JPS59116474A - Surface treatment of fiber or fabric - Google Patents

Surface treatment of fiber or fabric

Info

Publication number
JPS59116474A
JPS59116474A JP22422882A JP22422882A JPS59116474A JP S59116474 A JPS59116474 A JP S59116474A JP 22422882 A JP22422882 A JP 22422882A JP 22422882 A JP22422882 A JP 22422882A JP S59116474 A JPS59116474 A JP S59116474A
Authority
JP
Japan
Prior art keywords
fibers
groups
surface treatment
fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22422882A
Other languages
Japanese (ja)
Other versions
JPS6250597B2 (en
Inventor
憲一郎 末次
順治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22422882A priority Critical patent/JPS59116474A/en
Publication of JPS59116474A publication Critical patent/JPS59116474A/en
Publication of JPS6250597B2 publication Critical patent/JPS6250597B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、宇宙航空機、電気、自動車などの産業用複合
樹脂材料で用いられる充填剤用の繊維まだは織布の表面
処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for surface treatment of fibers or woven fabrics for fillers used in industrial composite resin materials for spacecraft, electrical equipment, automobiles, and the like.

従来例の構成とその問題点 従来、産業用の複合樹脂材料は、充填剤とじての繊維ま
たはその織布を樹脂材料とそのまi混合して用いるか、
まだは複合材料の引張り強+l 、曲げ強度2曲げ弾性
率などの各物性を向」ニさせるために、充填剤を表面処
理し、樹脂と充填剤との親和性を良くして用いられてい
た。この上うVこ、腹合材料の物性値を向上させるため
には、樹脂ど充填剤との親和性が良くなければならず各
種表面処理剤をかえたり、各種グラフト剤を投入したり
して、その親和性の向上を険討亡ねばならなか−)/ζ
Structures of conventional examples and their problems Traditionally, industrial composite resin materials have either used fibers as fillers or their woven fabrics mixed with resin materials as they are, or
In order to improve the physical properties of composite materials, such as tensile strength (+1) and bending strength (2) and flexural modulus (flexural modulus), the filler was surface-treated to improve the affinity between the resin and the filler. . Moreover, in order to improve the physical properties of the adhesive material, it must have good affinity with the resin and filler, so it is necessary to change various surface treatment agents and add various grafting agents. , we have to fight hard to improve that affinity.)/ζ
.

この際、充填剤や表面処理剤にもさまざ寸な種類があり
、その最適な組み合せについては、一部は知られており
ながらも系統づけられておらず、実際に成形してみるよ
り他に方法がなかった。そのため、これらの組み合せを
自分なりに系統づけて考え、さらにその組み合せにしだ
がい、1つ1つ混合し、成形し、各物性値を調べる必要
があり、多くの時間と労力を要しだ。また従来の表面処
理方法は、一般に、充填剤をそのまま液状の表面処理剤
に浸漬した後、それを乾燥しただけで用いられ、表面処
理剤と充填剤との化学反応が完全に行なわれておらず表
面処理剤充填剤と樹脂との結合が明らかに不完全であっ
た。
At this time, there are various types of fillers and surface treatment agents, and although some of them are known, the optimal combination has not been systematically established, and it is difficult to find the best combination by actually molding. There was no way. Therefore, it is necessary to systematize and think about these combinations in one's own way, then mix and mold each combination one by one, and examine each physical property value, which requires a lot of time and effort. In addition, conventional surface treatment methods generally involve simply immersing the filler in a liquid surface treatment agent and then drying it, meaning that the chemical reaction between the surface treatment agent and the filler does not occur completely. However, the bond between the surface treatment agent filler and the resin was clearly incomplete.

一方、これに対して、特公昭51−10265には、充
填剤であるガラス繊維と樹脂であるポリプロピレンにお
いて無水マレイン酸を投入する事により、充填剤と樹脂
との親和性が向上する製造方法が提案されている。
On the other hand, Japanese Patent Publication No. 51-10265 describes a manufacturing method in which maleic anhydride is added to glass fiber as a filler and polypropylene as a resin to improve the affinity between the filler and the resin. Proposed.

