JPS59116567A - Glass dosimeter - Google Patents

Glass dosimeter

Info

Publication number
JPS59116567A
JPS59116567A JP22599382A JP22599382A JPS59116567A JP S59116567 A JPS59116567 A JP S59116567A JP 22599382 A JP22599382 A JP 22599382A JP 22599382 A JP22599382 A JP 22599382A JP S59116567 A JPS59116567 A JP S59116567A
Authority
JP
Japan
Prior art keywords
range
glass
glasses
measurement
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22599382A
Other languages
Japanese (ja)
Inventor
Katsuji Nishijima
西島 勝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP22599382A priority Critical patent/JPS59116567A/en
Publication of JPS59116567A publication Critical patent/JPS59116567A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/06Glass dosimeters using colour change; including plastic dosimeters

Abstract

PURPOSE:To achieve a higher accuracy and a shorter measuring time by varying an input level into detector while using a plurality of collimation glasses with a subdivided measuring range to enable the measurement of the detector in the maximum sensitivity. CONSTITUTION:An ultraviolet ray source 1 and a power source 10 are operated to radiate the ultraviolet rays with the wavelength of 300-400nm. Four of collimation glasses 7I, 7II...7IV are measured sequentially and memorized at each range thereof. Then, sample glasses 6I, 6II...6VI are initially measured at such a high level as 1,000 roentgen and compared with level values previously memorized to screen the range at which measurement should be made. Remeasurement is done at a specified range and the results thereof are compared with input of the collimation glasses at the corresponding range to determine a dose value.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はガラスの放射線被曝量を測定するガラス線り七
計f′−限1する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a glass wire for measuring the amount of radiation exposure of glass.

[発明の技術的背景] 従来のガラス線量計は試料ホルダに試料と1個の相対評
価用照合ガラスとを並べて保持し、紫外線光源の光を集
光レンズおよび可視光遮断フィルタを介して試料および
照合ガラスを照射してそれぞれ螢光を発生させ、この発
光を螢光検知装置f二よって検知して、試料の被曝線量
を照合ガラスのそれと対比して測定するものである。
[Technical Background of the Invention] A conventional glass dosimeter holds a sample and a reference glass for relative evaluation side by side in a sample holder, and passes light from an ultraviolet light source through a condensing lens and a visible light blocking filter to the sample and the sample. The reference glass is irradiated to generate fluorescent light, and the emitted light is detected by a fluorescence detection device f2, and the exposure dose of the sample is measured by comparing it with that of the reference glass.

[背景技術の問題点] 従来のガラス線量計では照合ガラスが1個であるため、
線量値としては測定レンジのほぼ中央に近いものを選択
使用している。このため、測定レンジの低線量側あるい
は高線i 1141i!二おいては相対誤差が大きくな
る傾向があった。
[Problems with the background technology] Conventional glass dosimeters have only one reference glass;
A dose value close to the center of the measurement range is selected and used. For this reason, the low dose side of the measurement range or the high line i 1141i! There was a tendency for the relative error to become larger in the second case.

しかも、測定対象のガラス試料は透明で端面が研磨加工
してあり、γ線またはX線照射後でも外観上側等の変化
も認められないため、その被曝線量を測定前に見当をつ
けることができず、照合用としては測定レンジの中央値
近くのもので全レンジをカバーさせなければならず、測
定精度に問題があった。
Moreover, the glass sample to be measured is transparent with polished edges, and no changes in the upper side of the appearance are observed even after irradiation with gamma rays or X-rays, so it is possible to estimate the exposure dose before measurement. First, for verification purposes, it was necessary to cover the entire range with something close to the median of the measurement range, which caused problems with measurement accuracy.

