JPS59115752A - Method of reactivating hydroformylation catalyst - Google Patents

Method of reactivating hydroformylation catalyst

Info

Publication number
JPS59115752A
JPS59115752A JP57225514A JP22551482A JPS59115752A JP S59115752 A JPS59115752 A JP S59115752A JP 57225514 A JP57225514 A JP 57225514A JP 22551482 A JP22551482 A JP 22551482A JP S59115752 A JPS59115752 A JP S59115752A
Authority
JP
Japan
Prior art keywords
catalyst
activity
rhodium
hydroformylation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57225514A
Other languages
Japanese (ja)
Other versions
JPH0237216B2 (en
Inventor
Hidetaka Kojima
秀隆 小島
Hiroshi Koyama
弘 小山
Etsuji Akimoto
秋本 悦二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP57225514A priority Critical patent/JPS59115752A/en
Publication of JPS59115752A publication Critical patent/JPS59115752A/en
Publication of JPH0237216B2 publication Critical patent/JPH0237216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To perfectly reactivate the catalyst in mild conditions by using a method for processing the titled Rh and phosphine type catalyst lowered in activity with boron hydride followed by removal of basic substances. CONSTITUTION:The Rh and phosphine type hydroformylation catalyst soln. lowered in activity is processed with boron hydride. Basic substances are usually produced in the system by this treatment, and becomes a factor again deactivating the catalyst, so the treated soln. of the catalyst is washed with water till the washing water rises to 7 pH to remove said basic substances. The washed catalytic soln. is sent to the hydroformylation reactor, and this catalyst is perfectly reactivated and it can be used for a long term.

Description

【発明の詳細な説明】 この発明はロジウムを含むヒドロホルミル化触媒につい
て、その高活性を回復させる処理法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for restoring the high activity of a rhodium-containing hydroformylation catalyst.

ロジウムホスフィン系触媒は温和な反応条件下でヒドロ
ホルミル化反応を遂行させる高い活性を持つことで知ら
れている。
Rhodium phosphine catalysts are known to have high activity to carry out hydroformylation reactions under mild reaction conditions.

この温和な反応条件という特徴は、一方ではヒドロホル
ミル化触媒を被毒させる物質を分解しない反面を持って
いるのて、この触媒を長時間使用すると酸素、ハロゲン
、イオウなと原料ガス液中に含まれろ微量成分、有機酸
のような酸化副生物、アルデヒド縮金物などにより被毒
され、活性が著るしく低下、あるいは実質的に失活する
といった問題点がある。
The characteristic of this mild reaction condition is that on the one hand it does not decompose substances that poison the hydroformylation catalyst, but on the other hand, when this catalyst is used for a long time, oxygen, halogens, sulfur, etc. are contained in the raw gas liquid. There is a problem in that it is poisoned by trace components, oxidized by-products such as organic acids, aldehyde condensates, etc., and its activity is significantly reduced or substantially inactivated.

例えば、アリルアルコールのヒドロホルミル化において
は参考例2に示すような著るしい活性低下か起ることが
認められた。
For example, in the hydroformylation of allyl alcohol, a significant decrease in activity as shown in Reference Example 2 was observed.

そこで本発明者は、活性回復法について種々検討した結
果、ロジウム・ホスフィン系ヒドロホルミル化触媒(以
下ロジウム錯体触媒と称する)溶液を水素化ホウ素化合
物で処理した後、塩基性物質を除去することにより、温
和な条件で、しかも完全に活性が回復することを見出し
、本発明を完成した。
Therefore, as a result of various studies on activity recovery methods, the present inventors found that by treating a rhodium-phosphine-based hydroformylation catalyst (hereinafter referred to as rhodium complex catalyst) solution with a boron hydride compound and then removing the basic substance, The present invention was completed based on the discovery that the activity could be completely recovered under mild conditions.

