 A JP S59116625A
Authority
JP
Japan
Prior art keywords
optical
nonlinear
laser
pulse
optical bistable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23252082A
Other languages
Japanese (ja)
Inventor
Takeshi Koseki
健 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23252082A priority Critical patent/JPS59116625A/en
Publication of JPS59116625A publication Critical patent/JPS59116625A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/024Optical bistable devices based on non-linear elements, e.g. non-linear Fabry-Perot cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain an ultrashort optical pulse by giving optical pulse output of a laser to the first nonlinear Fabry-Perot optical bistable device, giving this transmitted light to the second nonlinear Fabry-Perot optical bistable device, and forming a separator for extracting the reflected light. CONSTITUTION:A GaAs-GaAlAs distribution feedback type semiconductor laser 12 is laminated on a substrate 11. An output pulse from the laser 12 is made incident through a GaAlAs buffer layer 13 to the first optical bistable device 14. The device 14 is prepared by inserting a GaAs-GaAlAs superlattice nonlinear medium 143 between GaAs-A As Bragg reflectors 141, 142. A blazed Bragg connector 15 acts as a 3dB beam splitter. The transmitted light from the connector 15 is made incident to the second optical bistable device 16 constituted like the device 14. The reflected light from the device 16 is separated with the connector 15, and extracted as an ultrashort output optical pulse. Accordingly, an ultrashort pulse can be generated with a small device by small power.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はピコ秒(PS)級の極短光パルスを発生する光
パルス発生器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical pulse generator that generates extremely short optical pulses of picosecond (PS) class.

〔発明の技術的背景とその問題点9 種々の光応用として、極短光パルス発生は重要である。[Technical background of the invention and its problems 9 Generation of ultrashort optical pulses is important for various optical applications.

例えば、光学遷移の時間応答音調べたり、高分解能の光
測比さらには超高速光計算機、光通信などに極短光パル
スが要求される。
For example, ultrashort optical pulses are required for investigating time-response sounds of optical transitions, high-resolution photometry, ultrahigh-speed optical computers, and optical communications.

従来pS級の光パルス発生には、十分利得幅の広いレー
ザの場合、モード同期をかけることで’、l’lJ?+
4の光パルスを得ることや、可飽和吸収体に工って光パ
ルス前縁全急峻化することなどが知られている。
Conventionally, in the case of a laser with a sufficiently wide gain width, mode-locking is applied to generate pS-class optical pulses. +
It is known to obtain a light pulse of 4, or to make the leading edge of a light pulse completely steep by using a saturable absorber.

しかしながら、モード同期方式ではレーザ活性媒体の分
散が十分小さくなければ、軸モード間隔に不整を生じ、
十分なモード同期をかけ難かったり、単一の極短光パル
スを得るには、超高速光ゲートが必要であった。
However, in the mode-locking method, if the dispersion of the laser active medium is not sufficiently small, the axial mode spacing will be irregular.
It was difficult to achieve sufficient mode locking, and ultrafast optical gates were required to obtain a single, extremely short optical pulse.

また可飽和吸収体による光パルスの狭化は、一般には十
分な大出力光パルスを必要とし、マイクロエレクトロニ
ックな応用には不適当であった。
Furthermore, optical pulse narrowing using saturable absorbers generally requires sufficiently high output optical pulses, making it unsuitable for microelectronic applications.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の困難全克服して、簡単に、かつ小電力
で極短光パルスを発明fる手段全提供すること全目的と
する。
It is an object of the present invention to overcome all of the above-mentioned difficulties and to provide a means for inventing ultrashort optical pulses simply and with low power.

〔発明の概要〕[Summary of the invention]

本発明による極短光パルスの発生は、非線形ファプリペ
ロー光双安定素子の超高速スイッチング特性を利用する
The generation of ultrashort optical pulses according to the present invention utilizes the ultrafast switching characteristics of a nonlinear Fabry-Perot optical bistable device.

