JPS59116442A - Nozzle for fluid processing of yarn - Google Patents

Nozzle for fluid processing of yarn

Info

Publication number
JPS59116442A
JPS59116442A JP22446682A JP22446682A JPS59116442A JP S59116442 A JPS59116442 A JP S59116442A JP 22446682 A JP22446682 A JP 22446682A JP 22446682 A JP22446682 A JP 22446682A JP S59116442 A JPS59116442 A JP S59116442A
Authority
JP
Japan
Prior art keywords
yarn
conical surface
nozzle
fluid
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22446682A
Other languages
Japanese (ja)
Inventor
森下 昭三
遠藤 哲彦
健三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22446682A priority Critical patent/JPS59116442A/en
Publication of JPS59116442A publication Critical patent/JPS59116442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は走行するマルチフィラメント糸条に。[Detailed description of the invention] The present invention relates to a running multifilament yarn.

圧縮空気、水蒸気等の高圧流体の噴流を作用させ。Apply a jet of high-pressure fluid such as compressed air or water vapor.

糸を構成する単繊維に絡み、ループ、たるみ等の形態的
な変形を与えてカサ高糸を製造するのに用いる糸条の流
体加工用ノズルに関する。
The present invention relates to a nozzle for fluid processing of yarn used to produce bulk yarn by entangling the single fibers constituting the yarn and imparting morphological deformations such as loops and slack.

更に詳しくは、糸入口部材(以下ニードルと呼ぶ)先端
外側に設けた凸状の円錐面と、糸出口部材(以下ベンチ
ュリーと呼ぶ)後端内側に設けた凹状の円錐面によって
環状空間を形成し、この環状空間の先端と糸出口との間
に形成された流体攪乱室を設け、上記した2つの円錐面
の軸線に沿って糸条を走行させ、一方、4正流体を上記
環状空間を介して流体攪乱室に噴流として導入し、走行
糸条をカザ高加工するのに用いる糸条の流体加工用ノズ
ルの改良に関する。
More specifically, an annular space is formed by a convex conical surface provided on the outside of the tip of the thread entrance member (hereinafter referred to as the needle) and a concave conical surface provided on the inside of the rear end of the thread exit member (hereinafter referred to as the venturi). A fluid disturbance chamber is formed between the tip of the annular space and the yarn outlet, and the yarn is run along the axes of the two conical surfaces, while the four positive fluids are passed through the annular space. The present invention relates to an improvement in a fluid processing nozzle for yarn, which is introduced as a jet into a fluid agitation chamber and is used to process a running yarn to form a high curl.

上記した如く高圧流体の噴流を走行糸条に作用させてカ
サ直系を製造するための流体加工用ノズルは特公昭38
−2828号公報、米国特許明細l第3545c157
号などによって知られている。しかしこれら糸条の流体
加工用ノズルはマルチフィラメントを形成する複数の単
繊維に形成される絡みやループたるみ等測々の単繊維の
変形された状態の固定が不充分で、処理された糸条を比
較的低□い張力で扱かつても、糸加工で作られた絡みゃ
ループ、たるみ等が消滅し、これらの糸条を用いた編織
物は予期されたカサ直性を発揮し得ないという欠点があ
った。
As mentioned above, a fluid processing nozzle for producing a direct umbrella by applying a jet of high-pressure fluid to a running yarn was developed in the Japanese Patent Publication No. 38.
-2828 Publication, U.S. Patent Specification No. 3545c157
It is known by its number etc. However, these nozzles for fluid processing of yarn are insufficient to fix the deformed states of the single fibers, such as entanglements and loop slacks formed in multiple single fibers forming a multifilament. Even when treated with relatively low tension, the tangles, loops, sag, etc. created by yarn processing disappear, and knitted fabrics using these yarns cannot exhibit the expected bulk straightness. There were drawbacks.

この欠点を改善するため、数多く装置が提案されている
。例えば、ニードルの先端に設けた円錐面部分とベンチ
ュリーの後端に形成した円錐面部分を偏心させて配置し
たものや、噴射孔の中心線の延長線をニードル外周部と
交わるように配列し一旦高速化された流体をニードル外
周部に衝突させたのち高速流体をベンチュリー円諮部へ
向がわせるもの(特開昭53−139854)等が提案
されている。しかしながら前者のニードルの先DjMに
設けた円錐面部分とベンチュリーに設けた円部。
Many devices have been proposed to improve this drawback. For example, the conical surface part provided at the tip of the needle and the conical surface part formed at the rear end of the venturi are arranged eccentrically, or the extension line of the center line of the injection hole is arranged so as to intersect with the outer circumference of the needle. A method has been proposed in which high-speed fluid collides with the outer circumferential portion of a needle and then is directed to a venturi circular sensor (Japanese Patent Laid-Open No. 139854/1983). However, in the former, the conical surface part provided at the tip DjM of the needle and the circular part provided on the venturi.

面部分とを偏心させる構造のノズルでは偏心程度の階か
な調節のズレ・が糸条の品質に大きく作用し。
With a nozzle that has a structure where the surface part is eccentric, a deviation in the level adjustment to the degree of eccentricity will have a large effect on the quality of the yarn.