寸た、試料な少′;外砕照射したとき発する螢光は微弱
なため、このオ・C釦装置とし、て一般に光電子増倍層
が使用されている。そして、試料カラスの測定すべき砿
鋸紳セiに01〜2000レントゲンの広範囲(:わた
って寂り、!r& +−低線量(IIiiに2ける螢光
は微弱となり j・、’f;罹器を使用しても検知入力
が不足し、このため元電子最倍管に印加する電圧を高く
して感度を向上させている。しかし、光電子増倍管の動
作安定のためには一定の1h;圧印加が望lしく、電圧
を可変にした際は、立上りから安定する才で待時間を心
安とし、4!す定(二時間がかη・る欠点があった。
Since the sample size is small and the fluorescence emitted when externally irradiated is weak, a photoelectron multiplier layer is generally used as the O/C button device. Then, the sample crow to be measured was exposed to a wide range of roentgen from 01 to 2000 (! Even if a photomultiplier tube is used, the detection input is insufficient, so the voltage applied to the photomultiplier tube is increased to improve sensitivity.However, in order to stabilize the operation of the photomultiplier tube, a certain 1 hour It is desirable to apply pressure, and when the voltage is made variable, it is stable from the start up and the waiting time is safe, but it has the drawback that it takes 2 hours to stabilize.

[発明の目的] 本発明は広い線角庇囲■二おいて測定粘度を向上したガ
ラス線邪:計を提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a glass wire gauge having a wide wire angle and an improved measuring viscosity.

[発明の概侠] 本発明の第1は相対評価用照合ガラスを複数個用いて?
1lil 足レンジを区分押当させるようC二して相対
誤差を小さくしたことである。
[Summary of the Invention] The first aspect of the present invention is to use a plurality of comparison glasses for relative evaluation.
1lil The relative error was reduced by using C2 to press the foot range in sections.

本発明の第2は線量計【二高線活試料の測定に際し螢光
検知装置への入力を減少さぜる手段を付設したことによ
り、高線量レンジf二おける測定感度を低下させ、全レ
ンジ(二おいて最高感度状態で測定できるようにしたこ
とである。
The second aspect of the present invention is that the dosimeter is equipped with a means for reducing the input to the fluorescence detection device when measuring a high radiation active sample, thereby reducing the measurement sensitivity in the high dose range f2, and (Secondly, it is possible to perform measurements in the highest sensitivity state.

[発明の実施例] 以下、本発明の詳細を図示の実施例によって説明する。[Embodiments of the invention] Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

(1)は高圧水銀蒸気放電灯などの紫外線光源、 +2
)、 (81,(4)はこの紫外線光源(1)に対向し
て1層さ′rLだ減光フィルタ、集光レンズおよび可視
光処断フィルタ、(5)はこれら減光フィルタ(2)、
集光レンズ(8)および可視光遮断フィルタ(4)を介
して紫外線光源(1)に対向した複数個のフィルタ保持
部を有し、光源(1)の光軸と画交する方向S二移動す
る長形ホルダ、(6+)、 (6m)、・・・、 (6
v+)はこのホルダ(5)の−側C二保持されてホルダ
(5)の移動によって順次紫ダ(5)の移動によって順
次紫外線光源(1)に対向する4 (Biの相対評価用
照合ガラス、(8)はこのホルダ(5)を介して紫外線
光源(1)に対向した螢光検知装置、(9)はこの螢光
検知装置(8)とホルダ(6)との間C二介装された紫
外巌遮[ν「フィルタ、oO)は螢光検知装置(8)ζ
二側定電圧を供給する定電圧直流電蝕、t、’l)は螢
光検知装置(8)の出力信号を増幅する増幅器、(]2
1はこの増幅器(11)の出力(g号を受けて放射線%
゛とじて表示する表示器である。
(1) is an ultraviolet light source such as a high-pressure mercury vapor discharge lamp, +2
), (81, (4) is a one-layer neutral density filter, a condensing lens, and a visible light processing filter facing this ultraviolet light source (1), (5) is a neutral density filter (2),
It has a plurality of filter holding parts facing the ultraviolet light source (1) through a condensing lens (8) and a visible light blocking filter (4), and moves in the direction S2 intersecting the optical axis of the light source (1). long holder, (6+), (6m),..., (6
v+) is held on the - side C2 of this holder (5), and as the holder (5) moves, the UV light source (5) sequentially moves to face the ultraviolet light source (1). , (8) is a fluorescence detection device facing the ultraviolet light source (1) via this holder (5), and (9) is a C two intermediary device between this fluorescence detection device (8) and the holder (6). The ultraviolet filter [ν"filter, oO] is the fluorescence detection device (8)ζ
The constant-voltage DC galvanic etchant, t,'l) that supplies the two-side constant voltage is an amplifier that amplifies the output signal of the fluorescence detection device (8), (]2
1 is the output of this amplifier (11) (radiation % after receiving g)
This is a display device that displays the closing date.