この方法1は、シラン処理されたガラス繊維に対し、投
入された無水マレイン酸がグラフト化する事により、ポ
リプロピレンとの親和性を向上させているものの、他の
樹脂の場合では無水マレイン酸によるグラフト化では親
和性を向上できない。
In this method 1, the compatibility with polypropylene is improved by grafting the introduced maleic anhydride onto the silane-treated glass fibers, but in the case of other resins, grafting with maleic anhydride compatibility cannot be improved by

このように親和性向上の表面処理技術の汎用性が乏しい
という問題があり、満足すべきものではなかった。
As described above, there is a problem in that the surface treatment technique for improving affinity is not very versatile, and it is not satisfactory.

発明の目的 本発明の目的は、上記問題点を解決し、複合樹脂材料の
緒特性向上のために充填剤として用いる繊維捷たは織布
を樹脂との親和性を向上させるのに有効で汎用的な表面
処理方法を提供するものである。
OBJECT OF THE INVENTION The purpose of the present invention is to solve the above-mentioned problems and to provide an effective and versatile method for improving the affinity of fibers or woven fabrics used as fillers with resins for improving the properties of composite resin materials. The present invention provides a method for surface treatment.

発明の構成 本発明者らは前記、従来の問題点に鑑み、鋭意研究を重
ねた結果、本発明に至ったものである。
Structure of the Invention The present inventors have conducted extensive research in view of the above-mentioned conventional problems, and as a result, have arrived at the present invention.

本発明は、繊維またはその織布を、フッ素化+ 1’、
71M素化などのハロゲン化する工程と、グリニヤール
試薬を用いたグリニヤール反応を実砲させる工程と、二
酸化炭素や塩酸を用いて繊維または織布V(カルボキシ
ル基を生じさせる工程又は酸化した後加水分解して水酸
基を生じさせた後カップリング剤を用いて各種官能基を
生じさせる工程とで構成されている。
The present invention provides fibers or woven fabrics thereof with fluorinated+1',
A process of halogenation such as 71M hydrogenation, a process of conducting a Grignard reaction using a Grignard reagent, and a process of generating carboxyl groups in fibers or woven fabrics using carbon dioxide or hydrochloric acid, or hydrolysis after oxidation. The process consists of the steps of generating hydroxyl groups and then generating various functional groups using a coupling agent.

まだ、この表面処理方法は、充填物の表面に!1.,7
にカルボキ/ル基、水酸基、ビニル基、アミノ基。
However, this surface treatment method can be applied to the surface of the filling! 1. ,7
carboxyl group, hydroxyl group, vinyl group, amino group.

エポキン基などの官能基を生じさせる事が容易であり、
かつ大量に効率よく形成する事が可能である。このよう
に、本発明者らは、充填物と樹脂との親和性が飛躍的に
向上するという、従来の製造方法にはみられない、全く
新規な優れた製造方法であることを発見し7た。
It is easy to generate functional groups such as epochine groups,
Moreover, it is possible to efficiently form large quantities. As described above, the present inventors have discovered that this is a completely new and excellent manufacturing method that has not been found in conventional manufacturing methods, in which the affinity between the filler and the resin is dramatically improved. Ta.