ニードルとベンチュリーを最適位置に調整して組立てる
のが仲々困難であり、かつ調整に長時間を必要とする欠
点があった。また後者の噴射孔の中心線の延長線をニー
ドル外周部と交差させ、高速化された流体を一旦二−ド
ル外周部に衝突させたのちベンチュリーの円錐面部へ向
けるものは、ニードル先端に設けた円錐面部分とベンチ
ュリー後端の円錐面部分を最適な攪乱作用の起こる関係
位置に保つため噴射孔の中心線の延長線とニー1・′ル
の外周面との交点をニードルの軸線方向にわずかに前後
移動させただけで攪乱作用が微妙に変化して多数のノズ
ルから製造される糸条の品質を一定に調節する。ことが
困難であるという欠点があった。
It is difficult to adjust the needle and venturi to the optimum position and assemble them, and the adjustment requires a long time. In addition, the latter is provided at the tip of the needle so that the extension line of the center line of the injection hole intersects with the outer circumference of the needle so that the high-speed fluid collides with the outer circumference of the needle and then directs it to the conical surface of the venturi. In order to maintain the conical surface portion and the conical surface portion of the rear end of the Venturi in a position where optimal disturbance occurs, the intersection point between the extension of the center line of the injection hole and the outer circumferential surface of the needle should be moved slightly in the axial direction of the needle. By simply moving the nozzle back and forth, the disturbance effect changes slightly, and the quality of the yarn produced from multiple nozzles is adjusted to a constant level. The disadvantage was that it was difficult to

本発明の目的は、上記した従来技術の欠陥を改良し、特
に糸条に形成された絡み、ループ等の形態的な変形を強
固に保持することが可能な糸条の流体加工用ノズルを提
供せんとするものである。
An object of the present invention is to improve the above-mentioned deficiencies of the prior art, and to provide a nozzle for fluid processing of yarn, which is particularly capable of firmly holding morphological deformations such as entanglements and loops formed in the yarn. This is what I am trying to do.

本発明は上記の目的を達成するため次の構成からなるも
のである。
In order to achieve the above object, the present invention has the following configuration.

すなわち、糸入口部材の先端に設けた凸状の円錐面と、
糸出口部材の後端に設けた凹状の円錐面とを同志的に微
小間隙をもって対向′させ両回錐面の間に形成された環
状空間、該空間の底部に開口した少なくとも1個の高圧
流体導入孔、前記糸入口部材の先端に開口した糸入口、
前記糸出口部材の後端に開口した糸出口および前記糸入
口および糸出口の間に形成された流体攪乱室からなる糸
条の流体加工用ノズルにおいて、前記高圧流体導入孔は
その中心線の延長が前記環状空間を全長にわたって貫通
し、かつ前記円錐面の軸線と交わるように配置すると共
に、前記糸出口部拐の後端に設けた凹状の円錐面のなす
円錐角 θ1が、前記糸入口部材の先端に設けた凸状の
円錐面のなす口錐角θ、よりも犬としたことを特徴とす
る流体加工ノズルである。
That is, a convex conical surface provided at the tip of the thread entrance member,
a concave conical surface provided at the rear end of the yarn exit member and an annular space formed between both conical surfaces with a small gap therebetween; at least one high-pressure fluid opening at the bottom of the space; an introduction hole, a yarn entrance opened at the tip of the yarn entrance member;
In a fluid processing nozzle for yarn, which includes a yarn outlet opened at the rear end of the yarn outlet member and a fluid stirring chamber formed between the yarn inlet and the yarn outlet, the high-pressure fluid introduction hole is an extension of the center line of the nozzle. is arranged such that it penetrates the entire length of the annular space and intersects with the axis of the conical surface, and the conical angle θ1 formed by the concave conical surface provided at the rear end of the yarn exit section is This fluid processing nozzle is characterized by a cone angle θ formed by a convex conical surface provided at the tip of the nozzle.

更に本発明を図面により詳しく説明する。Further, the present invention will be explained in detail with reference to the drawings.

第1図は本発明に係る糸条の流体加工用ノズルの一例を
示す断面図である。
FIG. 1 is a sectional view showing an example of a nozzle for fluid processing of yarn according to the present invention.

第1図においてハウジング1に開口16を備えた糸導入
ガイド9と他端に糸入口をなすガイド12を挿着した細
長い孔11をもつニードル2はハウジング1のネジ18
と螺合して挿入されロックナツト10で最適な位置に固
定されている。ニードル2の先端外側に設けた凸状の円
錐面4は、ベンチュリー6の後端内側に設けた凹状の円
錐面5と同志して相対し、その中間に環状空間21を形
成している。ベンチュリーろは、ハウジング1に図示の
如くネジ16で固定されており、0リング19はハウジ
ングとベンチュリーの合せ面から高圧流体が洩れ出すの
を防止するために設けられている。
In FIG. 1, the needle 2 has a thread introduction guide 9 with an opening 16 in the housing 1 and a long slender hole 11 into which a guide 12 forming a thread entrance is inserted at the other end.
It is inserted in a screwed manner and fixed in an optimal position with a lock nut 10. A convex conical surface 4 provided on the outside of the tip of the needle 2 faces a concave conical surface 5 provided on the inside of the rear end of the venturi 6, forming an annular space 21 therebetween. The venturi filter is fixed to the housing 1 with a screw 16 as shown, and an O-ring 19 is provided to prevent high pressure fluid from leaking from the mating surface of the housing and the venturi.

