JPS59116555A - Optical type dc electric field measuring apparatus - Google Patents

Optical type dc electric field measuring apparatus

Info

Publication number
JPS59116555A
JPS59116555A JP57226268A JP22626882A JPS59116555A JP S59116555 A JPS59116555 A JP S59116555A JP 57226268 A JP57226268 A JP 57226268A JP 22626882 A JP22626882 A JP 22626882A JP S59116555 A JPS59116555 A JP S59116555A
Authority
JP
Japan
Prior art keywords
electric field
rotary switch
light
electro
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57226268A
Other languages
Japanese (ja)
Other versions
JPH0515988B2 (en
Inventor
Kazuyuki Nagatsuma
一之 長妻
Hiroyoshi Matsumura
宏善 松村
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP57226268A priority Critical patent/JPS59116555A/en
Publication of JPS59116555A publication Critical patent/JPS59116555A/en
Publication of JPH0515988B2 publication Critical patent/JPH0515988B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To enable measurement of the intensity of DC electric field by employing a method of applying an electric field to an electrooptical crystal and inserting a rotary switch opened or closed by a gas flow or the like in parallel between two vertical surfaces in an electric field detecting section. CONSTITUTION:Electrodes 7-1 and 7-2 are mounted on two surfaces vertical to an electric field E of an electrooptical crystal 7 by vacuum evaporation. The electrooptical crystal 7 and a rotary switch 8 are connected with conductors 9-1 and 9-2 and the rotary switch 8 held with a rotation holding device 12. The potential difference between the conductors 9-1 and 9-2 ranges intermittently from zero to a finite value corresponding to a measuring electric field with the rotation of a rotary switch 8 with a short-circuiting electrode 13 provided on a rotary switch 8. The gas flow for rotation employs N2 gas flow controlled in the temperature.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気光学効果を利用した電界測定装置に係弘特
に直流電界を測定する光方式電界i11定装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electric field measuring device using electro-optic effect, and more particularly to an optical electric field determining device for measuring a direct current electric field.

〔従来技術〕[Prior art]

従来の、電気光学効果を有する媒質(以下、電気光学結
晶と記す)を利用した電圧測定装置、電界測定装置の測
定対象は、はとんどの場合交流電圧、交流電界に限られ
ている。その理由は、直流電界中に電気光学結晶を静置
すると、一般的に、その静電容量、直流抵抗が太きいた
め時間とともに測定値が変化し、さらに結晶表面に電荷
集中75二起り、いわゆる表面層が形成されて、測定不
肖ヒとなるからである。
Conventional voltage measuring devices and electric field measuring devices that utilize a medium having an electro-optic effect (hereinafter referred to as an electro-optic crystal) are generally limited to alternating current voltages and alternating electric fields. The reason for this is that when an electro-optic crystal is placed in a DC electric field, its capacitance and DC resistance are generally large, so the measured value changes over time, and charge concentration752 occurs on the crystal surface, so-called This is because a surface layer is formed, resulting in poor measurement results.

上記従来の、電気光学結晶を利用した電界演1]定装置
(以下、光方式電界強度測定器と記す)では、交流電界
中に電気光学結晶を静置し、電界の変イヒに従ってその
結晶中に誘起される複屈折変化を、偏光子、検光子等を
用いて光強度信号(但し交流信号である)として検出し
電界の変化を測定している。その詳細は、例えば、「公
開特許公報特開昭56−100364号、「電子通信学
会技術研究報告、V” 、80.A、6 (1980)
、第19頁〜第24頁、C)QE80−4、光応用電界
センサ」等に記載されている。
In the above-mentioned conventional electric field measurement device using an electro-optic crystal (hereinafter referred to as an optical field strength measuring device), an electro-optic crystal is placed in an alternating current electric field, and the crystal changes as the electric field changes. The change in birefringence induced by this is detected as a light intensity signal (alternating current signal) using a polarizer, analyzer, etc., and the change in the electric field is measured. For details, see, for example, "Japanese Patent Publication No. 56-100364, IEICE Technical Research Report, V", 80. A, 6 (1980)
, pages 19 to 24, C) QE80-4, Optical Applied Electric Field Sensor, etc.