を含有させたもので、7゛線またはX線(二被曝すると
検品格子の欠陥を生じ、これC1紫外線を照射すると螢
光を発する%性を弔する。そして、このとき発する螢光
は仮瞼したγ線またはX線の想お(f−図示のように、
測定レンジ0.1〜3000レントゲンを0.1〜10
レントゲン(レンジl)、1o〜100レントケン(レ
ンジIf ) 、 100〜1000レントゲン(レン
ジill )および1000〜3000レントゲン(レ
ンジ■)のそれぞれC二対応する既知の線量、を照射し
である。
If exposed to 7° rays or The radiation of gamma rays or X-rays (f - as shown,
Measuring range 0.1-3000 Roentgen 0.1-10
C2 corresponding known doses of Roentgen (range 1), 10 to 100 Roentgen (range If), 100 to 1000 Roentgen (range ill), and 1000 to 3000 Roentgen (range ■), respectively, were irradiated.

上記減光フィルタ(2)は装脱自在に構成され、高線量
たとえば1000レントゲン以上の試料を測定する場合
【二限り使用して、試料C二人射する紫外線の強度を下
けるものである。ちなみに、従来は高線量レンジの場合
、検知装置(8)の印加電圧を下げて測定していたが、
本フィルタ(2)の介装C二より、減光率を他レンジの
入党レベル(二合わせであるので、検知装置(8)とし
ては最適感度レベルに設定したまま広い線量レンジの測
定ができる。
The neutral density filter (2) is configured to be detachable and is used only when measuring a sample with a high dose, for example, 1000 Roentgens or more, to reduce the intensity of the ultraviolet rays emitted by the sample C. By the way, in the past, in the case of a high dose range, measurements were taken by lowering the voltage applied to the detection device (8).
Since the interposition C2 of this filter (2) sets the attenuation rate to the joining level of other ranges (two combinations), it is possible to measure a wide dose range while setting the detection device (8) at the optimum sensitivity level.

上記検知装置(8)−″光電変換素子たとえば光電子増
倍管を内蔵し、電源(10)から供給される一定電圧の
直流【二よって動作し、螢光に応じた電気信号たとえば
電圧を出すもので、動作開始後約15分間で安定した測
定状g+二なる。そして、この検知装置(8)の出力は
増幅器01)で増幅されて表示器(19で出力表示され
る。
The above-mentioned detection device (8) - "A photoelectric conversion element, which has a built-in photomultiplier tube, operates based on a constant voltage of direct current supplied from the power source (10), and outputs an electrical signal, such as a voltage, in response to the fluorescence. Then, about 15 minutes after the start of operation, a stable measurement condition g+2 is obtained.Then, the output of this detection device (8) is amplified by the amplifier 01), and the output is displayed on the display (19).

つぎに、この装置の測定J@序を説明する。まず、紫外
線光源(1)と電源叫を動作させ、波長300〜400
シナ12+二R己憶させる。次を二、酵、不・Lガラス
(6+)、 (6m)。
Next, the measurement procedure of this device will be explained. First, operate the ultraviolet light source (1) and the power supply, and
Cena 12+2R reminds me. Next is the second, fermented, non-L glass (6+), (6m).

・・・((5VI) に対しては先ず1000レントゲ
ンの高レベルで測定し、先(二記憶した各レベルの値と
比較してどのレンジで測定すべきか篩分けし、指定され
たレンジで再6111足し、その結果をそのレンジの照
合ガラスの入力と比較することにより線搦値(レントゲ
ン)を求める。なお、ホルダ(5)L二iri 6個の
試料ガラスが載置できる。
...((5VI), first measure at a high level of 1000 Roentgen, then compare with the memorized values of each level to determine in which range the measurement should be made, and then repeat the measurement at the specified range. By adding 6111 and comparing the result with the input of the reference glass of that range, the linearity value (X-ray) is determined.Furthermore, the holder (5) can hold six sample glasses.

このように、本付知計は測定レンジを細分化して代数の
照合カラスを使用することl二より、測定精度を向上で
きる1、−!た、検知装置(8ンへの入力レベルが可変
であるので、検知装置を最高感度、状態で測定すること
が可能となり、祐度の向上と6Iす定時間の知縮ができ
る。
In this way, the measurement accuracy of this sensor can be improved by subdividing the measurement range and using an algebraic matching method.1,-! In addition, since the input level to the detection device (8) is variable, it is possible to measure the detection device at its highest sensitivity and condition, improving the accuracy and shortening the 6I time period.