非線形7アブリペロー光双安定素子の光入出力特性は第
1図に示す通りである。非線形7アブリペロー光双安定
素子は、2つのミラーの対向するファプリベロー共振器
内に非線形光学媒質を挿入して形成され、3次の非線形
分極率により入射光電界によって励起される内部光電界
に従って媒質の屈折率が変化して共振状態に急速に遷移
することを利用している。すなわち、しきい値光電力F
T  までは非共振状態で、透過出力は小さい。入力光
電力がPT  f超えると共振状態に遷移し、光出力は
A点よりB点にジャンプしさらにE点へ移行する。内部
光電界によって屈折率は共振状態に安定化され透過光出
力はほぼ一定となる。この状態は光入力が減少しても、
維持光電力Ps  まで保持され、それ以下となっては
じめて、D点に遷移し、低透過率状態にもどる。
The optical input/output characteristics of the nonlinear 7 Abry-Perot optical bistable device are as shown in FIG. A nonlinear 7 Abry-Perot optical bistable device is formed by inserting a nonlinear optical medium into a Fabry-Bello resonator of two mirrors facing each other. It takes advantage of the rapid transition to a resonant state due to a change in the refractive index. That is, the threshold optical power F
Up to T, it is in a non-resonant state and the transmitted output is small. When the input optical power exceeds PT f, a transition is made to a resonance state, and the optical output jumps from point A to point B and then moves to point E. The refractive index is stabilized in a resonant state by the internal optical electric field, and the transmitted light output becomes approximately constant. In this state, even if the optical input decreases,
It is maintained up to the maintenance optical power Ps, and only when it becomes lower than that does it transit to point D and return to the low transmittance state.

第2図はこのような非線形ファプリペロー光双安定素子
を用いた本発明による極短光パルス発生器の構成ブロッ
ク図である。1は電気入力により制御されるレーザ、2
はこのレーザ出力光パルスが入射される第1の非線形フ
ァプリペロー光双安定素子、4は第1の光双安定素子の
透過光パルスが入射される第2の非線形ファプリペロー
光双安定素子であり、3は第2の光双安定素子4の反射
光を出力光パルスとして取出す分離素子である0 すなわち、第3図に示すように電気入力により駆動され
るレーザ1はゆるやか(数百ピコ秒の立、Fす)な発振
立上りの光パルス全発生する。
FIG. 2 is a block diagram of the configuration of an ultrashort optical pulse generator according to the present invention using such a nonlinear Fabry-Perot optical bistable device. 1 is a laser controlled by electrical input; 2
4 is a first nonlinear Farpry-Perot optical bistable element into which this laser output light pulse is input, 4 is a second nonlinear Farpry-Perot optical bistable element into which the transmitted light pulse of the first optical bistable element is input, and 3 is a separation element that extracts the reflected light of the second optical bistable element 4 as an output optical pulse. In other words, as shown in FIG. A full optical pulse with a sharp oscillation rise is generated.

このレーザ出力光パルスは第1の非線形ファプリペロー
光双安定素子2に入射し、そのスイッチしきい値FT 
 に達すると共振状態に遷移して急速にターン・オンし
、83図に示すような透過光が得られる。これはレーザ
1の出力光バルクの前縁vi−第1の光双安定素子2の
ターン・オン時間で決まる立上りに整形したことに相当
する。この透過光は分離素子3を通り第2の非線形7ア
ブリペロー光双安定素子4に入射する。
This laser output light pulse enters the first nonlinear Fabry-Perot optical bistable element 2, and its switch threshold value FT
When it reaches , it transitions to a resonant state and rapidly turns on, producing transmitted light as shown in Figure 83. This corresponds to shaping the output light bulk of the laser 1 into a rising edge determined by the leading edge vi of the output light of the laser 1 and the turn-on time of the first optical bistable element 2. This transmitted light passes through the separation element 3 and enters the second nonlinear 7 Abry-Perot optical bistable element 4.