ロジウム錯体触媒の賦活再生方法として水素加圧下に加
熱する方法(特公昭48−43799)が知られている
。この先行技術の実施例においてブチルアルデヒド収率
で表現されている触媒活性を速度定格に換算して初期値
(Ko)に対する比活性(K/Ko)を求めると36%
まで低下した触媒は60℃、14時間、70 kg /
 Jの水素加圧下の処理で53チに回復したことに1よ
るが、初期活性への完全な回復は達成されてい1よい。
As a method for activating and regenerating a rhodium complex catalyst, a method of heating under pressure of hydrogen (Japanese Patent Publication No. 48-43799) is known. In this example of the prior art, the catalyst activity expressed as the butyraldehyde yield is converted into a rate rating to determine the specific activity (K/Ko) relative to the initial value (Ko), which is 36%.
The catalyst reduced to 70 kg / 60 ° C for 14 hours
This is due to the fact that J was recovered to 53% by treatment under hydrogen pressure, but complete recovery to the initial activity may have been achieved.

しかるに水素化ホウ素化合物で処理する本発明の方法を
用いるとヒドロホルミル化触媒は比活性約100係まで
完全に回復させることができる。
However, by using the method of the present invention which involves treatment with a borohydride compound, the hydroformylation catalyst can be completely restored to a specific activity of about 100 parts.

しかも、加圧を必要とぜず、きわめて簡単、かつ短時間
の処理で効果が上がることは実施例にみられる通りであ
る。
Moreover, as can be seen in the examples, the treatment does not require pressurization and is extremely simple and effective in a short period of time.

ヒドロホルミル化触媒の活性を長期間保持することは、
きわめて切実な課題であり、触媒の処理による活性回復
性以外の手段として原料の精製や触媒液の維持分離につ
いていくつかの提案がすでになされているが、結局は失
活した触媒液をメーカーなどに出してロジウム回収をせ
ねばならず(触媒23巻174頁参照)、本発明のよう
に簡単で有効な活性回復処理法はこれまで実現していな
〆l もっとも触媒の被毒・失活といっても、その実体
はヒドロホルミル化の対象によって著るしく異なる場合
がある。特開昭55−106545はα−オレフィンの
ような不飽和化合物のヒドロホルミル化に用いられるロ
ジウム触媒について活性と色との深い関係につき記して
いる。即ち、通常十分に活性なロジウム触媒錯体は麦わ
ら色であるが、失活錯体は黒色であるという。しかし、
前記アリル7 /L、コールのヒドロホルミル化の場合
は触媒の失活は色の変化を全(伴なわず、活性な触媒溶
液と同じ黄色透明な状態を維持したま〜著るしく短期間
の使用で活性だけが失なわれる。
Maintaining the activity of the hydroformylation catalyst for a long time is
This is an extremely urgent issue, and several proposals have already been made for refining raw materials and maintaining and separating the catalyst liquid as a means other than restoring the activity through catalyst treatment, but in the end, the deactivated catalyst liquid is not returned to manufacturers. (See Catalyst Vol. 23, p. 174), and a simple and effective activity recovery treatment method like the present invention has not yet been realized. However, the substance may differ significantly depending on the target of hydroformylation. JP-A-55-106545 describes the close relationship between activity and color of rhodium catalysts used in the hydroformylation of unsaturated compounds such as alpha-olefins. That is, a fully active rhodium catalyst complex is usually straw-colored, while a deactivated complex is said to be black. but,
In the case of the hydroformylation of allyl 7/L, the catalyst deactivation caused no change in color (no change in color, maintaining the same yellow and transparent state as the active catalyst solution) to a significantly short period of use. Only the activity is lost.

アリルアルコール、アリルアセテートなどアリルオキシ
化合物のヒドロホルミル化はブタンジオール類を得るプ
ロセスのうちで重要lヨ工程であり色の変化を全く伴な
わないほどの短期間で失活するのは支障があり、活性の
保持ないし再生をはかる簡易な方法の開発が望まれる。
Hydroformylation of allyloxy compounds such as allyl alcohol and allyl acetate is an important step in the process of obtaining butanediols, and deactivation in such a short period of time without any color change is a problem, and the activity It is desired to develop a simple method for preserving or regenerating the

本発明者はこのような失格の原因と対策について検削し
た結果、アリルアルコール、アリルアセテートなどのア
リルオキシ化合物はヒドロホルミル化生成物のυ・とつ
を経てロジウム錯体に対してきわめて強力に配位する不
純物を生じ、それ故一般のオレフィン化合物のヒドロホ
ルミル化と全く異なる失活状態をもたらすものと考える
に至った。
As a result of examining the causes and countermeasures for such disqualification, the present inventor found that allyloxy compounds such as allyl alcohol and allyl acetate coordinate extremely strongly to rhodium complexes through the υ and totsu of hydroformylation products. We have come to believe that this method produces impurities and therefore brings about a deactivation state that is completely different from the hydroformylation of general olefin compounds.

