JPS59116146A - Glass for adhering silicon semiconductor element - Google Patents

Glass for adhering silicon semiconductor element

Info

Publication number
JPS59116146A
JPS59116146A JP22397682A JP22397682A JPS59116146A JP S59116146 A JPS59116146 A JP S59116146A JP 22397682 A JP22397682 A JP 22397682A JP 22397682 A JP22397682 A JP 22397682A JP S59116146 A JPS59116146 A JP S59116146A
Authority
JP
Japan
Prior art keywords
glass
silicon
thermal expansion
li2o
na2o
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22397682A
Other languages
Japanese (ja)
Inventor
Masaru Shinpo
新保 優
Kiyoshi Fukuda
潔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22397682A priority Critical patent/JPS59116146A/en
Publication of JPS59116146A publication Critical patent/JPS59116146A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

PURPOSE:To obtain the titled glass having a coefft. of thermal expansion close to that of silicon and a low glass transition temp. by providing a specified composition consisting of SiO2, B2O3, Al2O3, Na2O, K2O, Li2O, V2O5, CuO, PbO, As2O3 and Sb2O3. CONSTITUTION:This glass has a composition consisting of, by weight, 65-75% SiO2, 15-25% B2O3, 1.0-3.5% Al2O3, 2.0-4.0% Na2O, 0-2% K2O, 0-1% Li2O (Na2O+K2O+Li2O=2.0-5.0%), 0.1-2% V2O5, 0-2% CuO (V2O5+CuO=0.1- 2.5%), 0-5% PbO, 0.2-0.5% As2O3 and 0-0.5% Sb2O3. The glass has 33- 36X10<-7>/ deg.C average coefft. of thermal expansion close to about 34X10<-7>/ deg.C average coefft. of thermal expansion of silicon, and it has <=500 deg.C glass transition temp. and can be adhered to silicon at a temp. below the limit of heat resistance of Al.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はシリコン圧力センサなどの半導体素子と接着す
るガラスの組成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to the composition of glass that adheres to semiconductor elements such as silicon pressure sensors.

〔従来技術とその問題点〕[Prior art and its problems]

シリコン感圧素子など、残留応力をきらう半導体素子ベ
レットを基体などに固着する場合は特別な工夫を要する
。即ち基体とシリコンとの熱膨張を厳密に整合させる必
要がある。しかし一方この素子を被測定体に気密に取り
付けるために取付部が必要であり、そこにはステンレス
などの金属やガラスなどが使われる。これらの材料はシ
リコン素子と通常熱特性が整合しないので、取付部とベ
レットとの間にシリコンからなるベレットを設け、例え
ば第1図のような構造のものが使われていた。
Special measures are required when attaching a semiconductor device pellet, such as a silicon pressure-sensitive device, which is sensitive to residual stress, to a substrate or the like. That is, it is necessary to strictly match the thermal expansion of the base and silicon. However, in order to airtightly attach this element to the object to be measured, a mounting part is required, and metal such as stainless steel, glass, etc. are used for that part. Since these materials usually do not match the thermal characteristics of silicon elements, a silicone beret is provided between the mounting portion and the beret, and a structure as shown in FIG. 1, for example, has been used.