この透過光波形は第3図に示す如く、ターン・オフ状態
の光出力全抑圧し、急峻な前線をさらに整形する。この
ときの非線形ファプリペロー共振器の反射率は、ターン
・オフ状態の高反射率から、ターン・オン状態の低反射
率へ急峻な遷移を行う。従って第2の光双安定素子4の
反射光を分離素子3によって出力光パルスとして取出せ
ば、第3図に示すように、第1.第2の7アプリベロー
光双安定素子2,4のターン・オン時間の和で決まるパ
ルス幅dの極短光パルスが得られることになる。
As shown in FIG. 3, this transmitted light waveform completely suppresses the light output in the turn-off state and further shapes the steep front. At this time, the reflectance of the nonlinear Fabry-Perot resonator makes a steep transition from high reflectance in the turned-off state to low reflectance in the turned-on state. Therefore, if the reflected light from the second optical bistable element 4 is extracted as an output optical pulse by the separation element 3, the first... An extremely short optical pulse with a pulse width d determined by the sum of the turn-on times of the second 7-applibel optical bistable elements 2 and 4 is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体レーザのモード同期による極短
光パルス(12Ps  程度)エリも更に1桁以上短か
い光パルスの発生が可能となる。
According to the present invention, it is possible to generate an extremely short optical pulse (about 12 Ps) which is one order of magnitude shorter than that due to mode locking of a semiconductor laser.

この方式では、共振器内部電界の立上りが正帰還として
作用し、共振器のフィネスによって低しきい値化も行な
われ、小型化にも適合する。
In this method, the rise of the electric field inside the resonator acts as positive feedback, and the finesse of the resonator lowers the threshold value, making it suitable for miniaturization.

すなわち、半導体レーザの光電力で極短光パルスが簡単
に発生でき、光コンピュータの基本パルス発生器等とし
て有用となる。とくに超格子のエキシトン準位に関連す
る大きな光学的非線形と微小光導波路技術(光IC技術
)によって1μWのしきいで、IPs  スイッチ時間
が1μmφ程度の寸法で実現できると考えられ、将来へ
の発展性が大きい手段である。
That is, ultrashort optical pulses can be easily generated using the optical power of a semiconductor laser, making it useful as a basic pulse generator for optical computers. In particular, it is thought that the large optical nonlinearity associated with the exciton level of the superlattice and micro optical waveguide technology (optical IC technology) will enable IPs switching times to be realized with a threshold of 1 μW and a size of approximately 1 μmφ, and this will lead to future development. It is a highly sensitive means.

〔発明の実施例〕 本発明による極短光パルス発生器の具体的実施例の構成
を第4図に示す。IJはG HA s基板であり、12
はこの基板Il上に形成された面発光型の分布帰還形半
導体レーザで GaAs−GaAtAs  のブラック格子による分布
帰還発振を行う。13はG a AHA sバラフッ層
で、レーザZ2からの出力光全吸収なく透過し、第1の
光双安定素子14に入射させる。この第1の光双安定素
子はG BA s −AtA Sブラッグ反射器14.
.142の間に:GaAs−GaA4As超格子非線形
媒質143全はさんだ構成である〇15は分離素子とし
てのブレーズドブラッグ結合器であり、これは3 dB
  ビームスプリッタとして動作する。この結合器15
の透過光は第2の光双安定素子I6に入射する。この第
2の光双安定素子16は第1の光双安定素子と同様、ブ
ラッグ反射器16..16.間に超格子非線形媒質I6
s′(i−はさんだ構成であるが、そのしきい゛値九電
力は、ブレーズドブラッグ結合器15で透過光が3dB
  低下するため、第1の光双安定素子、14のそれに
対して約Hにセットされる。そしてこの第2の光双安定
素子16からの反射光が結合器15で分離され、極短出
力光パルスとして取1」1されることになる。
[Embodiment of the Invention] FIG. 4 shows the configuration of a specific embodiment of the ultrashort optical pulse generator according to the present invention. IJ is the GHA s substrate, 12
A surface-emitting type distributed feedback semiconductor laser formed on this substrate Il performs distributed feedback oscillation using a GaAs-GaAtAs black lattice. Reference numeral 13 denotes a G a AHA s barrier layer through which the output light from the laser Z 2 is transmitted without being totally absorbed, and is made incident on the first optical bistable element 14 . This first optical bistable element is a G BA s -AtA S Bragg reflector 14 .
.. Between 142 and 142: GaAs-GaA4As superlattice nonlinear medium 143 is sandwiched between the two. 〇15 is a blazed Bragg coupler as a separation element, which is 3 dB
Acts as a beam splitter. This coupler 15
The transmitted light enters the second optical bistable element I6. This second optical bistable element 16, like the first optical bistable element, is a Bragg reflector 16. .. 16. superlattice nonlinear medium I6 between
s' (i- sandwiched configuration, its threshold power is 3 dB when the transmitted light is 3 dB at the blazed Bragg coupler 15.
is set to approximately H relative to that of the first optical bistable element, 14. The reflected light from this second optical bistable element 16 is separated by a coupler 15 and taken as an extremely short output optical pulse.