たとえば、繊維まだは織布上にカルホキノル基を生じさ
せるために、望ましくは繊維またはその織布をフッ素化
、塩素化したのち、グリニヤール反応を実施し、二酸化
炭素と塩酸を作用させればよい。′!t/こ、繊維まだ
は織布上に水酸基を生じさせるためには7)素化、塩素
化工程と、グリニヤール試薬でのグリニヤール反応工程
を経た後、酸化処理し、加水分解すればよい。さらに繊
維または織布上にビニル基、アミン基、エポキン基など
を生じさせるだめには、望ましくは前記の方法で水酸基
を生じさせた後、ビニルシラン、アミノシラン、エポギ
シシランなど、それぞれのシランカップリング剤を作用
させるとよい。
For example, in order to generate carfoquinol groups on fibers or woven fabrics, it is preferable to fluorinate or chlorinate the fibers or woven fabrics, then carry out the Grignard reaction and react with carbon dioxide and hydrochloric acid. ′! In order to generate hydroxyl groups on the fiber or woven fabric, the material may be subjected to 7) oxidation, chlorination and Grignard reaction steps using a Grignard reagent, followed by oxidation treatment and hydrolysis. Furthermore, in order to generate vinyl groups, amine groups, epoxy groups, etc. on fibers or woven fabrics, it is preferable to generate hydroxyl groups by the method described above, and then apply respective silane coupling agents such as vinyl silane, amino silane, and epoxy silane. It is good to let it work.

このように本発明は、実施例として模式的に第1図に示
すごとく、ノ・ロゲン化工程と、グリニヤール反応工程
と、カルボキンル基導入工程、水酸基導入工程、さらに
シランカノグリング処理工程を経た後、ビニル基導入工
程、アミノ基導入工程。
In this way, as shown schematically in FIG. 1 as an example, the present invention provides a method for carrying out the following steps: 1. , vinyl group introduction step, amino group introduction step.

エポキシ基導入工程から成っている。故に、繊維または
織布の表面処理方法として極めて広範囲な応用展開が可
能である。
It consists of an epoxy group introduction step. Therefore, it is possible to apply this method to a wide range of applications as a surface treatment method for fibers or woven fabrics.

実施例の説明 以下本発明の詳細を実施例において示す。Description of examples The details of the present invention will be shown below in Examples.

実施例(1)、アラミド繊維を600(0F)の反応容
器内でN2ガスで置換を施しだ酸F2ガスを2時間流入
して繊維を7ノ素化する。この織イIJと2−ブロムプ
ロパンに、金属マグネシラノ・全角用させて生じるグリ
ニヤール化合物に浸漬し、30℃で約5分間加熱する。
Example (1): Aramid fibers are substituted with N2 gas in a reaction vessel at 600°C (0F), and oxalic acid F2 gas is introduced for 2 hours to convert the fibers into 7 atoms. This woven IJ and 2-bromopropane are immersed in a Grignard compound produced by applying metal magnesilanol and heated at 30° C. for about 5 minutes.

この繊維を純水で洗浄した後、さらにこれを水中に浸漬
し二酸化炭素を常温で10分間吹き込む。これを、0.
5規定HC1中に浸漬した後、減圧乾燥した。この繊維
表面にカルボキシル基が生じたかどうかを確認するだめ
に試料の1部を水中に浸漬した後、チオニルクロリドを
2滴加えて蒸発乾固し、塩酸ヒドロギゾルアミン飽和溶
液2滴およびアルコール性水酸化ナトリウム数滴を加え
、反応物をアルカリ性にした後、再び加熱し、K後に0
.6N塩酸数滴を加えて酸性とし、1%塩化第2鉄を加
えた。その結果、ヒドロキサム酸鉄錯塩を形成して、は
とんど紫色またに1赤色を呈色し、確かにアラミド繊維
表面にカルボキ/ル基が形成されている事が確認された
After washing this fiber with pure water, it is further immersed in water and carbon dioxide is blown into it at room temperature for 10 minutes. This is 0.
After immersing in 5N HCl, it was dried under reduced pressure. In order to confirm whether carboxyl groups were formed on the fiber surface, a part of the sample was immersed in water, 2 drops of thionyl chloride was added, evaporated to dryness, 2 drops of a saturated solution of hydrogizolamine hydrochloride and alcoholic water were added. After adding a few drops of sodium oxide to make the reaction alkaline, it was heated again and after K
.. A few drops of 6N hydrochloric acid were added to make it acidic, and 1% ferric chloride was added. As a result, a hydroxamic acid iron complex was formed, and the color was mostly purple or red, and it was confirmed that carboxyl groups were certainly formed on the surface of the aramid fiber.