しかしこの構造では、(1)シリコンベレット1の材料
費、成形費を要し、(2)接着の工程が多いなどの欠点
があり、これに替るものとして、第2図のような、シリ
コンペレット1と熱的に整合し得るガラス4を直接ベレ
ット1と接着する方法が提案されている。このガラス材
料にはバイレックスなどの商品名で良く知られた硬質硼
珪酸ガラスが使われ、接着には鏡面研磨した素子とガラ
スの接着面を荷重下で圧接し、ガラスの転移温度以上で
加熱する圧接法が使われる。との圧接法は異質の接着層
の介在がないため、残留応力低減の目的には良く合うが
、通常入手できる上記ガラス材料はガラス転移温度が5
50 ’0を上まわるために、接着に必要である。これ
は通常の半導体素子の電極や配線材料として使われるア
ルミニウムの融点以上であり、そのために他の電極材料
が必要になる。しか]〜霞】耐熱性で1〜かも半導体素
子用として適当な電極材料を得るのはきわめてむづかし
い実情である。
However, this structure has disadvantages such as (1) high material cost and molding cost for the silicon pellet 1, and (2) many bonding steps. A method has been proposed in which a glass 4 that can be thermally matched with the pellet 1 is bonded directly to the pellet 1. The glass material used is hard borosilicate glass, well known under trade names such as Virex, and for bonding, the mirror-polished element and the bonding surface of the glass are pressed together under load, and then heated to a temperature above the transition temperature of the glass. The pressure welding method is used. The pressure welding method is well suited for the purpose of reducing residual stress because there is no intervening adhesive layer of different nature, but the above-mentioned commonly available glass materials have a glass transition temperature of 5.
It is necessary for adhesion to exceed 50'0. This is higher than the melting point of aluminum, which is commonly used as an electrode and wiring material for semiconductor devices, and therefore requires other electrode materials. The reality is that it is extremely difficult to obtain electrode materials suitable for use in semiconductor devices with heat resistance.

〔発明の目的〕[Purpose of the invention]

本発明の目的はシリコン半導体素子と熱膨張が整合し、
しかもアルミニウムの融点以下で圧接できるガラス拐料
を提供するにある。
The purpose of the present invention is to match the thermal expansion with a silicon semiconductor element,
Moreover, it is an object of the present invention to provide a glass particle material that can be pressure-welded at a temperature below the melting point of aluminum.

〔発明の概要〕 本発明にかかるガラス材料は熱膨張係数が33〜36 
X 10  /Cの範囲にあり、かつガラス転移温度が
500°C以下という特性が必要である。シリコンの熱
膨張係数はほぼ34X10 ’/”Cである。そしてガ
ラスの熱膨張係数が上記の範囲の場合に、シリコン中の
残留応力が無視できる事がわかった。
[Summary of the invention] The glass material according to the present invention has a coefficient of thermal expansion of 33 to 36.
It is required that the glass transition temperature be in the range of X 10 /C and that the glass transition temperature be 500°C or less. The coefficient of thermal expansion of silicon is approximately 34×10′/”C. It has been found that when the coefficient of thermal expansion of glass is within the above range, residual stress in silicon can be ignored.

またガラスとシリコンの圧接には接着条件により多少の
変動はあるが通常ガラス転移温度より50〜100“0
高い熱処理が必要であり、その場合にもアルミニウム電
極の耐熱限界(600’0以下)を越えない事から、上
記の転移温度の上限が決められる。
In addition, pressure bonding between glass and silicon may vary slightly depending on the bonding conditions, but it is usually 50 to 100 "0" below the glass transition temperature.
The upper limit of the above transition temperature is determined because high heat treatment is required and even in that case the heat resistance limit of the aluminum electrode (600'0 or less) is not exceeded.

これらの熱特性が実現でき、かつ通常の溶解法で品質の
良いガラスが得られる組成を探索した結果、5i026
5〜76 、 B2O31,5〜25 、 Al2O3
1〜3.5 、 Na2O:2−4 、 K2O0〜2
 、 Li2O0〜1 、但しNa 20 +に2Q 
+Li2OQ 〜5 、 V2O50,1〜2 、 C
uOO〜2但しV2O5+ Cll00.1〜2.5 
、 PbOO〜5 + AS2030〜0.5 、5b
2020〜05各重量%の範囲が適当である事がわかっ
た。このガラスはいわゆるアルカリ硼珪酸ガラスの範囲
に属しており、このガラスの基本組成とガラス転移温度
や熱膨張係数との関係は公知である。またAl 203
などの添加物とこれら熱特性や化学特性の関係も公知で
ある。しかしながら、これら公知の事実を基に上記熱特
性の条件を満すべくガラス組成を吟味しても、実用に耐
えるものは得られなかった。その最大の問題は高温粘性
の増大に−よる残留泡と化学的耐久性の低下であった。
As a result of searching for a composition that could achieve these thermal properties and produce high-quality glass using normal melting methods, 5i026
5-76, B2O31,5-25, Al2O3
1-3.5, Na2O:2-4, K2O0-2
, Li2O0~1, but 2Q for Na20+
+Li2OQ ~5, V2O50,1~2, C
uOO~2 However, V2O5+ Cll00.1~2.5
, PbOO~5 + AS2030~0.5, 5b
It was found that a range of 2020 to 2005 by weight was appropriate. This glass belongs to the range of so-called alkali borosilicate glasses, and the relationship between the basic composition of this glass and its glass transition temperature and coefficient of thermal expansion is known. Also Al 203
The relationship between additives such as and these thermal properties and chemical properties is also known. However, even if glass compositions were carefully examined based on these known facts in order to satisfy the above-mentioned thermal property conditions, no material that could be put to practical use could be obtained. The biggest problem was residual foam and decreased chemical durability due to increased high temperature viscosity.