これを模式的に示せば次の通りである。This is schematically shown as follows.

A OCH2C、f(= CFf 2→A OCH2C
I−I CHO−)C,F(3 CF■3 ここでAは水素原子、アセチル基なとのアシル基、メチ
ル、エチルなどのアルキル基、フェニル基などのアリー
ル基、又はアリル基など、AOHの形で脱離しやすい基
を意味する。
A OCH2C, f (= CFf 2 → A OCH2C
I-I CHO-)C,F(3 CF■3 where A is a hydrogen atom, an acyl group such as an acetyl group, an alkyl group such as methyl or ethyl, an aryl group such as a phenyl group, or an allyl group, AOH means a group that is easily eliminated in the form of

本発明は、このような強力な失活性物質による失活から
も触媒活性を完全に回復させることかできる。また合成
ガスに含まれる微量のH2Sは一般的な触媒毒として長
期的な活性低下の原因となるが本発明はこのような失活
からの回復にも有効である。
The present invention can completely restore catalyst activity even from deactivation caused by such a strong deactivating substance. Furthermore, a trace amount of H2S contained in synthesis gas acts as a general catalyst poison and causes a long-term decrease in activity, but the present invention is also effective in recovering from such deactivation.

前記特開昭55−106545にばα−オレフィンのよ
うな不飽和化合物のヒドロホルミル化に用いるロジウム
触媒再生について多くの方法が試みられた旨の記載があ
り、それによると水素化ホウ素ナトリウムのメタノール
液またはヒドラジンのエタノール液のような還元剤によ
る失活触媒の処理も含めて列挙された多数の方法は、い
ずれも満足すべきものとされていなかった。
JP-A No. 55-106545 describes that many methods have been tried for regenerating rhodium catalysts used in the hydroformylation of unsaturated compounds such as α-olefins, and according to this, a methanol solution of sodium borohydride is used. The numerous methods listed, including treatment of the deactivated catalyst with a reducing agent such as a hydrazine solution in ethanol, have all been found to be unsatisfactory.

しかし、本発明者は、このような事実にめげず更に深(
検討した結果、意外にも従来試みられた“上で見捨てら
れていた水素化ホウ素化合物処理がそれに続く塩基性物
質の除去を伴なう場合に限って有効な活性回復法である
ことを見出し、本発明を完成した。
However, the inventor of the present invention was not discouraged by this fact and decided to investigate further (
As a result of our investigation, we surprisingly discovered that the treatment with a boron hydride compound, which had been previously attempted and abandoned above, was an effective activity recovery method only if it was accompanied by the subsequent removal of basic substances. The invention has been completed.

本発明で用いられたロジウム錯体触媒は特公昭45−1
0730、特公昭53−17573などで公知のもので
あり、HRh(CO)(P&)3.Rh(Co)2(ア
セチルアセトネート)、Rh4(Co)+2. Rh6
(Co)+i、などのロジウムカルボニルなどCo、 
H2、三級ホスフインの存在下容易にHRh(Co)(
PH1)3に変換されるものであればなんでも触媒とし
て用いること′ができる。
The rhodium complex catalyst used in the present invention was
0730, which is known from Japanese Patent Publication No. 53-17573, etc., and HRh(CO)(P&)3. Rh(Co)2 (acetylacetonate), Rh4(Co)+2. Rh6
Co, such as rhodium carbonyl such as (Co)+i,
H2, HRh(Co)(
Anything that can be converted to PH1)3 can be used as a catalyst.

ここでPH1で表わされる三級ホスフィンとしては、ト
リフェニルホスフィン、トリトリルホスフィン、トリフ
ェニルホスファイト、トリブチルホスフィンや一般式(
C6F−15)2P(CHJTLP(Ce l5)2T
L= 1〜6で表わされるジホスフィンなども用いられ
、これら単独もしくは二種以上混合して使用してもよい
Examples of the tertiary phosphine represented by PH1 include triphenylphosphine, tritolylphosphine, triphenylphosphite, tributylphosphine, and the general formula (
C6F-15)2P(CHJTLP(Cel5)2T
Diphosphines represented by L=1 to 6 are also used, and these may be used alone or in combination of two or more.