この処理された繊維と未処理の繊維とをそれぞれ3部体
積°Aとなるようにエポキシ樹脂(アラルダル)GY2
60;100q、ジェファーミンD−230;25q、
ジェファーミンAC−398;10q)とを混合してホ
ントブレスでプレートを成形した。
The treated fibers and untreated fibers were each mixed with epoxy resin (Araldal) GY2 so that the volume was 3 parts °A.
60; 100q, Jeffamine D-230; 25q,
Jeffamine AC-398; 10q) was mixed and a plate was formed using Honto Breath.

さらに、このプレートからASTM規格に準じた所定の
試験片を切り出し、インストロン試験機で曲げ強度、1
llI&ず弾性率を測定した。それを処理した繊維を充
填した発明品と未処理の繊維を充填し〆ζ従来品とを比
較して第1表に示している。発明品161〜6は従来品
A66〜10に比べ、曲げ強度で平均34.2%、曲げ
弾性率で平均2162%の物性値の向上がみられた。
Furthermore, a predetermined test piece according to ASTM standards was cut out from this plate, and the bending strength was measured using an Instron testing machine.
The llI & Z elastic modulus was measured. Table 1 shows a comparison between the invented product filled with treated fibers and the conventional product filled with untreated fibers. Compared to the conventional products A66-10, invented products 161-6 showed improvements in physical properties of 34.2% on average in bending strength and 2162% on average in flexural modulus.

さらにこのプレートの一部を切り出し、その破断面を走
査型電子顕微鏡で観察すると、処理した方が未処理の繊
維l(比べ、樹脂と良く相溶している小が確認された。
Furthermore, when a part of this plate was cut out and its fractured surface was observed with a scanning electron microscope, it was confirmed that the treated fibers were smaller than the untreated fibers (1), which were more compatible with the resin.

第   1   表 実施例 実施例1と同様にして、アラミド繊維をフと素化しノζ
後、グリニヤール反応を実施し、充分に洗浄(ッて、こ
の繊維を水中に浸漬し、酸素を常温で10分間吹き込ん
だ後、減圧乾燥した。この繊維表面に水酸基が生じたか
どうか確認するだめに、試料の一部を水1 mlに浸漬
し、硝酸セリウムアンモニウム(NH)Ce(NO3)
6 試薬を2滴加え  2 ると、配位化合物〔Ce(NO3)5(OR))   
をつくり、赤色を呈し、確かにアラミド繊維上に水酸基
が形成されている事が確認された。
Table 1 Examples In the same manner as in Example 1, aramid fibers were
After that, a Grignard reaction was carried out, the fibers were thoroughly washed, immersed in water, oxygen blown in for 10 minutes at room temperature, and dried under reduced pressure.To confirm whether hydroxyl groups were formed on the fiber surface, , a part of the sample was immersed in 1 ml of water and cerium ammonium nitrate (NH)Ce(NO3)
6 Add two drops of reagent 2 and the coordination compound [Ce(NO3)5(OR)]
was produced and exhibited a red color, confirming that hydroxyl groups were certainly formed on the aramid fiber.

次にμ施例1と同様な方法で所定の試験片を作成し、こ
れをASTM規格に準・して、曲げ強度と曲げ弾性率を
測定した。その試験片20本の平均値の結果を発明品と
従来品とを比較して第2表に示している。発明品は、従
来品に比べて曲げ強度で42.9%2曲げ弾性率で25
.2%の物性値の向上がみられた。
Next, a predetermined test piece was prepared in the same manner as in μ Example 1, and its bending strength and bending elastic modulus were measured in accordance with ASTM standards. The results of the average values of the 20 test pieces are shown in Table 2, comparing the invented product and the conventional product. The invented product has a bending strength of 42.9% compared to the conventional product, and a bending modulus of elasticity of 25.
.. An improvement of 2% in physical property values was observed.