より具体的に記すと、上記公知文献によれば、この種の
ガラスにおいて熱膨張を低く保ちつつ転移温度を低下さ
せるにはアルカリ分の濃度を低クシ、かつB2O3濃度
を高くする事が必要である。しかしこのような組成のガ
ラスは実用的な限界である1600”Cで溶融しても残
留泡が多く残ったり、空気中で数日放置するだけで表面
が白色に風化するほど化学的耐久性が悪いものしか得ら
れない。この問題を克服するために基本組成や添加物を
吟味した結果、−上記の組成物を得た。5i02はガラ
スの基本成成であり、65wtチ以下では膨張係数が上
記範囲からはずれるか、又は化学的耐久性が劣る。また
75wtチ以上では浴融温度が高くなり、脱泡が困難に
なるo B2O3もガラスの基本成分であり、15wt
%よりも低いとガラス転移温度を500°C以下にする
事ができず、又25 wt、%を越えるとガラスの化学
的耐久性が実用に耐えないほど悪くなる。
More specifically, according to the above-mentioned known literature, in order to lower the transition temperature while keeping the thermal expansion low in this type of glass, it is necessary to lower the alkali concentration and increase the B2O3 concentration. be. However, even when glass with this composition is melted at 1600"C, which is the practical limit, many residual bubbles remain, and the chemical durability is such that the surface weathers to white after being left in the air for a few days. In order to overcome this problem, we examined the basic composition and additives, and as a result, we obtained the above composition. 5i02 is the basic composition of glass, and below 65wt, the expansion coefficient is low. It deviates from the above range or has poor chemical durability.Moreover, if it exceeds 75wt, the bath melting temperature becomes high and defoaming becomes difficult.O B2O3 is also a basic component of glass,
If it is lower than 25 wt.%, the glass transition temperature cannot be lowered to 500° C. or less, and if it exceeds 25 wt.%, the chemical durability of the glass becomes unsuitable for practical use.

AI 203はガラスの化学的耐久性を向上させる準基
本成分であるが、添加量を増すとガラスの高温粘性を増
加させ、脱泡を困難にする。1wt%以上で効果がはっ
きりするが、濃度限界は3wt%である。
AI 203 is a semi-basic component that improves the chemical durability of glass, but when added in an increased amount, it increases the high temperature viscosity of glass and makes defoaming difficult. The effect becomes clear at 1 wt% or more, but the concentration limit is 3 wt%.

アルカリ酸化物もガラスの基本成分であり、ガラスの低
融化と化学的耐久性を向上させるが、熱膨張係数を増大
させる欠点がある。その効果はアルカリの種類によって
多少異なり、Na2Qを基準にするとに20は熱膨張増
加傾向は少ないが、低融化能力が劣り、 Li2Oは高
温粘性低下能が高いが化学的耐久性向上効果が小さい。
Alkali oxides are also basic components of glass, and although they lower the melting point of glass and improve chemical durability, they have the disadvantage of increasing the coefficient of thermal expansion. The effect varies somewhat depending on the type of alkali. Based on Na2Q, 20 has a small tendency to increase thermal expansion but is poor in low melting ability, and Li2O has a high ability to reduce high temperature viscosity but has a small effect on improving chemical durability.