また、これら三級ホスフィンの酸化生成物であるホスフ
ィンオキザイドを含んでいてもよい。
Furthermore, it may contain phosphine oxide, which is an oxidation product of these tertiary phosphines.

本発明では、ヒドロホルミル化触媒は通常用いられる有
機溶媒溶液の状態で処理され、溶媒としてはベンゼン、
トルエン、キシレン、エチルベンゼンなどの芳香族炭化
水素などが一般的であるがフタル酸オクチルなどの芳香
族エステル、ソノ他ヒドロホルミル化に用いることが知
られている有機溶媒が用いられる。
In the present invention, the hydroformylation catalyst is treated in the form of a solution in a commonly used organic solvent, and the solvent is benzene,
Aromatic hydrocarbons such as toluene, xylene, and ethylbenzene are commonly used, but aromatic esters such as octyl phthalate, sono, and other organic solvents known for use in hydroformylation are also used.

本発明で処理された触媒を用いるヒドロホルミばよいが
、生産性及び経済性の観点より1〜30ICg/ c4
 G程度が好ましい。反応温度は20〜200℃、好ま
しくは50〜120℃がよい。
Hydroformation using the catalyst treated according to the present invention is sufficient, but from the viewpoint of productivity and economy, the concentration is 1 to 30 ICg/c4.
Approximately G is preferable. The reaction temperature is 20-200°C, preferably 50-120°C.

水素化ホウ素化合物処理は上記のように通常のロジウム
錯体触媒を含む触媒溶液に適用されろ。
Boron hydride compound treatment may be applied to catalyst solutions containing conventional rhodium complex catalysts as described above.

ヒドロホルミル化生成物であるアルデヒドは水素化ホウ
素化合物と反応するので、ヒドロホルミル化反応液中の
触媒は蒸留や抽出などの方法により大部分のアルデヒド
を分離した後で・水素化ホウ素化合物と接触させるのが
好ましい。しかし、アルデヒドの存在は水素化ホウ素化
合物の所要量の増大をまねくだけで、本発明を実施する
上で決定的な支障をもたらすものではない。実際、本発
明はロジウム触媒の数十モル倍もの残存アルデヒドを含
む触媒溶液についても実施てき、これは工業的にはきわ
めて有利なことである。
Since the aldehyde, which is a hydroformylation product, reacts with the borohydride compound, the catalyst in the hydroformylation reaction solution should be brought into contact with the borohydride compound after most of the aldehyde has been separated by methods such as distillation or extraction. is preferred. However, the presence of aldehyde only increases the amount of borohydride compound required and does not pose a decisive hindrance to the practice of the present invention. In fact, the present invention has been carried out on catalyst solutions containing several tens of moles of residual aldehyde as the rhodium catalyst, which is extremely advantageous from an industrial perspective.

水素化ホウ素化合物として最も入手が容易であり、かつ
安価なものは水素化ポウ素ナトIJウムNaBFLであ
り、本発明において好ましく用いられる。NaBH4は
分解抑制の効果があるアルカリの共共存している溶液(
水、アルコール)でもよい。
The most easily available and inexpensive boron hydride compound is sodium borohydride (NaBFL), which is preferably used in the present invention. NaBH4 is a solution containing an alkali that has the effect of inhibiting decomposition (
Water, alcohol) may also be used.

その他KBH4プゑどBI3あるいはB H(OCHa
)3の如きホウ素に直接結合した水素原子をもつアニオ
ンのIa、 Ha、 IJIa、 iVa族の金属塩か
用℃・られる。
Other KBH4 puedo BI3 or BH (OCHa
) Anionic metal salts of groups Ia, Ha, IJIa, and iVa having a hydrogen atom directly bonded to boron such as 3 are used.

処理方法としては、活性の低下した触媒液に、水素化ホ
ウ素化合物を固体状でそのまま、あるいは水、メタノー
ル、エタノール、プロパツールなどのアルコール類、モ
ノグライム、ジグライム、トリグライムないしテトラグ
ライムC)T3(OCI(2C[L+)+−+OCHa
 などのエチレングリコール誘導体、ジメチルホルムア
ミドなどに溶かした溶液として添加してもよ℃・。
As a treatment method, the borohydride compound is added to the catalyst liquid with reduced activity in solid form, or water, alcohols such as methanol, ethanol, propatool, monoglyme, diglyme, triglyme, or tetraglyme C) T3 (OCI). (2C[L+)+-+OCHa
It can also be added as a solution dissolved in ethylene glycol derivatives such as dimethylformamide, etc.