また、実施例1と同様にして、エポキシ樹脂との相溶性
を走査型顕微鏡で観察すると、処理した方がしない方よ
りも、よく相溶している事がf!1 M2された。
Furthermore, when the compatibility with the epoxy resin was observed using a scanning microscope in the same manner as in Example 1, it was found that the treated one was more compatible with the epoxy resin than the untreated one. 1 M2 was done.

実施例(3)実施例2と同様な方法で、炭素繊維表面上
に水酸基を形成する。この繊維100qを、水100m
1に塩酸1滴と、ビニルシランカップリング剤ビニルト
リエトキシシラン(日本ユニカー。
Example (3) In the same manner as in Example 2, hydroxyl groups are formed on the surface of carbon fibers. 100q of this fiber, 100m of water
1, add 1 drop of hydrochloric acid and vinyl silane coupling agent vinyltriethoxysilane (Nippon Unicar).

NUCンランカノプIJ y f剤、A−161)1 
gWを添加した混合液の中に、常温で6分間i1r’J
し、これを減圧乾燥する。
NUC Nlankanop IJyf agent, A-161) 1
Add i1r'J to the mixture containing gW for 6 minutes at room temperature.
and dry it under reduced pressure.

この繊維の表面上に不飽和のエチレン性二重結合が生じ
たのかどうかを確認するために、試イ′」の1部を水中
に浸漬し、2規定Na2CO31滴と、0.5 %KM
no41滴を加えると、ただちに紫色が消失して、かっ
色を呈し、ビニル基を生じている事が確認できた。第3
表に示す、ビニルシランカップリング剤についても同様
に、不飽和のビニル基を、繊維表面」二に形成できた。
In order to confirm whether unsaturated ethylenic double bonds were formed on the surface of this fiber, a portion of the sample was immersed in water, and 1 drop of 2N Na2CO3 and 0.5% KM
When 1 drop of No. 4 was added, the purple color immediately disappeared and the mixture turned brown, confirming that vinyl groups were formed. Third
Similarly, unsaturated vinyl groups could be formed on the fiber surface using the vinyl silane coupling agent shown in the table.

次に実施例1と同様な方法で所定の試験片を作成し、こ
れをASTM規格に準じて、曲げ強度と曲げ弾性率を測
定した。その試験片2o本の平均値゛の結果を発明品と
従来品とを比較して第4表に示している。発明品は、従
来品に比べて曲げ強度で、47.2%2曲げ弾性率で2
8.7%の物性値の向上がみられた。まだ実施例1と同
様にして、エポキシ樹脂との相溶性を走査型顕微鏡で観
察すると。
Next, a predetermined test piece was prepared in the same manner as in Example 1, and its bending strength and bending elastic modulus were measured in accordance with ASTM standards. The results of the average value of 20 test pieces are shown in Table 4, comparing the invented product and the conventional product. The invented product has a bending strength of 47.2%2 and a bending modulus of elasticity of 2% compared to the conventional product.
An improvement in physical property values of 8.7% was observed. The compatibility with the epoxy resin was observed using a scanning microscope in the same manner as in Example 1.

処理した方が未処理の方より、よく相溶している事が確
認された。
It was confirmed that the treated materials were more compatible than the untreated materials.

以  下  余  白 第   3   表 第   4   表 □ 実施例(4)実施例2と同様な方法で炭素繊維表面上に
水酸基を形成する。これら100(iを水100m/’
に塩酸1滴とアミノシランカップリング剤γ−アミノプ
ロピルトリエトキシ7ラン(信越化学KBE903 )
 1gを混入したものの中に、常温で5分間浸漬し、こ
れを減圧乾燥する。
Table 3 Table 4 □ Example (4) Hydroxyl groups are formed on the carbon fiber surface in the same manner as in Example 2. These 100 (i = water 100 m/'
1 drop of hydrochloric acid and aminosilane coupling agent γ-aminopropyltriethoxy 7 run (Shin-Etsu Chemical KBE903)
The sample was immersed in a mixture containing 1 g of the sample at room temperature for 5 minutes, and then dried under reduced pressure.