全アルカリ濃度は2〜swt%の範囲が適当であり、こ
れより低ければ化学的耐久性の低下、高ければ熱膨張の
範囲からはずれる。ガラスの高温粘性を下げ、脱泡を容
易にする必須成分として、V2O5の添加が本ガラスの
の特徴である。0.1 wt ’4以上でその効果が表
われるが、2wt%を越えるとガラスが分相性になり、
化学的耐久性を損なう。CuOも類似の効果があり、V
2O5の補助成分とし、て使用できる。PbOけガラス
の低融性と化学的耐久性を向上させる成分として添加が
好ましいが、5wt%を越えると熱膨張係数の増大など
の が生ずる。As2O3,5b203はいずれl消泡
剤として使われるもので0.2−0.5 wt %が好
ましい。
The total alkali concentration is suitably in the range of 2 to swt%; if it is lower than this, the chemical durability will deteriorate, and if it is higher than this, it will be out of the range of thermal expansion. This glass is characterized by the addition of V2O5 as an essential component that lowers the high-temperature viscosity of the glass and facilitates defoaming. The effect appears above 0.1 wt '4, but when it exceeds 2 wt%, the glass becomes phase split,
Impairs chemical durability. CuO has a similar effect, and V
It can be used as an auxiliary component of 2O5. It is preferable to add PbO as a component to improve the low melting properties and chemical durability of the glass, but if it exceeds 5 wt%, problems such as an increase in the coefficient of thermal expansion will occur. As2O3,5b203 is used as an antifoaming agent and is preferably 0.2-0.5 wt%.

これらのガラスは通常のガラス作成法で製造する事がで
きる。即ち、珪砂、硼酸、炭酸ソーダ、水酸化アルミニ
ウムや該当する金属酸化物を原料として調合、混合し、
電気炉やガス炉などを用い、1600°0以下の溶融温
度で溶融、清澄される。また通常の方法で容易に成形、
加工ができる。
These glasses can be manufactured using conventional glass manufacturing methods. That is, silica sand, boric acid, soda carbonate, aluminum hydroxide, and the corresponding metal oxides are prepared and mixed as raw materials,
It is melted and refined using an electric furnace or gas furnace at a melting temperature of 1600° or less. It can also be easily molded using normal methods.
Can be processed.

シリコン素子との接着は次のような方法で行う。Adhesion to the silicon element is performed by the following method.

即ち上記組成範囲のガラスをたとえば管状に成形し、そ
の一端を研麿しておく。この端に同じく接着面を鏡面研
磨したシリコンペレットを接触させ、荷重(50g /
rtnl J以上が適当である)下でガラスの転移温度
より50〜100°C高い温度までたとえば電気炉中で
加熱すれば強固な接着が得られる。
That is, glass having the above composition range is formed, for example, into a tubular shape, and one end of the tubular shape is polished. A silicone pellet with a mirror-polished adhesive surface was brought into contact with this end, and a load (50g/
rtnl J or higher) to a temperature 50 to 100° C. higher than the transition temperature of the glass, for example in an electric furnace, a strong bond can be obtained.

1発明の効果〕 本発明にかかるガラスはシリコンと熱膨張係数の整合が
良くとれ、しかもアルミニウムの耐熱限界より低い温m
lでシリコンと接着できるので、圧力センサなどに用い
れば素子の残留歪の低限と低コスト化が達成できる。
1 Effects of the Invention The glass according to the present invention has a thermal expansion coefficient well matched to that of silicon, and has a temperature m lower than the heat resistance limit of aluminum.
Since it can be bonded to silicon with l, if used in pressure sensors, etc., it is possible to limit the residual strain of the device and reduce costs.

〔発明の実施例〕[Embodiments of the invention]