水、アルコールなど活性水素をもつ溶媒はNaBf(a
などと徐々に反応し水素を発生するので、水素ホウ素化
合物としての活性の低下しな℃・うちに使用するのかよ
い。水溶液で添加して撹拌などにより分散させ、触媒溶
液と接触させてもよいが、アルコールなど有機溶媒を使
えば均一相で処理することができろ。
Solvents with active hydrogen such as water and alcohol are NaBf (a
Since it gradually reacts with other substances such as hydrogen and generates hydrogen, it is best to use it at a temperature where the activity as a hydrogen boron compound will not decrease. It may be added as an aqueous solution, dispersed by stirring, etc., and brought into contact with the catalyst solution, but if an organic solvent such as alcohol is used, the treatment can be carried out in a homogeneous phase.

水素化ホウ素化合物の添加量は賦活処理すベロジウム錯
体触媒液中に含まれるロジウムと等モル以上用いるのが
普通である。触媒溶液中にアルデヒドを含んでいろ場合
には、アルデヒドによる水素化ホウ素化合物の消費を考
慮1〜で、より多い量例えばロジウムとアルデヒドの和
と等モル以上用いるのか好ましい。
The amount of the boron hydride compound added is usually equal to or more than the rhodium contained in the veradium complex catalyst solution to be activated. When the catalyst solution contains an aldehyde, it is preferable to use a larger amount, for example, an amount equal to or more than the sum of rhodium and aldehyde, taking into consideration the consumption of the borohydride compound by the aldehyde.

ロジウム錯体触媒は酸素と接触すると、ロジウム及び三
級ホスフィンが酸化されるのて、処理は琴、素、ヘリウ
ム、アルゴンメタン、水素、−酸化炭素ガスあるいはこ
れらの混合ガスなど、ロジウム錯体触媒に悪影響を及ぼ
さない雰囲気下に行なう。
When a rhodium complex catalyst comes into contact with oxygen, rhodium and tertiary phosphine are oxidized, so treatments such as hydrogen, helium, argon methane, hydrogen, carbon oxide gas, or a mixture of these gases may have an adverse effect on the rhodium complex catalyst. Carry out the test in an atmosphere that does not cause any harmful effects.

処理温度は常温で充分であるか、0〜80℃の温度で行
なっても何ら問題はない。
As for the treatment temperature, normal temperature is sufficient, or there is no problem even if the treatment is carried out at a temperature of 0 to 80°C.

処理時間は、活性低下の程度にもよるが、1〜300分
が普通であり、多くは10〜120分で充分に処理効果
があがる。
Although the treatment time depends on the degree of activity reduction, it is usually 1 to 300 minutes, and in most cases, 10 to 120 minutes is enough to achieve a sufficient treatment effect.

水素化ホウ素化合物で処理すると、普通塩基性物質を系
内に生ずる。例えば水素化ホウ素ナトリラムからはメタ
ホウ酸ナトリウムを生ずる。
When treated with borohydride compounds, basic substances are usually produced in the system. For example, sodium borohydride yields sodium metaborate.

本発明では、このような塩基性物質が再生した触媒の活
性を再び低下させろ原因になることを認識し、水素化ホ
ウ素化合物処理後塩基性物質を除去することを特徴とす
る。例えば1、処理後のロジウム錯体触媒液は水で1回
以上、好ましくは洗液のpHか7になるまで水洗するの
かよい。水洗した触媒液はそのままヒドロホルミル化反
応器に送り込むことにより、完全に活性が回復した触媒
として長期間使用することかできる。
The present invention is characterized in that the basic substances are removed after the borohydride compound treatment, recognizing that such basic substances cause the activity of the regenerated catalyst to decrease again. For example, 1. The rhodium complex catalyst solution after treatment may be washed with water one or more times, preferably until the pH of the washing solution reaches 7. By feeding the water-washed catalyst solution directly into the hydroformylation reactor, it can be used for a long period of time as a catalyst whose activity has been completely recovered.