この繊維上にアミン基が生じたのかどうか確認するだめ
に、試料の1部を水中に浸漬し、これに5’101,2
−ナフトキノン−4〜スルポン酸力リウム溶液2滴、2
N力セイソーダ1滴を加えると溶液は赤橙色を呈し、確
かにアミン基が形成できた事を確認できた。第5表に示
す、アミノシランカップリング剤についても同様に、ア
ミノ恭を繊唯上に形成できた。
In order to confirm whether amine groups were formed on this fiber, a portion of the sample was immersed in water and 5'101,2
-Naphthoquinone-4 ~ 2 drops of sulfonate solution, 2
When one drop of N-sodium was added, the solution turned reddish-orange, confirming that amine groups had indeed been formed. Similarly, with the aminosilane coupling agents shown in Table 5, amino-coating could be formed on the fibers.

次に実施例1と同様な方法で所定の試験片を作成し、こ
れをASTM規格に準じて、曲げ強度と曲げ弾性率を測
定した。その試験片20本の−V−均1直の結果を、従
来品と発明品と比較して第6kに示している。発明品は
従来品に比べて曲げ強度で35.0%2曲げ弾性率で3
7.4%の物性値の向上がみられた。まだ実施例1と同
様にして、エポキシ樹脂との相溶性を走査型電子顕微鏡
で観察すると、処理した方が未処理の方より、よく相溶
している事が確認された。
Next, a predetermined test piece was prepared in the same manner as in Example 1, and its bending strength and bending elastic modulus were measured in accordance with ASTM standards. The results of the -V-uniform one-shift test of 20 test pieces are shown in No. 6k, comparing the conventional product and the invention product. The invented product has a bending strength of 35.0% and a bending modulus of elasticity of 3 compared to the conventional product.
An improvement in physical property values of 7.4% was observed. When the compatibility with the epoxy resin was observed using a scanning electron microscope in the same manner as in Example 1, it was confirmed that the treated resin had better compatibility than the untreated resin.

以  下   余   白 第   6   表 第   6   表 実施例(6) 実施例2と同様な方法でアラミド繊維上に水酸基を形成
する。この繊維の100gを、水100m1に塩酸1滴
と、エポキシシランカノブリング剤γ−グリシドキノプ
ロビルトリメトキシシラン(信越化学K B M 40
3)1qを混合したものの中に、常温で6分間浸漬し、
これを減圧乾燥する。
Table 6 Table 6 Example (6) Hydroxyl groups are formed on aramid fibers in the same manner as in Example 2. 100 g of this fiber was mixed with 1 drop of hydrochloric acid in 100 ml of water and an epoxy silane canobling agent γ-glycidquinopropyltrimethoxysilane (Shin-Etsu Chemical K B M 40).
3) Immerse it in a mixture of 1q for 6 minutes at room temperature,
This is dried under reduced pressure.

この繊維の表面にエポキシ基が生じだのかどうかを確認
するためて、試料の1部を水中に浸漬し、これにメチル
アミン600mqを添加し、30℃10分間加熱する。
In order to confirm whether epoxy groups have formed on the surface of this fiber, a portion of the sample is immersed in water, 600 mq of methylamine is added thereto, and the sample is heated at 30° C. for 10 minutes.

放冷したのち、硝酸セリウムアンモニウム試薬を2滴加
えると、赤色を呈したので確認できた。第7表に示すエ
ポキシシランカノプリング剤についても、同様に、繊維
の表面にエポキシ基が形成できた。
After allowing it to cool, two drops of cerium ammonium nitrate reagent were added, and a red color was observed, which could be confirmed. Regarding the epoxy silane canopring agents shown in Table 7, epoxy groups were similarly formed on the surface of the fibers.