衣−1に示す組成のカラスを作成した。ガラス原料は精
#珪砂、硼酸、アルミナ、硝酸ソーダ、炭酸ソーダ、炭
酸カリ、鉛丹、炭酸リチウム及び酸化銅、五酸化バナジ
ウムなどである。溶融−計は約1kg、白金ルツボを用
い、酸素−都市ガスの炉中で1500〜1600°0で
溶融した。6時間溶融接ステンレス板上に流し出し、固
化後徐冷してガラス板を作成した。得られたガラスの熱
膨張率と転移温度を表−1に示した。得られたガラスを
一辺5朋の立方体に研麿し、鏡面仙麿したシリコン基板
(n型3 (ltx 、面方位<111>I$300μ
>を、5am x 5 mmに切って上記ガラス立方体
の上にのせ、2 kgの荷重下でガラス転移温度より5
0゛c高い温度で1時間加熱した所、いずれも良好な接
着が得られた。尚これらのガラスは室内で1力月以上放
置しても変質しなかった。
A crow with the composition shown in Cloth-1 was prepared. Glass raw materials include refined silica sand, boric acid, alumina, sodium nitrate, soda carbonate, potassium carbonate, red lead, lithium carbonate, copper oxide, vanadium pentoxide, etc. The melt weighed approximately 1 kg, and was melted in a platinum crucible at 1500-1600°0 in an oxygen-city gas furnace. The mixture was poured onto a welded stainless steel plate for 6 hours, solidified, and then slowly cooled to produce a glass plate. Table 1 shows the thermal expansion coefficient and transition temperature of the obtained glass. The obtained glass was ground into a cube with 5 mm on each side, and a mirror-finished silicon substrate (n-type 3 (ltx), surface orientation <111>, I$300μ
> was cut into 5 am x 5 mm pieces and placed on the above glass cube, and the temperature was lowered by 5 am below the glass transition temperature under a load of 2 kg.
When heated for 1 hour at a temperature 0°C higher, good adhesion was obtained in all cases. These glasses did not change in quality even after being left indoors for more than a month.

シリコンのピエゾ抵抗効果を利用した圧カセンサノヘレ
ットを用意した。この素子はアルミニウムにより電極が
増成されており、ペレットの大きさは8ml+IX8”
、中央のダイヤフラムの径は1.5龍であった。衣−1
の6のガラスを選び、外径61總、内径2朋長さ301
11mの肉厚管を成形した。ガラスの端面及びシリコン
ペレットの接着面は鏡面研磨されている。ガラスの鋭面
部にシリコンペレットの接着面をのせ、1kgの荷重を
のせて530°0で10分間加熱した。刊tられた接着
体は10  Torrの真空度まで保持でき、アルミ配
線部も変質が認められなかった。またこうして得られた
圧力センサの初期値の変動や感度の直線性は良好であわ
、シリコン基体に金−シリコン共晶で接着した従来品と
差が認められなかった。
We prepared a pressure resistance sensor that utilizes the piezoresistive effect of silicon. This element has additional electrodes made of aluminum, and the pellet size is 8ml + IX8”
, the diameter of the central diaphragm was 1.5 mm. Clothes-1
Select 6 glasses, outer diameter 61 mm, inner diameter 2 mm, length 301 mm.
An 11 m thick tube was molded. The end face of the glass and the bonding surface of the silicon pellet are mirror polished. The adhesive surface of the silicon pellet was placed on the sharp surface of the glass, a load of 1 kg was placed on the glass, and the glass was heated at 530° 0 for 10 minutes. The published adhesive could be maintained up to a vacuum level of 10 Torr, and no deterioration was observed in the aluminum wiring. In addition, the pressure sensor thus obtained had good initial value fluctuations and linearity of sensitivity, and no difference was observed from conventional products bonded to a silicon substrate with gold-silicon eutectic.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はピエゾ抵抗効果を利用したシリコン
圧力センサの断面略図である。 1:シリコンベレット、2:シリコン基体、3:金属管
、4ニガラス管、5:9体、6:リード、7:電極。 代理人 弁理士 則 近 憲 佑 (ほか1名)
1 and 2 are schematic cross-sectional views of a silicon pressure sensor that utilizes the piezoresistive effect. 1: Silicon pellet, 2: Silicon substrate, 3: Metal tube, 4 Niglass tube, 5: 9 body, 6: Lead, 7: Electrode. Agent: Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】 5iOz65〜75wtqlD、 B2O315〜25
 wt 、 A12031.0〜3.5 wt % 、
 NazO2,0〜4.0%、 K2OQ 〜2 wt
 % +Li 200〜1 wt%但しNa2Oとに2
0とLi2Oとの和は2.0−5.Owt % 、 V
2O50,1〜2 wt Z 、 Cu00〜2wt%
。 但しCuOとV2O5との和は0.1〜2.5 wt 
% 、 Pb00〜5wt%、 As2O30,2〜0
.5 wt%、 5b2030〜0.5 wt 96の
組成範囲であって、平均熱膨張係数が33〜36×10
”/’O,ガラス転移温度が500℃以下であることを
特徴とするシリコン半導体素子接着用ガラス。
[Claims] 5iOz65~75wtqlD, B2O315~25
wt, A1203 1.0-3.5 wt%,
NazO2, 0-4.0%, K2OQ ~2 wt
% +Li 200~1 wt% However, Na2O and 2
The sum of 0 and Li2O is 2.0-5. Owt%, V
2O50,1~2wtZ, Cu00~2wt%
. However, the sum of CuO and V2O5 is 0.1 to 2.5 wt.
%, Pb00~5wt%, As2O30,2~0
.. 5 wt%, 5b2030-0.5 wt 96 composition range, average thermal expansion coefficient 33-36 x 10
``/'O, a glass for bonding silicon semiconductor devices, characterized in that the glass transition temperature is 500°C or less.
JP22397682A 1982-12-22 1982-12-22 Glass for adhering silicon semiconductor element Pending JPS59116146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22397682A JPS59116146A (en) 1982-12-22 1982-12-22 Glass for adhering silicon semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22397682A JPS59116146A (en) 1982-12-22 1982-12-22 Glass for adhering silicon semiconductor element