この実施例にL 11ば、半導体レーザ技術を利用して
、小型かつ小電力で極短光パルスを発生し得る光パルス
発生器が実現できる。
In this embodiment, by using semiconductor laser technology, it is possible to realize an optical pulse generator that is compact and can generate extremely short optical pulses with low power.

なお、上記実施例では各イハ成要素を基板上に厚み方向
に積層する楢造を示したが、これは基板上に水平方向に
配列形成してもよい。
In the above embodiment, a structure in which the respective substrate elements are laminated in the thickness direction on the substrate is shown, but these may be arranged and formed on the substrate in the horizontal direction.

またf3葭素子としては、性能の点からは減衰の小さい
光サーギュレータ金用いることが望ましい。
In addition, from the viewpoint of performance, it is desirable to use an optical surgulator metal with low attenuation as the f3 element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非線形ノアブリベロー光双安定素子の入出力特
性を示す図、第2図は本発明の基本構成を示す図、第3
図はその動作を説明するための波形図、第4図は本説明
の一実施例の構成を示す図である。 1・・・レーザ、2・・・第1の非線形ファブリベロー
光双安定素子、3・・分離素子、4・・・第2の非線形
7アブリベロー光双安定素子、l)・・・基板、12・
・・分布帰還形半導体レーザ、13・・・バッファ層、
14・・・第1の非線形ファプリベロー光双安定素子、
I5・・・ブレーズドブラッグ結合器、16・・・第2
の非線形ファブリペロ−yt双安定素子。 出願人代理人 弁理士  銘 江 武 彦第1図 第2図 第3図 !
Fig. 1 is a diagram showing the input/output characteristics of a nonlinear no-breasted optical bistable device, Fig. 2 is a diagram showing the basic configuration of the present invention, and Fig. 3 is a diagram showing the basic configuration of the present invention.
The figure is a waveform diagram for explaining the operation, and FIG. 4 is a diagram showing the configuration of an embodiment of the present description. DESCRIPTION OF SYMBOLS 1... Laser, 2... First nonlinear Fabry Bellow optical bistable element, 3... Separation element, 4... Second nonlinear Fabry Bellow optical bistable element, l)... Substrate, 12・
...Distributed feedback semiconductor laser, 13...Buffer layer,
14...first nonlinear fiber bellows optical bistable element,
I5... Blazed Bragg coupler, 16... Second
nonlinear Fabry-Perot-yt bistable element. Applicant's agent Patent attorney name Takehiko E Figure 1 Figure 2 Figure 3!

Claims (2)