本発明者らは、先に、電気光学効果を利用した電界測定
装置の測定対象を直流電界へも拡張する方法として、1
.電気光学結晶自体を回転する方法、2、光導電効果を
利用して充電電荷を断続的に中和する方法を考案し、そ
れぞれ出願した。しかしながら、上記2方法においても
、それぞれ、1.電気光学結晶が回転しても光透過量が
変化しないように、結晶加工および回転機構を精賓化す
る、2.光導電体の有効的な抵抗値が、光の非照射時に
、十分太きいよう高品質化するなどの実用上の問題点が
存在し、改善策が望1れている。
The present inventors previously proposed 1 as a method for extending the measurement target of an electric field measuring device using the electro-optic effect to include DC electric fields.
.. They devised a method of rotating the electro-optic crystal itself, and a method of intermittently neutralizing charging charges using the photoconductive effect, and filed applications for each method. However, in the above two methods, 1. 2. Optimize the crystal processing and rotation mechanism so that the amount of light transmitted does not change even when the electro-optic crystal rotates; 2. There are practical problems such as improving the quality so that the effective resistance value of the photoconductor is sufficiently large when not irradiated with light, and improvement measures are desired.

〔発明の目的〕 本発明は、従来の光方式電界強度測定器における上記難
点を解消し、直流電界の強さの測定を可能ならしめる新
らたな光方式直流電界測定装置の〔発明の概要〕 上記目的を達成するため、本発明の光方式直流電界測定
装置は、光源部、該光源部からの光の強度を電界強度の
対応して変化せしめる電界検出部、該検出部からの光の
強度を計測する計測部、ならびに該光源部と該検出部お
よび該計測部を光学的に結合する伝送路を有し、該検出
部が、電気光学結晶と回転スイッチの両者を具備してい
る。
[Object of the Invention] The present invention provides a new optical DC electric field measuring device that solves the above-mentioned difficulties in conventional optical electric field strength measuring devices and makes it possible to measure the strength of a DC electric field. ] In order to achieve the above object, the optical direct current electric field measurement device of the present invention comprises a light source section, an electric field detection section that changes the intensity of light from the light source section in accordance with the electric field intensity, and an electric field detection section that changes the intensity of light from the light source section in accordance with the electric field intensity. It has a measurement section that measures intensity, and a transmission line that optically couples the light source section, the detection section, and the measurement section, and the detection section includes both an electro-optic crystal and a rotary switch.

回転スイッチは、前記電気光学結晶の表面における前記
電荷集中による充電電荷を断続的に中和するだめのもの
である。この回転スイッチとしては、電動モータなどの
外部電源を要する電気的スイッチよシも、電気をみださ
ない気流体を利用した回転スイッチが望ましい。また、
この気流体として温度制御された気流体を使用すると、
電気光学結晶を温度制御することができ有用である。
The rotary switch is used to intermittently neutralize the charge caused by the charge concentration on the surface of the electro-optic crystal. As for this rotary switch, it is preferable to use a rotary switch that uses gas and fluid that does not emit electricity, rather than an electric switch that requires an external power source such as an electric motor. Also,
When using a temperature-controlled gas fluid as this gas fluid,
It is useful to be able to control the temperature of electro-optic crystals.

本光方式直流電界測定装置の電界検出部において、電気
光学結晶の2表面は電極対されておシ、測定時、印加直
流電界に対し垂直に配置される。
In the electric field detection section of this optical DC electric field measuring device, the two surfaces of the electro-optic crystal are paired with electrodes and are arranged perpendicular to the applied DC electric field during measurement.

回転体スイッチは電気光学結晶の近傍に設置され、両者
は、導電体によシ接続される。回転体スイッチが投入時
、電界に対し垂直な2表面間は短路され、2表面の電荷
は中和される。一方、開放時は、電気光学結晶に電界が
印加され、電気光学効果が誘起されて、測定状態となる
The rotary switch is installed near the electro-optic crystal, and both are connected by a conductor. When the rotary body switch is turned on, a short circuit is created between the two surfaces perpendicular to the electric field, and the charges on the two surfaces are neutralized. On the other hand, when it is open, an electric field is applied to the electro-optic crystal, an electro-optic effect is induced, and a measurement state is established.

この投入状態と開放状態の時間(開放時間、投入時間)
は、回転体スイッチの形状および回転速度により制御さ
れる。
The time of this closed state and open state (open time, closed time)
is controlled by the shape and rotation speed of the rotating body switch.