カチオン交換、吸着など水洗以外の方法による塩基性物
質の除去もあり得るが、ロジウムのロスをもたらす場合
は好ましくない。触媒のトルエン溶液中にm1IJ!l
!シた塩基性物質を1紙フィルターにより除くこともで
きる。これはセルロースとの反応による固定化除去と考
えられる。
It is possible to remove the basic substance by methods other than washing with water, such as cation exchange and adsorption, but this is not preferable if it causes loss of rhodium. m1IJ! in a toluene solution of the catalyst! l
! Other basic substances can also be removed using a paper filter. This is considered to be immobilization removal due to reaction with cellulose.

ロジウム錯体触媒の分野においてCIRh(CO)(P
Ph3)3など塩素を含むロジウム化合物を水素化物へ
と導く還元剤として水素化ホウ素ナトリウムやKOHア
ルコール溶液を用いることが知られている。しかし、こ
の反応はもとより本発明のめざすヒドロホルミル化反応
の続行により活性のおちた触媒溶液の活性回復とは対象
を全く異にするものである。事実、塩素化合物から水素
化物を製造する反応においてはNaBH4と同様に用い
られるアルコール中のアルカリ処理では活性は回復せず
むしろ低下する。
In the field of rhodium complex catalysts, CIRh(CO)(P
It is known to use sodium borohydride or a KOH alcohol solution as a reducing agent for converting rhodium compounds containing chlorine, such as Ph3)3, into hydrides. However, this reaction is completely different from the objective of the present invention, which is to recover the activity of a catalyst solution that has lost its activity due to the continuation of the hydroformylation reaction. In fact, in the reaction of producing hydrides from chlorine compounds, when treated with alkali in alcohol, which is used similarly to NaBH4, the activity does not recover but rather decreases.

また、CaH2や、一般にはN a B 、H4よりも
高℃・還元能を有するL i A I H4など他の水
素化物では触媒活性回復効果のないことも本発明が単な
る還元処理でなく、特異的なものであることを物語って
いる。
In addition, the present invention is not just a reduction treatment, but also a unique one, since other hydrides such as CaH2 and LiA IH4, which generally have a higher temperature reduction ability than NaB and H4, have no effect on restoring the catalytic activity. It shows that it is something like that.

以下、実施例により本発明を更に詳述する。Hereinafter, the present invention will be explained in further detail with reference to Examples.

なお、触媒活性の測定方法を参考例1に、又水素化ホウ
素化合物処理に供した活性低下触媒を得た。
The method for measuring the catalyst activity was as shown in Reference Example 1, and a catalyst with reduced activity was obtained which was subjected to a boron hydride compound treatment.

ヒドロホルミル化反応例を参考例2に示した。An example of the hydroformylation reaction is shown in Reference Example 2.

また、以下の実験ではロジウム錯体触媒溶液としてHR
h (CO) (PRh3)30.6−6−2rn l
/lとPRb3(100〜200mmol/l)とを含
むトルエン溶液を用いた。
In addition, in the following experiments, HR was used as the rhodium complex catalyst solution.
h (CO) (PRh3)30.6-6-2rn l
A toluene solution containing PRb3 (100 to 200 mmol/l) and PRb3 (100 to 200 mmol/l) was used.

参考例1 0ジウム錯体触媒液にアリルアルコール01mol/1
を加えて、」W、押下にCo、H2ガス(CO50%)
を通じ、1気圧60°Cでヒドロホルミル化反応を行な
わせ、アリルアルコールの減少速度定数AHr−1)を
測定することにより、触媒の活性を評価した。
Reference example 1 Allyl alcohol 01mol/1 in 0dium complex catalyst solution
Add ``W, press Co, H2 gas (CO50%)
The activity of the catalyst was evaluated by carrying out the hydroformylation reaction at 1 atm at 60° C. and measuring the reduction rate constant AHr-1) of allyl alcohol.