なお、照合2ソラスは0111定レンジを細かく区分す
るので、数が多いthど測定精度を向上できるが、本発
明C二おいては2個以上あればよく、この場合でも従来
に比較して測定誤差が小さくなる。
In addition, since Verification 2 Solas finely divides the 0111 constant range, it is possible to improve the measurement accuracy of th, which is large in number, but in the present invention C2, it is only necessary to have two or more, and even in this case, the measurement accuracy is improved compared to the conventional method. The error becomes smaller.

また、検知装置への入力を可変する手段として、前述の
紫外線光源の減光のほか、ガラスから発した螢光を減光
してもよく、たとえば検知装置のレンズに絞りを付して
もよい。
Furthermore, as a means of varying the input to the detection device, in addition to the above-mentioned dimming of the ultraviolet light source, the fluorescence emitted from the glass may be dimmed; for example, an aperture may be attached to the lens of the detection device. .

[発明の効果] 本発明の第1は放射線で被曝したガラスC二紫外線を照
射して螢光を発生させ、この螢光の発光弦波を検知して
被曝線対を測定するガラス線量計において、相対評価用
照合ガラスを複数個用いて測定レンジを区分担幽させた
ので、照合ガラスとの比収精度換言すれば測定精度が向
上した。
[Effects of the Invention] The first aspect of the present invention is a glass dosimeter that irradiates glass exposed to radiation with two ultraviolet rays to generate fluorescence, detects the emitted string wave of the fluorescence, and measures the exposed radiation pair. Since the measurement range was divided into sections using a plurality of reference glasses for relative evaluation, the measurement accuracy was improved in other words, the specific yield accuracy with respect to the reference glasses.

また、本発明の第2は前述のガラス線量計において、螢
光検知装置の入力を可変(二したので、螢光検知装置を
最高感度状態で測定することが可能l二なり、測定8′
度の向上と測定時間の短縮ができた0
The second aspect of the present invention is that in the above-mentioned glass dosimeter, the input of the fluorescence detection device is made variable (2), so that it is possible to measure the fluorescence detection device in its highest sensitivity state.
Improved accuracy and shortened measurement time 0

【図面の簡単な説明】[Brief explanation of the drawing]

多51図は本発明のカラス線曾計の一実施例の説明図、
第2図は同じく照合ガラスの測定レンジを細分した区分
レベルを示すグラフである。 (1)・・・紫外線光源   (2)−・−減光フィル
タ(3)・・・集光レンズ (4)・−・可視光しゃ断
フィルタ(5)・・・ホルダ (6+)、 (6m)、 (6i)、 (6u)、 (
6V)、 (6Yl)・・・試料ガラス(ハ)、 (7
n)、 (7m)、 (7+v)・・・照合カラス(8
)・・・検知装置   (9)・・紫外線遮断フィルり
00)・・・電源      C1Jし・・増幅器(1
2)・・・表示器 代理人 弁理士 井 上 −男 第  1 図 第  2 図 −〉 線量 (レントゲン2
Figure 51 is an explanatory diagram of an embodiment of the crow line meter of the present invention.
FIG. 2 is a graph showing subdivision levels of the measurement range of the reference glass. (1)...UV light source (2)--Dark filter (3)...Condensing lens (4)--Visible light blocking filter (5)...Holder (6+), (6m) , (6i), (6u), (
6V), (6Yl)...sample glass (c), (7
n), (7m), (7+v)... matching crow (8
)...Detection device (9)...Ultraviolet blocking filter 00)...Power supply C1J...Amplifier (1
2)...Display device agent Patent attorney Inoue - Male Figure 1 Figure 2 Dose (X-ray 2)

Claims (2)