ニードル2の先端部とベンチュリー3の後端の凹状円錐
面の一部によって図示の如く流体攪乱室6が形成されて
いる。この流体攪乱室6はベンチュリーのど部17を介
して、ベンチュリーの糸出口8につながっており、ニー
ドル先端の糸入口12から出た糸は液体攪乱室6.ベン
チュリーのど部17およびベンチュリーの糸出口8を順
に通過し。
As shown in the figure, a fluid stirring chamber 6 is formed by the tip of the needle 2 and a part of the concave conical surface at the rear end of the venturi 3. This fluid stirring chamber 6 is connected to the yarn outlet 8 of the venturi via a venturi throat 17, and the yarn exiting from the yarn inlet 12 at the tip of the needle is connected to the liquid stirring chamber 6. It sequentially passes through the venturi throat 17 and the venturi yarn outlet 8.

上方に導かれる。一方、圧縮空気、水蒸気等の高圧流体
は別の供給源(図示せず)から流体導入口15に導かれ
る。流体導入口15は先端が絞られた噴射孔7を経て、
前記環状空間21の底部に開口している。
guided upwards. On the other hand, high-pressure fluid such as compressed air or water vapor is guided to the fluid inlet 15 from another supply source (not shown). The fluid introduction port 15 passes through the injection hole 7 whose tip is constricted,
It opens at the bottom of the annular space 21.

この流体導入口15の中心線20の延長線は前記環状空
間21のほぼ全長を貫通すする様に構成されている。即
ち中心線20の延長線が円錐面4又は5と環状空間21
内において過度に衝突する様な構成を避けるように配慮
するのがよい。上記構成とすることでニードル2の先端
糸入口をなすガイド12から流体攪乱室乙に入ったマル
チフィラメント糸は流体の撹乱作用によって個々の単繊
維に開繊され、かつ非常に短い周間の振動をしつつ流体
と共に糸出口8より噴出される。糸出口8の先端近傍に
は糸案内ガイド14がブラケット22で支持され取付け
られている。この糸案内ガイド14は糸出口8から高速
流体と共に噴出された糸条の個々の単繊維に形成された
ループ、たるみ等の形態的な変形の固定を促進させる作
用をもつも横断面図である。第2図に示すノズルが第1
図のそれと異なる点はニードル2′をハウジング1に子
ジ25で固定し、ベンチュリー6とニードル2′の最適
間隔はパツキン23.24で調整する様にした点および
噴射孔7の先端を座グリしてテーパ面とした点である。
An extension of the center line 20 of the fluid inlet 15 is configured to pass through almost the entire length of the annular space 21. That is, the extension line of the center line 20 is the conical surface 4 or 5 and the annular space 21.
Care should be taken to avoid configurations that would cause excessive collisions within the system. With the above configuration, the multifilament yarn entering the fluid agitation chamber B from the guide 12, which forms the tip yarn inlet of the needle 2, is opened into individual single fibers by the agitation action of the fluid, and is subjected to very short circumferential vibrations. It is ejected from the yarn outlet 8 along with the fluid. A yarn guide 14 is supported by a bracket 22 and attached near the tip of the yarn outlet 8. This yarn guide 14 has the function of promoting the fixation of morphological deformations such as loops and slack formed in individual single fibers of the yarn ejected from the yarn outlet 8 together with the high-speed fluid. . The nozzle shown in Figure 2 is the first
The difference from that shown in the figure is that the needle 2' is fixed to the housing 1 with a screw 25, the optimum distance between the venturi 6 and the needle 2' is adjusted with gaskets 23 and 24, and the tip of the injection hole 7 is set with a countersunk. This is the point where the surface is tapered.

第6図は第1図とは異なる態様のノズルの部分拡大図で
あり、ベンチュリー6の後端に設けた凹状の円錐面5の
円錐角 θ1をニードル2の先端に設けた凸状の円錐面
40円錐角 θ、より大とじた形状を示すと共に、流体
の噴射孔7を備えた噴射孔ピース26が挿入されている
。このようにすれば噴射孔径の変更が容易になる。
FIG. 6 is a partially enlarged view of the nozzle in a different form from that in FIG. 40 cone angle θ, showing a larger closed shape, and an injection hole piece 26 provided with a fluid injection hole 7 is inserted. This makes it easy to change the injection hole diameter.

第4図は本発明に用いるベンチュリーの後端内面に設け
た円錐面を2段階に変化させ、かつθ、1〉θ2.とし
た形状を示すものである。
FIG. 4 shows the conical surface provided on the inner surface of the rear end of the venturi used in the present invention, which is changed in two stages, and θ, 1>θ2. This shows the shape.