投入状態の上限は特に限定されないが、投入時は電気光
学効果による出力は消失するので、測定の便宜を考えて
定めることになる。また投入時間をあまシ短かくすると
充電電荷を十分に放電できなくなシ支障を生じるので、
その下限が存在することになるが、これは簡単な実験に
よシ支障のない投入時間を確認すればよい。また開放時
間の上限は、前記充電電荷によシミ界強度の測定が不可
能になる時間であわ、必要に応じて簡単な実験によシ定
めることができる。開放時間の下限は特に存在しないが
、あまシ短かくすると電界強度の測定に支障を来すこと
になるので、支障を生じない範囲の開放時間とする。
The upper limit of the closed state is not particularly limited, but since the output due to the electro-optic effect disappears when the capacitor is closed, it is determined in consideration of the convenience of measurement. Also, if the charging time is too short, the charged charge will not be able to be discharged sufficiently, causing problems.
There is a lower limit, but this can be determined by a simple experiment to confirm the input time without causing any problems. Further, the upper limit of the open time is the time during which it becomes impossible to measure the stain field intensity due to the charged charge, and can be determined by a simple experiment if necessary. There is no particular lower limit for the open time, but if it is made too short, it will interfere with the measurement of the electric field strength, so the open time is set within a range that does not cause any trouble.

前記光伝送路には、周知のように光ファイバを用いるの
が好都合である。
As is well known, it is convenient to use an optical fiber as the optical transmission line.

前記光源部は、通常、発光ダイオードおよびその励起電
源などよシ成る。
The light source section usually consists of a light emitting diode and its excitation power source.

前記電界検出部は、通常、光源部側の光ファイバと計測
部側の光ファイバの間に、レンズ、偏光子、電気光学結
晶、検光子、レンズの順に、および前述のごとく、電気
光学結晶と並列に回転スイッチが、配置されている。ま
た、上記電気光学結晶と検光子の間には、必要に応じて
λ/4板を入れる。検光子には、通常の検光子の他に、
タリえはウォラストンプリズムのような偏光プリズムを
用いてもよい。出射光側のレンズは、通常の検光子の場
合は1個、偏光プリズムの場合は2つの直線偏光に分離
するので2個とする。前記検出部から出射された光は光
ファイバで計測部の受光器に導かれ、出力電気信号とな
る。この出方電気信号をそのまま測定してもよいし、ま
た光源部と電気光学結晶との間で分岐された光(電気光
学結晶を通らない光)と検出部からの光とをそれぞれ受
光器で電気信号に変換し、両電気信号を演算装置に入れ
、電界強度を算出してもよい。また、偏光プリズムを検
光子として用いた場合には、出射光が2偏光光線に分離
するので、双方をそれぞれ受光器で電気信号に変換し、
両成気信号を演算装置に入れて電界強度を算出する。な
お、上記入射光側と出射光側のレンズは省略することも
可能である。
The electric field detection unit usually includes a lens, a polarizer, an electro-optic crystal, an analyzer, and a lens in this order between the optical fiber on the light source side and the optical fiber on the measurement unit side, and as described above, the electro-optic crystal and the optical fiber. Rotary switches are arranged in parallel. Further, a λ/4 plate is inserted between the electro-optic crystal and the analyzer, if necessary. In addition to regular analyzers, there are
A polarizing prism such as a Wollaston prism may be used as the polarizer. The number of lenses on the output light side is one in the case of a normal analyzer, and two in the case of a polarizing prism because the light is separated into two linearly polarized lights. The light emitted from the detection section is guided to the light receiver of the measurement section through an optical fiber, and becomes an output electrical signal. This output electric signal may be measured as is, or the light branched between the light source section and the electro-optic crystal (light that does not pass through the electro-optic crystal) and the light from the detection section may be measured using a receiver. The electric field strength may be calculated by converting it into an electric signal and inputting both electric signals to a calculation device. In addition, when a polarizing prism is used as an analyzer, the emitted light is separated into two polarized beams, so both are converted into electrical signals by a photoreceiver.
The electric field strength is calculated by inputting both air pressure signals into a calculation device. Note that the lenses on the incident light side and the exit light side may be omitted.

いずれにしても、本発明の光方式直流成界測定装置は、
電界改出部において、眠気光学結晶の電界印加方法と垂
直な2面間に、気体流などによって開閉(開放、投入)
される回転スイッチが並列に挿入されることが重要な点
であシ、他の構成については従来技術を踏襲して差支え
ない。
In any case, the optical DC field measurement device of the present invention is
In the electric field modifying section, the drowsy optical crystal is opened and closed (opened and closed) by gas flow, etc. between two planes perpendicular to the electric field application method.
It is important that the rotary switches are inserted in parallel, and other configurations may follow the conventional technology.

〔発明の実施例〕[Embodiments of the invention]

以下、冥施例によシ本発明をさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail by way of examples.