次に実施例1と同様な方法で所定の試験片を作成し、こ
れをASTM規格に準じて、曲げ強度と曲げ弾性率を測
定した。その試験片2o本の平均値の結果を、従来品と
発明品と比較して第8表に示している。発明品は従来品
に比べて、曲げ強度で24.4%2曲げ弾性率で61.
5%の物性値の向上がみられた。まだ実施例1と同様に
して、エポキ/樹脂との相溶性を走査型電子顕微鏡で観
察すると、処理した方が未処理よりも、よく相溶してい
る事が確認された。
Next, a predetermined test piece was prepared in the same manner as in Example 1, and its bending strength and bending elastic modulus were measured in accordance with ASTM standards. The results of the average value of 20 test pieces are shown in Table 8 in comparison with the conventional product and the invention product. Compared to the conventional product, the invented product has a bending strength of 24.4% and a bending modulus of elasticity of 61.
A 5% improvement in physical property values was observed. When the compatibility with epoxy/resin was observed using a scanning electron microscope in the same manner as in Example 1, it was confirmed that the treated resin had better compatibility than the untreated resin.

以   下   余   白 第    7    表 発明の効果 本発明は、炭素繊維、アラミド繊維、ガ?ス繊維廿だは
その織布の種類にかかわらず、ハロゲン化処理工程とグ
リニヤール反応工程を経て、多量にしかも効率よく繊維
の表面にカルボキシル基。
Table 7 Effects of the Invention The present invention can be applied to carbon fibers, aramid fibers, glass fibers, etc. Regardless of the type of woven fabric, fibers undergo a halogenation process and a Grignard reaction process to efficiently create carboxyl groups on the surface of the fibers in large quantities.

水酸基、エポキシ基、アミン基、ビニル基などの各神官
能基を任意に生じさせることかできる。これは従来のよ
うに繊維の種類に応じて個々の表面処理剤2表面処理技
術が固定化ものにくらべ、極めて効率よく、短い工程で
繊維に表面処理を施すことが可能である。寸だ、複合樹
脂材料のベースポリマーとの親和性が向上し、ひいては
複合樹脂材料の寸法安定性2機械的強度の改良、向」二
を生じさせる要因となる。特に、曲げ強度2曲げ弾性率
特性において、未処理繊維を用いた複合樹脂材料よりも
25〜60%性能向上を図ることができる0
Various functional groups such as a hydroxyl group, an epoxy group, an amine group, and a vinyl group can be formed as desired. This makes it possible to surface-treat fibers in a much more efficient and short process than the conventional technique in which two surface-treating agents are fixed individually depending on the type of fiber. This improves the compatibility of the composite resin material with the base polymer, which in turn becomes a factor that improves the dimensional stability and mechanical strength of the composite resin material. In particular, the performance can be improved by 25 to 60% compared to composite resin materials using untreated fibers in terms of flexural strength and flexural modulus.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例を示す模式図である。 The figure is a schematic diagram showing one embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)  ・・ロゲン化工程と、グリニヤール反応工程
を経て、各種官能基を生じさせる繊維または牛め織布の
表面処理方法。
(1) A method for surface treatment of fibers or cow woven fabric in which various functional groups are generated through a rogenization step and a Grignard reaction step.
(2)  繊維まだは織布は、炭素繊維、アラミド繊維
、゛ガラス繊維である特許請求の範囲第1項記載の繊維
または織布の表面処理方法。
(2) The method for surface treatment of fibers or woven fabrics according to claim 1, wherein the fibers or woven fabrics are carbon fibers, aramid fibers, or glass fibers.
(3)  各種官能基は、カルボキシル基、水配基、ビ
ニル基、アミン基、エポキシ基である特許請求の範囲第
1項記載の繊維捷たは織布の表面処理方法。
(3) The method for surface treatment of woven fibers or woven fabrics according to claim 1, wherein the various functional groups are carboxyl groups, water groups, vinyl groups, amine groups, and epoxy groups.
JP22422882A 1982-12-20 1982-12-20 Surface treatment of fiber or fabric Granted JPS59116474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22422882A JPS59116474A (en) 1982-12-20 1982-12-20 Surface treatment of fiber or fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22422882A JPS59116474A (en) 1982-12-20 1982-12-20 Surface treatment of fiber or fabric