第5図はベンチュリーの内面の円錐面形状を変化させ曲
名゛[′−径R7’/もつトランペット形状としたもの
である。第4図および第5図かられかるように円錐面の
形状変化は2段でなく3段でもよいしこの様に連続的に
角度を変化させてもよい。
In FIG. 5, the conical surface shape of the inner surface of the venturi is changed to create a trumpet shape with the song title "['-diameter R7'/". As can be seen from FIGS. 4 and 5, the shape of the conical surface may be changed in three steps instead of two, or the angle may be changed continuously in this manner.

第6図は本発明に用いるニードルの先端に設けた円錐面
形状を2段階に変化させ、′かつθ、1〉θ、。
FIG. 6 shows the shape of the conical surface provided at the tip of the needle used in the present invention changed in two stages, ' and θ, 1>θ.

とした態様を示すものである。This shows the mode in which the

°第7図は本発明に係る糸条d流体加工用ノズルを用い
たカサ高加工装置の一例を示す概略図である。この装置
においてパッケージ27から解舒された糸条28はガイ
ド29を通り供給ロー260によって糸条の流体加工用
ノズル61へ供給される。ここで高圧流体の作用を受け
た糸条28を形成している個々の単繊維に絡み、ループ
等の形態的な変形が与えられ、引取ローラ32で引取ら
れ。
FIG. 7 is a schematic diagram showing an example of a bulk height processing apparatus using the yarn d-fluid processing nozzle according to the present invention. In this device, the yarn 28 unwound from the package 27 passes through a guide 29 and is supplied by a supply row 260 to a nozzle 61 for fluid processing of the yarn. Here, the individual single fibers forming the yarn 28 are entangled with the high-pressure fluid, are given a morphological deformation such as a loop, and are taken off by a take-off roller 32.

さらに巻取装置63で巻取られる。Further, it is wound up by a winding device 63.

第8図は実施例乙の実験に用いた糸条の流゛体加工用ノ
ズルの一部を拡大した断面図である。ここで噴射孔7の
中心軸20の延長線はニードル2の外周部に遮蔽された
位置でベンチュリー6の後端内面に設けた円錐部へ向け
られている。
FIG. 8 is an enlarged cross-sectional view of a part of the yarn fluid processing nozzle used in the experiment of Example B. Here, an extension of the central axis 20 of the injection hole 7 is directed toward a conical portion provided on the inner surface of the rear end of the venturi 6 at a position shielded by the outer circumference of the needle 2.

上記した構造の糸条の流体加工用ノズルにおいてはニー
ドル2の先端に設けた円錐面4の円錐角θ2ば90以下
、好ましくは60°とするのがよい。
In the nozzle for fluid processing of yarn having the above-described structure, the conical angle θ2 of the conical surface 4 provided at the tip of the needle 2 is preferably 90° or less, preferably 60°.

またニードル2の先端に設けた円錐面を2段階に変化さ
せた1段目の円錐角θ、Iは90度以下、好ましくは約
60度がよく、2段目の円錐角θ2.は45度以下、好
ましくは約30度とするのがよい。
In addition, the conical angle θ, I of the first stage in which the conical surface provided at the tip of the needle 2 is changed in two stages is preferably 90 degrees or less, preferably about 60 degrees, and the conical angle θ2 of the second stage is 90 degrees or less, preferably about 60 degrees. is preferably 45 degrees or less, preferably about 30 degrees.

ベンチュリー6後端の円錐面5の円錐角 θ、は90度
以下、好ましくは約70度とするのがよい。
The cone angle θ of the conical surface 5 at the rear end of the venturi 6 is preferably 90 degrees or less, preferably about 70 degrees.

またこの円錐角を2段階に変化させたとき、1段目の円
錐角θ1.は90度以下、好ましくは約Z。
Also, when this cone angle is changed in two stages, the first stage cone angle θ1. is less than 90 degrees, preferably about Z.

度とするのがよく、2段目の円錐角θ、は12[]度以
下、好筐しくに約90度とするのがよい。
The cone angle θ of the second stage is preferably 12 [] degrees or less, preferably about 90 degrees.

またベンチュリー6の先端に開口している糸出口8の先
開き角度は8°が好ましい。ニードル2の糸導入ガイド
9.糸入口をなすガイド12およびベンチュリー6の材
質は耐摩耗性の高いセラミックスや超硬合金とするのが
よい。
Further, the opening angle of the yarn outlet 8 opened at the tip of the venturi 6 is preferably 8°. Thread introduction guide for needle 29. The material of the guide 12 and the venturi 6, which form the thread entrance, is preferably ceramic or cemented carbide with high wear resistance.

本発明に係る糸条の流体加工用ノズルは上記した構成を
有するために次のような特長を有している。
Since the nozzle for fluid processing of yarn according to the present invention has the above-described configuration, it has the following features.