第1図は、本実施例における光方式電界強度測定器の構
成図である。光源部1、電界検出部2、計測部3、およ
びそれらを結合する光伝送路4−1.4−2.4−3よ
多構成されている。光源部1は、0.83μmの波長の
光を出射する発光ダイオード1−1、およびその励起電
源1−2、を界検出部2は、ロッドレンズ2−1.2−
2.2−3、偏光子5、ウォラストンプリズム6、電気
光学結晶7、回転スイッチ8、導体9−1.9−2、気
体流導入パイプ10、気体流流出口11などよシ成シ立
っている。測定部3はPINフォトダイオード3−1.
3−2および電気的な演算表示回路30よりなシ、光伝
送路471.4−2.4−3には、コア径500μmの
、石英コア、プラスチッククラッドの光ファイバを夏用
している。
FIG. 1 is a configuration diagram of an optical field strength measuring device in this embodiment. It is composed of a light source section 1, an electric field detection section 2, a measurement section 3, and an optical transmission line 4-1.4-2.4-3 that connects them. The light source section 1 includes a light emitting diode 1-1 that emits light with a wavelength of 0.83 μm and its excitation power source 1-2.The field detection section 2 includes a rod lens 2-1.2-
2.2-3, polarizer 5, Wollaston prism 6, electro-optic crystal 7, rotary switch 8, conductor 9-1, 9-2, gas flow introduction pipe 10, gas flow outlet 11, etc. ing. The measuring section 3 includes a PIN photodiode 3-1.
3-2 and the electrical arithmetic and display circuit 30, and the optical transmission line 471.4-2.4-3 is a quartz core, plastic clad optical fiber with a core diameter of 500 μm.

第2図は、第1図の電界検出部における回転スイッチ8
、電気光学結晶7の構成関係、および回転スイッチ8と
導体9−1.9−2の構成関係を示す説明図である。
FIG. 2 shows the rotary switch 8 in the electric field detection section of FIG.
, is an explanatory diagram showing the structural relationship of the electro-optic crystal 7 and the structural relationship of the rotary switch 8 and the conductor 9-1, 9-2.

電源部1において、励起電源1−2によシ励起された発
光ダイオード1−1の光は光ファイバ4−1によシ、電
界検出部2に導びかれる。電界検出部2において、偏光
子5の光の振動方向(直線面光の向き)とウォラストン
プリズム6つ主軸のなす角度は45度に設定されている
。元ファイバケーブル4−1よシ導びかれた光線はロッ
ドレンズ2−1、偏光子5で直線偏光の平行光線となり
、電気光学結晶7に入射する。眠気光学結晶7では電界
Eの強反に応じて、その複屈折楕円体の楕円率が変化す
るため、電気光学結晶7からは楕円偏光の平行光線とし
て出射される。その出射光はウォラストンプリズム6に
導ひかれ、2つの直角成分の直線偏光とナシ、ロッドレ
ンズ2−2.2−3、光フアイバケーブル4−2.4−
3を経て、PINフォトダイオード3−1.3−2に導
びか、  れ、眠気信号Ps 、Pzに変換される。電
気的な演算表示回路30では、 なる演算を行い、外部電界強度に応じた、電圧値を表示
する。
In the power supply section 1, the light from the light emitting diode 1-1 excited by the excitation power supply 1-2 is guided to the electric field detection section 2 through the optical fiber 4-1. In the electric field detection unit 2, the angle between the vibration direction of the light of the polarizer 5 (direction of linear surface light) and the six main axes of the Wollaston prisms is set to 45 degrees. The light beam guided through the original fiber cable 4-1 becomes a linearly polarized parallel light beam by the rod lens 2-1 and the polarizer 5, and enters the electro-optic crystal 7. In the drowsy optical crystal 7, the ellipticity of its birefringent ellipsoid changes in response to the strong repulsion of the electric field E, so that light is emitted from the electro-optic crystal 7 as parallel elliptically polarized light. The emitted light is guided to the Wollaston prism 6, which produces two orthogonal components of linearly polarized light, a rod lens 2-2.2-3, and an optical fiber cable 4-2.4-.
3, the signals are led to PIN photodiodes 3-1 and 3-2, and are converted into drowsiness signals Ps and Pz. The electrical calculation/display circuit 30 performs the following calculation and displays a voltage value according to the external electric field strength.