参考例2 0ジウム錯体触媒液とアリルアルコール濃度が14〜3
.5mol/1となる量のアリルアルコールを混合し、
95〜22. l 1/Hrの速度で液容積60石の気
泡塔式反応器に連続的に仕込み、全圧か1.6〜2. 
OIcg / c、f、となるようにCo、H2混合ガ
ス(C016〜27%)を供給してアリルアルコールの
ヒドロホルミル化反応を55〜75°Cで行1よい、反
応生成物は水で抽出し、ロジウム錯体触媒液は再び反応
器に循環した。この反応を90日間行なった後に反応を
停止し、取り出した触媒溶液は参考例1の方法で測定し
た初期の活性が29〜3.OHr  であったものが、
12〜]、 3 Hl−”−1に低下していた。
Reference example 2 Odium complex catalyst liquid and allyl alcohol concentration are 14-3
.. Mix allyl alcohol in an amount of 5 mol/1,
95-22. The liquid was continuously charged into a bubble column reactor with a liquid volume of 60 stones at a rate of 1/Hr, and the total pressure was 1.6-2.
The hydroformylation reaction of allyl alcohol is carried out at 55-75 °C by supplying Co and H2 mixed gas (CO16-27%) so that OIcg/c, f.1.The reaction product is extracted with water. , the rhodium complex catalyst liquid was circulated to the reactor again. After this reaction was carried out for 90 days, the reaction was stopped and the catalyst solution taken out had an initial activity of 29 to 3. What used to be OHr,
12~], 3 Hl-''-1.

この触媒溶液中には30 mmol/1のアルデヒドが
残存している。
30 mmol/1 aldehyde remains in this catalyst solution.

実施例1 参考例2に示した活性の低下したロジウムに触媒液10
0−に50 mmo l/l 9度の水素化ホウ素ナト
リウム水溶液100m1を加え、窒素雰囲気下150°
Cで2時間攪拌した。処理後ロジウム触媒液を100y
dの水で3回洗浄し、参考例1の方法で活性を測定した
ところK = 3.OHr−’となっており、活性が完
全に回復していることが明らかになった。触媒液中のア
ルデヒドとロジウムの合計に対するNaBH4の使用量
は約1.6倍(モル比)であった。
Example 1 Catalyst liquid 10 was added to the rhodium with reduced activity shown in Reference Example 2.
Add 100 ml of a 50 mmol/l 9 degree aqueous solution of sodium borohydride to 0-, and heat at 150 degrees under a nitrogen atmosphere.
The mixture was stirred at C for 2 hours. 100y of rhodium catalyst liquid after treatment
The product was washed three times with water in step d, and the activity was measured by the method of Reference Example 1. K = 3. OHr-', indicating that the activity had been completely recovered. The amount of NaBH4 used was about 1.6 times (molar ratio) the total amount of aldehyde and rhodium in the catalyst solution.

実施例2 水素化ホウ素す) IJウム水溶液の濃度を10mmo
l/lとしくロジウム」−アルデヒドに対する・ モル
比0.32)、その他は実施例1と同様の処理を行なっ
た結果、K=2.4Hr  であった。
Example 2 Boron hydride) The concentration of IJium aqueous solution was 10 mm
The same treatment as in Example 1 was carried out except that the molar ratio of rhodium to aldehyde (l/l) was 0.32), and as a result, K=2.4 Hr.

実施例3 処理温度を60℃とした他は実施例2と同じ処理を行な
った結果、K = 2.41(、であった。
Example 3 The same treatment as in Example 2 was performed except that the treatment temperature was 60° C., and the result was K = 2.41.

実施例4 参考例2と同様の反応と水抽出で得られた活性の低下し
たロジウム触媒液(残存アルデヒド7 mmol/l 
)  100 rdを用い、雰囲気をCO/H2混合ガ
スとした他は実施例1と同じ処理を行なった結果、K=
2.9Hrであった。触媒液中のアルデヒドとロジウム
の合計に対1−るN a B H4の使用量は約62倍
(モル比)であった。
Example 4 A rhodium catalyst solution with reduced activity obtained by the same reaction and water extraction as in Reference Example 2 (residual aldehyde 7 mmol/l)
) 100rd and the atmosphere was a CO/H2 mixed gas, the same treatment as in Example 1 was performed, and as a result, K=
It took 2.9 hours. The amount of NaBH4 used was about 62 times (molar ratio) the total amount of aldehyde and rhodium in the catalyst solution.

実施例5 500 mmol/]濃度の水素化ホウ素ナトリウムの
エタノール溶液10m1を用いて均一系で処理を行lt
っだ。他の条件は実施例4と同じである。処理後の反応
速度定数はKM4= 3. OHr ’であった。
Example 5 Treatment was carried out in a homogeneous system using 10 ml of an ethanol solution of sodium borohydride at a concentration of 500 mmol/]
Yes. Other conditions are the same as in Example 4. The reaction rate constant after treatment is KM4=3. It was OHr'.