【特許請求の範囲】[Claims] (1)  放射線で被曝したガラスに紫外線を照射して
螢光を発生させ、この螢光の発光強度を検知して被曝線
量を測だする線量計において、相対評価用照合ガラスを
複数個用いて測定レンジを区分担当させるよう(ニした
ことを特f改とするガラス線量計。
(1) In a dosimeter that measures the exposure dose by irradiating ultraviolet rays onto glass exposed to radiation to generate fluorescence and detecting the emission intensity of this fluorescence, multiple reference glasses for relative evaluation are used. A glass dosimeter with a special feature of having separate measurement ranges.
(2)放射線で被曝したガラスイー紫外線を照射して螢
光を発生させ、この螢光の発光強度を検知して被曝線量
を測定する線量計C二おいて、高線量試料の測定に際し
螢光検知装置への入力を減少きせる手段を付設したこと
を特徴とするガラス線量計。
(2) Dosimeter C2, which measures the exposure dose by irradiating glass-e exposed to radiation with ultraviolet rays to generate fluorescence and measuring the exposure dose by detecting the emission intensity of this fluorescence, is used when measuring high-dose samples. A glass dosimeter characterized by being equipped with a means for reducing input to a detection device.
JP22599382A 1982-12-24 1982-12-24 Glass dosimeter Pending JPS59116567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22599382A JPS59116567A (en) 1982-12-24 1982-12-24 Glass dosimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22599382A JPS59116567A (en) 1982-12-24 1982-12-24 Glass dosimeter

Publications (1)

Publication Number Publication Date
JPS59116567A true JPS59116567A (en) 1984-07-05

Family

ID=16838106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22599382A Pending JPS59116567A (en) 1982-12-24 1982-12-24 Glass dosimeter

Country Status (1)

Country Link
JP (1) JPS59116567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018077A (en) * 2010-07-08 2012-01-26 Asahi Glass Co Ltd Glass dosimeter reading device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126086A (en) * 1974-08-28 1976-03-03 Tokyo Shibaura Electric Co KEIKOGARASUSENRYOKEI
JPS5229030U (en) * 1975-08-22 1977-03-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126086A (en) * 1974-08-28 1976-03-03 Tokyo Shibaura Electric Co KEIKOGARASUSENRYOKEI
JPS5229030U (en) * 1975-08-22 1977-03-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018077A (en) * 2010-07-08 2012-01-26 Asahi Glass Co Ltd Glass dosimeter reading device

Similar Documents

Publication Publication Date Title
Butson et al. Radiochromic film for medical radiation dosimetry
Moses et al. Cerium fluoride, a new fast, heavy scintillator
Sommer et al. New aspects of a BeO-based optically stimulated luminescence dosimeter
JP6258916B2 (en) A method for measuring the two-dimensional distribution of ionizing radiation dose with high spatial resolution.
Nascimento et al. Medical dosimetry using a RL/OSL prototype
Akselrod et al. FNTD radiation dosimetry system enhanced with dual-color wide-field imaging
US7361908B2 (en) Radiation dose estimation for radiochromic films based on measurements at multiple absorption peaks
Groppo et al. Luminescent response from BeO exposed to alpha, beta and X radiations
JPH03102284A (en) Method and apparatus for measuring glass dosage
JPS59116567A (en) Glass dosimeter
JPH01134291A (en) Scintillation type dose rate meter
Quimby A method for the study of scattered and secondary radiation in X-ray and radium laboratories
US9081101B2 (en) Sensitive charge for passive dosimetry, dosimeter comprising such a sensitive charge and system for reading by illumination for such a sensitive charge
RU2093859C1 (en) Method measuring absorbed dose of ionizing radiation and device for its implementation
US20240053499A1 (en) Radiation dosimetry method
JP2636099B2 (en) Infrared amount measuring method and infrared amount meter
JPH02112786A (en) Method and instrument for measuring thermal fluorescent dose
Jordan Review of recent advances in non gel dosimeters
JPS5831522B2 (en) Himakunoatsumisokuteisouchi
Rosen Advanced radiochromic film methodologies for quantitative dosimetry of small and nonstandard fields
Spiegler Photographic Methods Applied to Dosimetric Problems
Fedorov et al. Photographic dosimetry of ionization radiation on the basis of DFK kits
CA1249076A (en) Method and apparatus for indicating quench of a liquid scintillation solution
Omar et al. Light induced fading in optically stimulated luminescence dots for medical dosimetry measurement
Katoh et al. A method for evaluating the entrance surface dose from the measurement of exposure and half value layer in intraoral radiography using a radiophotoluminescent dosemeter