電界検出部において、電気光学結晶7の電界Eに垂直な
2面上には電極7−1.7−2が、真空蒸着によシ付け
られている。電気光学結晶7と、回転スイッチ8とは導
体9−1.9−2で接続されておシ、回転スイッチ8は
回転保持具12によシ保持されている。導体9−1.9
−2の間の電位差は、回転スイッチ8に設けられた短絡
電極13によシ、回転スイッチ8の回転に伴って測定電
界に応じた有限値と零との間を断続する。
In the electric field detection section, electrodes 7-1 and 7-2 are attached on two surfaces of the electro-optic crystal 7 perpendicular to the electric field E by vacuum deposition. The electro-optic crystal 7 and the rotary switch 8 are connected by conductors 9-1, 9-2, and the rotary switch 8 is held by a rotary holder 12. Conductor 9-1.9
The potential difference between -2 and 2 is intermittently changed between a finite value and zero according to the measured electric field as the rotary switch 8 rotates due to the short-circuiting electrode 13 provided in the rotary switch 8.

回転用気体流としては温度1間1卸したN2ガス流を用
いた。
As the rotating gas flow, a N2 gas flow at a temperature of 1 hour was used.

闇 本実施例では、回転スイッチの開閉同期は、スイッチ投
入時(閉);約100m8%開放時(開);約200m
5とした。
In this example, the opening/closing synchronization of the rotary switch is approximately 100 m when the switch is turned on (closed); approximately 200 m when 8% is opened (open);
I gave it a 5.

回転スイッチが開放時のみ、電界強度測定が可能で、投
入時には、電界強度測定は休止状態となる。なお第2図
(a)のIは光の進行方向を、(b)のVは回転スイッ
チの回転方向を示す。
Electric field strength measurement is possible only when the rotary switch is open, and when the rotary switch is closed, field strength measurement is in a dormant state. Note that I in FIG. 2(a) indicates the traveling direction of light, and V in FIG. 2(b) indicates the rotation direction of the rotary switch.

電気光学結晶7としては、BjuSi02o単結晶を使
用した。結晶は(110)、(1〒0)、 (001)
面を有しておシ、外形は5X5X5mである。電界は(
110)方向に印加し、光は(110)方向に伝搬させ
た。
As the electro-optic crystal 7, a BjuSi02o single crystal was used. The crystals are (110), (1〒0), (001)
It has a surface and an external size of 5 x 5 x 5 m. The electric field is (
The light was applied in the (110) direction, and the light was propagated in the (110) direction.

第3図に、実際の電界強度測定結果を示す。第3図は、
直流電界強度と演算表示回路眠気出力が良好な直線関係
を有することを示しており、本発明により、直流電界の
測定が可能であることが明らかである。
FIG. 3 shows actual electric field strength measurement results. Figure 3 shows
This shows that there is a good linear relationship between the DC electric field strength and the drowsiness output of the arithmetic display circuit, and it is clear that the present invention allows measurement of DC electric fields.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来不可能であった直流電界の測定が
可能となる効果がある。
According to the present invention, there is an effect that it becomes possible to measure a DC electric field, which was previously impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における元方式直流電界測定
装置の構成全体を示す説明図、第2図(a)は回転スイ
ッチと電気光学結晶の構成関係を示す説明図、第2図(
b)は回転スイッチと導体の構成関係を示す説明図、第
3図は本発明の一実施例における元方式直流電界測定装
置による直流電界強度の測定結果を示すグラフである。 1・・・光源部、1−1・・・発光ダイオード、1−2
・・・電源、2・・・電界検出部、2−1.2−2.2
−3゜・・・ロッドレンズ、3・・・計測部、3−1.
3−2・・・PINフォトダイオード、4−1. 4−
2.4−3・・・光フアイバ伝送路、5・・・偏光子、
6・・・ウォラストンプリズム、7・・・電気光学結晶
、8・・・回転スイッチ、9−1.9−2・・・導体、
10・・・気体流導入パイプ、11・・・気体流流出口
、12・・・回転スイッチ保持具、13・・・短絡電極
、3o・・・演算表示口%  1  図 厨 見 2  図 (^う (b)
FIG. 1 is an explanatory diagram showing the entire configuration of an original type DC electric field measuring device according to an embodiment of the present invention, FIG.
b) is an explanatory diagram showing the structural relationship between the rotary switch and the conductor, and FIG. 3 is a graph showing the measurement results of the DC electric field strength by the original type DC electric field measuring device in one embodiment of the present invention. 1... Light source part, 1-1... Light emitting diode, 1-2
...Power source, 2...Electric field detection section, 2-1.2-2.2
-3°...rod lens, 3...measuring section, 3-1.
3-2...PIN photodiode, 4-1. 4-
2.4-3... Optical fiber transmission line, 5... Polarizer,
6... Wollaston prism, 7... Electro-optic crystal, 8... Rotary switch, 9-1.9-2... Conductor,
10...Gas flow introduction pipe, 11...Gas flow outlet, 12...Rotary switch holder, 13...Short circuit electrode, 3o...Calculation display port % 1 See Figure 2 Figure (^ (b)