第1図に示されるように少なくとも1個の噴射孔7の中
心線20の延長線をニードル2の先端に設けた凸状の円
錐面4とベンチュリー60後端に設けた凹状の円錐面5
の間に形成される環状空間21のほぼ全長を貫通するよ
うにし、一方、ニードル2の一方向側から噴射して偏流
効果をもたせると流体攪乱室乙における開繊効果をより
一層増大させることができる。また第3図に示した通り
ベンチュリー6の後端に設けた凹状の円錐面50円錐角
 θ1をニードル2の先端に設′けた凸状の円錐面4の
円錐角 θ、より犬としたことにより両日錐面4および
5によって形成される環状空間21はニードル2の先端
部に行く程絞りが大きくなるようにしているため、噴射
孔ピース26から供給される流体の速度はニードル先端
に近づく程速くなり、これが偏流効果を一層促進するも
のと考えられる。
As shown in FIG. 1, a convex conical surface 4 provided at the tip of the needle 2 is an extension of the center line 20 of at least one injection hole 7, and a concave conical surface 5 provided at the rear end of the venturi 60.
By penetrating almost the entire length of the annular space 21 formed between the needles 2 and on the other hand, by injecting from one side of the needle 2 to create a drifting effect, it is possible to further increase the opening effect in the fluid disturbance chamber B. can. In addition, as shown in FIG. 3, the cone angle θ1 of the concave conical surface 50 provided at the rear end of the venturi 6 is made more dog-shaped than the cone angle θ1 of the convex conical surface 4 provided at the tip of the needle 2. Since the annular space 21 formed by the conical surfaces 4 and 5 has a larger constriction as it approaches the tip of the needle 2, the speed of the fluid supplied from the injection hole piece 26 increases as it approaches the tip of the needle. This is thought to further promote the drifting effect.

また、さらに第4図の如きベンチュリー6後端に設けた
凹状の円錐面を2段に変化させること。
Furthermore, the concave conical surface provided at the rear end of the venturi 6 as shown in FIG. 4 is changed into two stages.

または第6図の如きニードル2の先端に設けた凸状の円
錐面を2段に変化させることはいずれも。
Alternatively, the convex conical surface provided at the tip of the needle 2 as shown in FIG. 6 can be changed into two stages.

環状空間21の中での流体の流れを、その先端に行く程
絞りによって増速し、しかる後流体攪乱室6で一気に膨
張させるように構成されているので撹乱効果を増大し、
ニードル2の糸入口をなすガイド12から流体攪乱室に
供給された糸条はそこで流体の撹乱作用をうけ個々の単
繊維に十分に開繊され非常に短い周期の振動を生じ、そ
の後に高圧流体と共にベンチュリーのど部7′を経て糸
出口8から噴出される。その際に糸条を構成する単繊維
に高度の絡み、ループ、たるみ等が与えられ。
The flow of fluid in the annular space 21 is increased in speed by the throttle toward the tip, and is then expanded all at once in the fluid disturbance chamber 6, thereby increasing the disturbance effect.
The yarn fed into the fluid agitation chamber from the guide 12, which forms the yarn inlet of the needle 2, is subjected to the agitation action of the fluid there and is sufficiently opened into individual single fibers, producing very short period vibrations, after which the high-pressure fluid At the same time, it is ejected from the yarn outlet 8 through the venturi throat 7'. At that time, the single fibers that make up the yarn are given a high degree of entanglement, loops, slack, etc.

しかもこれが互いに絡みあった複雑な糸形状となり高い
カサ直性を維持するものと考えられる。
Furthermore, it is thought that these fibers form a complex yarn shape in which they are intertwined with each other and maintain high bulk straightness.

本発明に係る糸条の流体加工用ノズルを用いて製造され
る糸の形態や種々の特性はノズルを通過する流体の量お
よび速度、糸条の通過速度、オーバフィード率、繊維の
種類、単繊維の数、その他糸条の特注にも依存するが、
ノズル各部の寸法も重要な要素である。なかでもニード
ル2の糸入口をなすガイド12の直径、二〜ドル先端に
設けた凸状の円錐面4の円錐角、ベンチュリー6後端に
設けた四状の円錐面5の円錐角およびのど部17の直径
、噴射孔7の直径およびその傾斜角度が重要な因子とし
てあげられる。
The form and various characteristics of the yarn produced using the nozzle for fluid processing of yarn according to the present invention are determined by the amount and speed of the fluid passing through the nozzle, the speed at which the yarn passes, the overfeed rate, the type of fiber, and the It depends on the number of fibers and other custom yarns, but
The dimensions of each part of the nozzle are also an important factor. Among them, the diameter of the guide 12 that forms the thread entrance of the needle 2, the cone angle of the convex conical surface 4 provided at the tip of the needle 2, the cone angle of the four-shaped conical surface 5 provided at the rear end of the venturi 6, and the throat. 17, the diameter of the injection hole 7, and its inclination angle are important factors.

以下に比較例をあげて本発明の詳細な説明する。The present invention will be explained in detail below using comparative examples.