【特許請求の範囲】[Claims] (1)電気入力にエリ制御されて光パルスを発生するレ
ーザと、このレーザの出力パルスが入力され所定のしき
い値で共振状態に遷移する第1の非線形ファブリペロ−
光双安定素子と、この光双安定素子の透過光パルスが入
力され所定のしきい値で共振状態に遷移する第2の非線
形ファブリベロー光双安定素子と、この光双安定素子の
反射光を出力光パルスとして取出す分離素子と全備えた
こと全特徴とする光パルス発生器。
(1) A laser that generates optical pulses under electrical input control, and a first nonlinear Fabry-Perot laser that transitions to a resonant state at a predetermined threshold upon receiving the laser's output pulses.
an optical bistable element, a second nonlinear Fabry-Bello optical bistable element to which a transmitted light pulse of the optical bistable element is input and which transitions to a resonant state at a predetermined threshold; An optical pulse generator that is fully equipped with a separation element that extracts output optical pulses.
(2)前記分離素子は前記第1.第2の非線形ファブリ
ベロー光双安定素子間に設けられたビームスプリッタで
あり、前記第2の非線形ファブリベロー光双安定素子の
共振状態へのしきい値は前記第1の非線形ファブリベロ
ー光双安定素子のそれの約%に設定されている特許請求
の範囲第1項記載の光パルス発生器。
(2) The separation element is the first separation element. a beam splitter provided between the second nonlinear Fabry-Bello optical bistable elements, and a threshold value for the second nonlinear Fabry-Bello optical bistable element to reach a resonance state is the beam splitter provided between the second nonlinear Fabry-Bello optical bistable elements; The optical pulse generator according to claim 1, wherein the optical pulse generator is set to about % of that of the element.
JP23252082A 1982-12-23 1982-12-23 Optical pulse generator Pending JPS59116625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23252082A JPS59116625A (en) 1982-12-23 1982-12-23 Optical pulse generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23252082A JPS59116625A (en) 1982-12-23 1982-12-23 Optical pulse generator

Publications (1)

Publication Number Publication Date
JPS59116625A true JPS59116625A (en) 1984-07-05

Family

ID=16940611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23252082A Pending JPS59116625A (en) 1982-12-23 1982-12-23 Optical pulse generator

Country Status (1)

Country Link
JP (1) JPS59116625A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128319A (en) * 1986-11-19 1988-05-31 Fujitsu Ltd Optical pulse generator
US5205460A (en) * 1991-05-20 1993-04-27 Kabushiki Kaisha Shinkawa Bonding apparatus
EP0547077A4 (en) * 1990-08-31 1994-02-16 Bell Communications Research, Inc.
US6275327B1 (en) * 1999-03-22 2001-08-14 The United States Of America As Represented By The Secretary Of The Army All-optical pulse generating and amplifying system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128319A (en) * 1986-11-19 1988-05-31 Fujitsu Ltd Optical pulse generator
EP0547077A4 (en) * 1990-08-31 1994-02-16 Bell Communications Research, Inc.
US5205460A (en) * 1991-05-20 1993-04-27 Kabushiki Kaisha Shinkawa Bonding apparatus
US6275327B1 (en) * 1999-03-22 2001-08-14 The United States Of America As Represented By The Secretary Of The Army All-optical pulse generating and amplifying system

Similar Documents

Publication Publication Date Title
JP2531443B2 (en) All-optical device
JP2629624B2 (en) All-optical switch
US7126731B1 (en) Optical latch based on lasing semiconductor optical amplifiers
US5363386A (en) Optical waveguide laser
JP3145941B2 (en) Optical function amplifying element and operation method thereof
JPH02276285A (en) Phototransistor
US4805975A (en) Optical waveguide switch
Razaghi et al. Comprehensive finite-difference time-dependent beam propagation model of counterpropagating picosecond pulses in a semiconductor optical amplifier
Mikroulis et al. Ultrafast all-optical AND logic operation based on four-wave mixing in a passive InGaAsP-InP microring resonator
US5353146A (en) Optical signal regenerator and optical communications system incorporating same
US4410239A (en) Nonlinear optical device using self-trapping of light
Bischoff et al. Improving the all-optical response of SOAs using a modulated holding signal
JPS62502818A (en) Coherent radiation generation method and device
JPS59116625A (en) Optical pulse generator
WO2019036584A1 (en) Mode-locked semiconductor laser capable of changing output-comb frequency spacing
Kogelnik Limits in integrated optics
Kawaguchi Polarization-bistable vertical-cavity surface-emitting lasers: application for optical bit memory
Bhargava et al. Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index
Blow et al. Nonlinear effects in optical fibres and fibre devices
Dreischuh et al. Pulse shaping and shortening by spatial filtering of an induced-phase-modulated probe wave
US3519953A (en) High speed scanlaser
Tang et al. Enhanced TOAD performance by negative frequency-detuned signal and control picosecond optical pulses
US3470491A (en) Bistable laser apparatus
Nielsen et al. Investigation of unidirectionality in an asymmetric ring mode locked laser with two saturable absorbers
JPH02127623A (en) Optical element