Claims (1)

【特許請求の範囲】 1゜光源部、該光源部からの光の強度を電界強度に対応
して変化せしめる電界検出部、該検出部、からの光の強
度を計測する計測部、ならびに該光源部と該検出部およ
び該計測部を光学的に結合する光伝送路を有し、該検出
部が、′電気光学効果を有する媒質と回転スイッチの両
者を具備していることを特徴とする光方式直流電界測定
装置。 2、特許請求の範囲第1項記載の光方式直流電界測定器
において、回転スイッチとして、気体流によって回転す
る回転体を使用することを特徴とする光方式直流電界測
定装置。 3、特許請求の範囲第2項記載の光方式直流電界測定器
において、気体流として、温度制御された気体を使用す
ることる特徴とする光方式直流電界測定装置。
[Claims] 1. A light source section, an electric field detection section that changes the intensity of light from the light source section in accordance with the electric field intensity, a measurement section that measures the intensity of light from the detection section, and the light source. an optical transmission line that optically couples the part, the detection part, and the measurement part, and the detection part is equipped with both a medium having an electro-optic effect and a rotary switch. DC electric field measuring device. 2. An optical direct current electric field measuring device according to claim 1, characterized in that a rotating body rotated by a gas flow is used as the rotary switch. 3. An optical DC electric field measuring device according to claim 2, characterized in that a temperature-controlled gas is used as the gas flow.
JP57226268A 1982-12-24 1982-12-24 Optical type dc electric field measuring apparatus Granted JPS59116555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57226268A JPS59116555A (en) 1982-12-24 1982-12-24 Optical type dc electric field measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226268A JPS59116555A (en) 1982-12-24 1982-12-24 Optical type dc electric field measuring apparatus

Publications (2)

Publication Number Publication Date
JPS59116555A true JPS59116555A (en) 1984-07-05
JPH0515988B2 JPH0515988B2 (en) 1993-03-03

Family

ID=16842536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226268A Granted JPS59116555A (en) 1982-12-24 1982-12-24 Optical type dc electric field measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59116555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153427A (en) * 1990-03-09 1992-10-06 Hitachi, Ltd. Optical d.c. voltage transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174857A (en) * 1982-04-08 1983-10-13 Yokogawa Hokushin Electric Corp Dc photo/voltmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174857A (en) * 1982-04-08 1983-10-13 Yokogawa Hokushin Electric Corp Dc photo/voltmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153427A (en) * 1990-03-09 1992-10-06 Hitachi, Ltd. Optical d.c. voltage transformer

Also Published As

Publication number Publication date
JPH0515988B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
Kyuma et al. Fiber-optic current and voltage sensors using a Bi 12 GeO 20 single crystal
US4524322A (en) Fiber optic system for measuring electric fields
JPH04332878A (en) Electromagnetic field intensity measuring device
JP2619981B2 (en) Electromagnetic field strength measuring device
US6285182B1 (en) Electro-optic voltage sensor
CA2130825C (en) Method and sensor for measuring electric voltages and/or electric field intensities
JPS59116555A (en) Optical type dc electric field measuring apparatus
JPS5917170A (en) Optical system electric field intensity measuring instrument
WO1989009413A1 (en) Electro-optic probe
JPH0989961A (en) Electric field detecting device
Norimatsu et al. Bi12SiO20 crystal application for voltage sensor in optical fibers
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JP3260928B2 (en) Electric field sensor and voltage sensor
JPH0560818A (en) Optical electric field measuring instrument
JPH09292414A (en) Photoelectric field sensor
JPS63133068A (en) Apparatus for detecting voltage of circuit
SU1264084A1 (en) Current measuring method
JPH0352582B2 (en)
JP3435584B2 (en) Electric field sensor head and electric field sensor
JPS58196463A (en) Photoelectric field measuring apparatus
JPH02198365A (en) Optical voltage sensor
JPH09251036A (en) Optical electric-field sensor and transformer for optical instrument using sensor thereof
JPS5862571A (en) Photometric apparatus
JPH0277656A (en) Device for measuring voltage