実施例1 第1図および第6図に示す糸条の流体加工用ノズルを用
いてベンチュリーおよびニードルに設けた夫々の円錐面
の円錐角 θ1および θ、を変更した実験を行なった
。実、碑に用いたノズルは糸入口の直径り、 5 rr
rm 、糸出口に連接されているベンチュリーのど部の
直径1.8mm、噴射孔の直径2.4 mm 。
Example 1 Using the nozzle for fluid processing of yarn shown in FIGS. 1 and 6, an experiment was conducted in which the cone angles θ1 and θ of the conical surfaces provided on the venturi and needle were changed. In fact, the nozzle used for the monument has a diameter of 5 rr at the thread entrance.
rm, the diameter of the venturi throat connected to the yarn outlet is 1.8 mm, and the diameter of the injection hole is 2.4 mm.

流体攪乱室の長さ1.5’mn+ (ベンチュリーのど
部と糸入口との距離)を一定とした。
The length of the fluid disturbance chamber was kept constant at 1.5'mn+ (distance between the venturi throat and the thread entrance).

なお糸条の加工条件は表1のように一定とした。The yarn processing conditions were kept constant as shown in Table 1.

表  1 使用原糸 ポリエステル 150D−72F供給ローラ
の表面速度  300 m / m i n引取ローラ
の表面速度  207 m / m i n巻取ローラ
の表面速度  238 m / m i n噴射孔に供
給゛される圧空圧 5 kg/cm ” Gなお、噴射
孔の噴射角は各ノズルの円錐角に応じて調整し、その中
心線の延長が環状空間をその全長にわたって貫通するよ
うにした。
Table 1 Raw yarn used Polyester 150D-72F Surface speed of supply roller 300 m/min Surface speed of take-up roller 207 m/min Surface speed of take-up roller 238 m/min Supplied to injection hole Compressed air pressure: 5 kg/cm''G Note that the injection angle of the injection hole was adjusted according to the cone angle of each nozzle, so that the extension of its center line penetrated the annular space over its entire length.

得られたカサ直系の品質評価は第7図に示す巻取装置直
前の張力により行なった。この張力が高いということは
得られたカサ直系の絡み、ループたるみ等の保持性が強
いことを示している。
The quality of the resulting umbrella was evaluated by measuring the tension immediately before the winding device as shown in FIG. The fact that this tension is high indicates that the obtained umbrella has a strong ability to retain direct entanglement, loop slack, etc.

表  2 以」二の結果から明らかなようにθ、−θ、が大きくな
るに伴なって張力Tが噌大することが明らかとなった。
As is clear from the results in Table 2, it is clear that as θ and -θ become larger, the tension T increases.

そしてその増加の割合ばθ1−θ、〉5とすればより顕
著にあられれる。また θ、は60近辺に最適匝がある
ようである。このように高圧流体を急激に狭搾して加速
し、流体攪乱室に導くと良い結果が得られることがわか
った。
If the rate of increase is θ1-θ, >5, it will be more noticeable. Also, θ seems to have an optimum value around 60. It has been found that good results can be obtained by rapidly constricting and accelerating the high-pressure fluid and guiding it into the fluid disturbance chamber in this way.

θ1−〇、の上限値について1本実施例でハシ0実施例
2 実施例1に用いた装置においてニードルの先端に設けた
凸′状の円錐面の円錐角を600一定とし。
Regarding the upper limit value of θ1-〇, 1 in this example.Example 2 In the apparatus used in Example 1, the cone angle of the convex conical surface provided at the tip of the needle was constant at 600.

ベンチュリー後端に設けた凹状の円錐面を第4図の如く
2段とした場合について実験した結果は表6の通りであ
る。
Table 6 shows the results of an experiment in which the concave conical surface provided at the rear end of the venturi was made into two stages as shown in FIG.

表  6 表6の結果はいずれも θ、を一段とした場合よりいず
れも張力Tの値は大きくなっている。
Table 6 In all of the results in Table 6, the value of tension T is larger than when θ is set to one step.

実施例6 第8図に示した装置を用いて流体の噴射孔7の最適位置
を実験により求めた。この実験におい−ごニードル2と
ベンチュリーろを最適間隔にセットした状態、すなわち
流体攪乱室の長さを最適長さにセットしノズル中心軸(
円錐面4,5の軸線)方向にニードル、ベンチュリー両
方を一体として移動させた。ここでX=Oの点は噴射孔
7の中心線20の延長線がニードル2の先端テーパ面4
とベンチュリー6の円錐面5によって形成される環状空
間21の全長を貫通する位置である。なおX=0から糸
の出口方向をプラス、入口方向をマイナスとしてその方
向を定めた。
Example 6 Using the apparatus shown in FIG. 8, the optimum position of the fluid injection hole 7 was determined through experiments. In this experiment, the needle 2 and the venturi filter were set at the optimum interval, that is, the length of the fluid disturbance chamber was set at the optimum length, and the nozzle center axis (
Both the needle and the venturi were moved as one in the direction of the axes of the conical surfaces 4 and 5. Here, at the point X=O, the extension line of the center line 20 of the injection hole 7 is the tip tapered surface 4 of the needle 2.
This is a position that penetrates the entire length of the annular space 21 formed by the conical surface 5 of the venturi 6. Note that from X=0, the direction was determined by setting the exit direction of the yarn as a plus and the inlet direction as a minus.