Publications (2)

Publication Number Publication Date
JPS59116474A true JPS59116474A (en) 1984-07-05
JPS6250597B2 JPS6250597B2 (en) 1987-10-26

Family

ID=16810506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22422882A Granted JPS59116474A (en) 1982-12-20 1982-12-20 Surface treatment of fiber or fabric

Country Status (1)

Country Link
JP (1) JPS59116474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347540A2 (en) * 1988-06-22 1989-12-27 Degussa Aktiengesellschaft Epoxy resins reinforced with aramide fibres
JPH0623804U (en) * 1992-07-29 1994-03-29 小野谷機工株式会社 Tire attaching / detaching device
JP2015171990A (en) * 2014-02-19 2015-10-01 大阪ガスケミカル株式会社 Method for producing solubilizable carbon material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347540A2 (en) * 1988-06-22 1989-12-27 Degussa Aktiengesellschaft Epoxy resins reinforced with aramide fibres
JPH0623804U (en) * 1992-07-29 1994-03-29 小野谷機工株式会社 Tire attaching / detaching device
JP2015171990A (en) * 2014-02-19 2015-10-01 大阪ガスケミカル株式会社 Method for producing solubilizable carbon material

Also Published As

Publication number Publication date
JPS6250597B2 (en) 1987-10-26

Similar Documents

Publication Publication Date Title
JPS62501338A (en) metal coated hollow microspheres
CN102493184B (en) Interface-enhanced carbon fiber/polycaprolactam composite material and preparation method thereof
JPS59116474A (en) Surface treatment of fiber or fabric
US3774885A (en) Method for preparing liquid mixtures in manufacture of latex articles
JPS63242915A (en) 2-1 layered silicate aggregate and water-resistant product obtained therefrom
JPS5915104B2 (en) Alkali-resistant surface treatment method for glass fibers
Chun et al. Use of processing aids and coupling agents in mica‐reinforced polypropylene
JPH09503245A (en) Fiber glass sizing compositions, sized glass fibers and methods for their use
CN108975731A (en) A kind of preparation method of glass fiber infiltration agent
JPS6226671B2 (en)
EP0110322A1 (en) Improved filler-polymer composites
Papaspyrides et al. Epoxy‐pretreated asbestos composites: Solution based versus interfacial polymerization pretreatment process
JP2007126497A (en) Asbestos scattering-preventing agent
JPS621626B2 (en)
Papanicolaou et al. The influence of fibre pretreatmert on the mechanical properties of epoxy-asbestos composites
JPS6017176A (en) Adhesive treatment of polyester fiber material
KR102479378B1 (en) Epoxy-based composites with amino-functional nanodiamonds and manufacturing method thereof
JP2002145889A (en) Silane coupling agent, sizing agent comprising the same, glass fiber bundle coated with the same sizing agent and polyester resin comprising the same glass fiber bundle
JPS6335630A (en) Production of composite material base comprising aramid fiber
JPS62225539A (en) Production of modified aramid material
KR940004869B1 (en) Polyamide resin composition
JPS59152964A (en) Epoxy resin powder coating
JP3205876B2 (en) Composite and method for producing the same
JP2001329465A (en) Glass fiber for reinforcing phenol resin and phenol resin compound
JP3102103B2 (en) Method of treating aromatic polyamide fiber for rubber reinforcement