Publications (1)

Publication Number Publication Date
JPS59116146A true JPS59116146A (en) 1984-07-04

Family

ID=16806620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22397682A Pending JPS59116146A (en) 1982-12-22 1982-12-22 Glass for adhering silicon semiconductor element

Country Status (1)

Country Link
JP (1) JPS59116146A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343334A (en) * 1986-08-08 1988-02-24 Nec Corp Method of mounting semiconductor element
JPH0969531A (en) * 1994-06-16 1997-03-11 Anam Ind Co Inc Die attach adhesive composition for semiconductor package
DE102017204015A1 (en) 2017-03-10 2018-09-13 Schott Ag Glass frit, enamel composition and method of making enamelled glass ceramic articles and their use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343334A (en) * 1986-08-08 1988-02-24 Nec Corp Method of mounting semiconductor element
JPH0969531A (en) * 1994-06-16 1997-03-11 Anam Ind Co Inc Die attach adhesive composition for semiconductor package
DE102017204015A1 (en) 2017-03-10 2018-09-13 Schott Ag Glass frit, enamel composition and method of making enamelled glass ceramic articles and their use

Similar Documents

Publication Publication Date Title
JP3144830B2 (en) Crystallized glass
JPH0769672A (en) Lead-free tin phosphate glass
US4202700A (en) Glassy composition for hermetic seals
CA1074342A (en) Low temperature sealed glass compositions and process for their preparations
EP0048120B1 (en) Glass envelopes for tungsten-halogen lamps and production thereof
JP3339647B2 (en) Lead-free low melting glass and sealing glass composition
US4710479A (en) Sealing glass composition with lead calcium titanate filler
JPS6253454B2 (en)
JP2767276B2 (en) Sealing material
JPS59116146A (en) Glass for adhering silicon semiconductor element
US4589899A (en) Sealing glass
JPS60204637A (en) Low-melting sealing composition
JPH0222023B2 (en)
US3535133A (en) Alkali-free electronic glass and method of manufacture
JPS6278128A (en) Water-resistant and low-temperature softening glass composition
JPH07247134A (en) Glass for silicon-holding base and silicon substrate-type sensor
JPS61295256A (en) Glass for substrate
JPH0536738B2 (en)
JPH02252637A (en) Heat-resistant crystallized glass sealing material having low expansion coefficient
JPH0264037A (en) Glass of small thermoelasticity
JP3125971B2 (en) Low temperature sealing composition
JP3417066B2 (en) Sealing material
JPS6027620A (en) Sealing composition
JPH05500584A (en) Improved composite dielectric
JPH0455341A (en) Glass composition for adhesion