本比較例に用いたノズルの各部の寸法は。The dimensions of each part of the nozzle used in this comparative example are as follows.

ニードル2の先端出口ガイド直径0.5 rrmニード
ル2の先端に設けた円錐面4の円錐角60度 ベンチュリー、6ののど部17の直径1.8mmベンチ
ュリーろの後端に設けた凹・状円錐面5の円錐角70度 噴射孔7の直径2.4 mm 噴射孔のノズル中心となす傾斜角62.5度加工条件は
実施例1と同様である。なお実験は3回実施して評価は
巻取張力で行なった。
Tip exit guide diameter of needle 2 0.5 rrm Conical surface 4 provided at the tip of needle 2 with a cone angle of 60 degrees Venturi, diameter 1.8 mm of throat portion 17 of needle 6 Concave cone provided at the rear end of the venturi The machining conditions were the same as in Example 1: the conical angle of the surface 5 was 70 degrees, the diameter of the injection hole 7 was 2.4 mm, and the inclination angle of the injection hole was 62.5 degrees with respect to the center of the nozzle. The experiment was conducted three times, and the evaluation was based on the winding tension.

得られた結果を第9図にグラフとして示す。第9図に示
されている様にX=Oの位置の巻取張力がいずれも高い
傾向を示している。すなわち噴射孔7の中心線2oはニ
ードル2とベンチュリー6によって形成される環状空間
21のほぼ全長を貫通することが最適位置と考えられる
。捷たゾを変化させると糸条の特性が変化し、ニードル
2の外周に流体が衝突するような状態ではその衝突位置
によって糸の品質にバラツキが発生することが明らかに
なった。
The obtained results are shown as a graph in FIG. As shown in FIG. 9, the winding tension at the position of X=O all shows a tendency to be high. That is, it is considered that the optimum position is for the center line 2o of the injection hole 7 to pass through almost the entire length of the annular space 21 formed by the needle 2 and the venturi 6. It has become clear that changing the knitting angle changes the characteristics of the yarn, and that when fluid collides with the outer periphery of the needle 2, the quality of the yarn varies depending on the position of the collision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る装置の・−例を示す
断面図であり、第3図は第1図の部分拡大図である。第
4図、第5図はベンチュリーの内面形状を示した断面図
で、第6図はニードルの先端形状を示した正面図である
。第7図は本発明の流体加工ノズルを用いたカサ高加工
装置の一例を示す概略図であり、第8図は実施例乙に用
いたノズ5:凸状の円錐面   6:流体撹乱室7:噴
射孔      8:糸出口 12ニガイド      15:流体導入孔17:ペン
チユリ−ののど部 20:噴射孔の中心線 ろ1:糸条の流体加工用ノズル 特許出願人  東 し 株 式 会 社238− 第2図
1 and 2 are sectional views showing an example of the apparatus according to the present invention, and FIG. 3 is a partially enlarged view of FIG. 1. 4 and 5 are sectional views showing the inner surface shape of the venturi, and FIG. 6 is a front view showing the shape of the tip of the needle. FIG. 7 is a schematic diagram showing an example of a bulk height machining device using the fluid machining nozzle of the present invention, and FIG. 8 is a nozzle used in Example B: 5: Convex conical surface 6: Fluid disturbance chamber 7 : Spray hole 8: Yarn exit 12 guide 15: Fluid introduction hole 17: Throat of pentillary 20: Center line of jet hole 1: Nozzle for fluid processing of yarn Patent applicant Toshi Co., Ltd. 238- No. Figure 2

Claims (1)

【特許請求の範囲】 (1)  糸入口部材の先端に設けた凸状の円錐面と。 糸出口部材の後端に設けた凹状の円錐面とを同゛芯的に
微少間隙をもって対向させ両日錐面の間に形成さ、れた
環状空間、該空間の底部に開口した少なくとも1個の高
圧流体導入孔、前記糸入口部材の先端に開口した糸入口
、前記糸出口部材の後端に開口した糸出口および前記糸
入口および糸出口の間に形成された流体攪乱室からなる
糸条の流体加に用ノズルにおいて、前記高圧流体導入孔
はその中心線の延長が前記環状空間を全長′にわたって
貫通し、かつ前記円錐面の軸線と交わるように配置する
と共に、前記糸出口部材の後端に設けた凹状の円錐面の
なす円錐角 θ、が、前記糸入口部材の先端に設けた凸
状の円錐面のなす円錐角 θ、よりも犬としたことを特
徴とする糸条の流体加工用ノズル。 (2、特許請求の範囲(11記載の糸条の流体加工用ノ
ズルにおいて、糸出口部材後端に形成した凹状の円錐面
を2段に形成せしめ、糸出口側に形成される凹状の円錐
面の円錐角 θ、1をその後端部に形成される円錐面の
円錐角θ1.よりも小とじだことを特徴とする糸条の流
体加至用ノズル。 (3)  特許請求の範囲〔l)記載の糸条の流体加工
用ノズルにおいて、糸入口部材先端に形成した凸状の円
錐面を2段に形成せしヤ、糸入ロ開口側に形成される円
錐面の円錐角θ、iをその後に形成される円錐面の円錐
角θ2.よりも犬としたことを特徴とする糸条の流体加
工用ノズル。
[Claims] (1) A convex conical surface provided at the tip of the thread entrance member. A concave conical surface provided at the rear end of the yarn exit member and an annular space formed between the two conical surfaces by concentrically facing each other with a small gap, at least one opening at the bottom of the space. A yarn comprising a high-pressure fluid introduction hole, a yarn inlet opened at the tip of the yarn inlet member, a yarn outlet opened at the rear end of the yarn outlet member, and a fluid stirring chamber formed between the yarn inlet and the yarn outlet. In the fluid addition nozzle, the high-pressure fluid introduction hole is arranged so that its center line extends through the annular space over its entire length and intersects with the axis of the conical surface, and the high-pressure fluid introduction hole Fluid processing of yarn, characterized in that the conical angle θ formed by the concave conical surface provided at the tip of the yarn entrance member is smaller than the conical angle θ formed by the convex conical surface provided at the tip of the yarn entrance member. Nozzle for. (2. Claims (In the nozzle for fluid processing of yarn according to 11, the concave conical surface formed at the rear end of the yarn exit member is formed in two stages, and the concave conical surface formed on the yarn exit side A nozzle for adding fluid to a thread, characterized in that the conical angle θ, 1 of the thread is smaller than the conical angle θ1 of a conical surface formed at the rear end. (3) Scope of claims [l] In the fluid processing nozzle for yarn described above, the convex conical surface formed at the tip of the yarn entrance member is formed in two stages, and the conical angle θ, i of the conical surface formed on the yarn entrance opening side is A nozzle for fluid processing of yarn, characterized in that the cone angle θ2 of the conical surface formed thereafter is set to a dog.
JP22446682A 1982-12-21 1982-12-21 Nozzle for fluid processing of yarn Pending JPS59116442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22446682A JPS59116442A (en) 1982-12-21 1982-12-21 Nozzle for fluid processing of yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22446682A JPS59116442A (en) 1982-12-21 1982-12-21 Nozzle for fluid processing of yarn

Publications (1)

Publication Number Publication Date
JPS59116442A true JPS59116442A (en) 1984-07-05

Family

ID=16814225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22446682A Pending JPS59116442A (en) 1982-12-21 1982-12-21 Nozzle for fluid processing of yarn

Country Status (1)

Country Link
JP (1) JPS59116442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626380U (en) * 1985-06-26 1987-01-14
US6134759A (en) * 1998-03-27 2000-10-24 Toray Industries, Inc. Apparatus for fluid treatment of yarn and a yarn composed of entangled multifilament

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS478684U (en) * 1971-03-05 1972-10-02
JPS5530416A (en) * 1978-08-18 1980-03-04 Toyo Boseki Nozzle for textured finish
JPS5540845A (en) * 1978-09-14 1980-03-22 Toyo Boseki Fluid nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS478684U (en) * 1971-03-05 1972-10-02
JPS5530416A (en) * 1978-08-18 1980-03-04 Toyo Boseki Nozzle for textured finish
JPS5540845A (en) * 1978-09-14 1980-03-22 Toyo Boseki Fluid nozzle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626380U (en) * 1985-06-26 1987-01-14
JPH0139719Y2 (en) * 1985-06-26 1989-11-29
US6134759A (en) * 1998-03-27 2000-10-24 Toray Industries, Inc. Apparatus for fluid treatment of yarn and a yarn composed of entangled multifilament

Similar Documents

Publication Publication Date Title
US5640745A (en) Method and apparatus for the manufacture of a mixed yarn using multifilament yarn and fibers
US3881231A (en) Cylindrical baffle for yarn texturing air jet
US5241730A (en) Device for jet-bulking of at least one multifilament yarn
US4535516A (en) Apparatus for the production of fixed point multifilament yarns
US3259952A (en) Jet device for blowing yarn and process
JPS6039770B2 (en) Yarn processing equipment
JPS59116442A (en) Nozzle for fluid processing of yarn
JPH03227420A (en) Fancy yarn and processing nozzle therefor
JP2645473B2 (en) Yarn processing nozzle
JPS5911700B2 (en) Yarn processing method
JPS6023326Y2 (en) Yarn processing nozzle
JPS61102423A (en) Apparatus for fluid treatment of fiber bundle
JPS6038696Y2 (en) Bulky processing nozzle
JPS6040526B2 (en) Yarn processing equipment
JPS6023327Y2 (en) fluid nozzle
JPH0545699B2 (en)
JP3210752B2 (en) Yarn fluid treatment nozzle
JPH04119135A (en) Method for carrying out interlacing treatment of yarn and device therefor
JPS6235496B2 (en)
JPS6325099B2 (en)
JPS595690B2 (en) Device to bulk up yarn
JPH03220336A (en) Interlaced string and nozzle for preparing the same
JPS5932571B2 (en) Device to bulk up yarn
JPS5932569B2 (en) Device to bulk up yarn
JP2000273735A (en) Fluid treating apparatus