実施例6 200 mmol/1濃度の水素化ホウ素すl−’Jウ
ムのエタノール溶液35−(ロジウム錯体触媒た他は実
施例5と同じ処理を行なった結果、KM4= 2.8 
Hr  であった。
Example 6 An ethanol solution of 1-'Jium boron hydride at a concentration of 200 mmol/1 was prepared using the same treatment as in Example 5 except for the rhodium complex catalyst. As a result, KM4 = 2.8
It was Hr.

実施例7 参考例2と同様の反応と水抽出で得られた活性の低下し
たロジウム触媒液(残存アルデヒド7 mmo 1/ 
1 ) 5.0に200 mrnol/l濃度の水素化
ホウ素ナトリウムのエタノール溶液25〇−(ロ)ウム
→−アルデヒドに対するN a B H4のモル比1.
2倍)を加え、CO/H2混合ガス雰囲気下25℃で2
時間攪拌した。処理後等容積の水で11回洗浄し、参考
例1の方法で活性を測定したところに釧洋= 2.9 
IIr  であった。
Example 7 A rhodium catalyst solution with reduced activity obtained by the same reaction and water extraction as in Reference Example 2 (residual aldehyde 7 mmo 1/
1) An ethanolic solution of sodium borohydride at a concentration of 200 mrnol/l to 5.0 molar ratio of Na B H4 to 250-(Ro)ium→-aldehyde 1.
2 times) at 25°C under a CO/H2 mixed gas atmosphere.
Stir for hours. After treatment, it was washed 11 times with the same volume of water, and the activity was measured using the method of Reference Example 1.
It was IIr.

コノロジウムIQJr Hを用い、アリルアルコールを
2mol/lとなる量を混合して、この液を05A/H
rの速度で減容積1. 3 5 −に3の気泡塔型反応
器に連続的に仕込み、全圧が3 tcg 7 cAとな
るようにCO,H2ガス(CO20%)を供給してアリ
ルアルコールのヒドロホルミル化反応を65℃で行ない
、反応生成物は水で抽出し、ロジウム錯体触媒液は再び
反応器に循環した。この反応を100時間続げたが、ア
リルアルコールの転化率は98%と一定に維持され、ま
た参考例1の方法で活性を測定したところ初期となんら
変化していなかった。
Using Conorhodium IQJr H, mix allyl alcohol in an amount of 2 mol/l, and add this liquid to 05A/H.
Volume reduction at a speed of r1. 3 5 - was continuously charged into the bubble column reactor in 3, and CO and H2 gases (CO20%) were supplied so that the total pressure was 3 tcg 7 cA, and the hydroformylation reaction of allyl alcohol was carried out at 65 °C. The reaction product was extracted with water, and the rhodium complex catalyst solution was circulated to the reactor again. This reaction was continued for 100 hours, but the conversion rate of allyl alcohol was maintained constant at 98%, and when the activity was measured by the method of Reference Example 1, no change was found from the initial stage.

このように、著しく活性の低下したロジウム錯体触媒で
も水素化ホウ素す) IJウムによる処理で容易に活性
が完全回復し、持続することが明らかになった。
In this way, it has become clear that even a rhodium complex catalyst whose activity has been significantly reduced can easily recover completely and maintain its activity by treatment with boron hydride.

実施例8′ エタノールのかわりにジメチルホルムアミドを用いた他
は実施例5と同じ処理を行なった結果、活性はに=3.
IHr となり、完全に回復した。
Example 8' The same treatment as in Example 5 was carried out except that dimethylformamide was used instead of ethanol. As a result, the activity was 3.
The patient developed IHR and made a complete recovery.

実施例9 実施例4で使用したものと同じ活性の低下したロジウム
触媒液100mlに水素化ホウ素ナトリウム7%、水酸
化ナトリウム245%を含む水溶液50彪を加え、窒素
雰囲気下20℃で2時間攪拌した。処理後ロジウム触媒
液を875−の水で3回洗浄し、活性を測定したところ
、K = 2. 9であり、水酸化ナトリウムを含む高
濃度水素化ホウ素溶液でも問題なく活性が回復した。な
お、こ匁で用いた水素化ホウ素す) IJウムと水酸化
す) IJウムとの比ばNa B H4の製造プロセス
から出ろ12%+42%の水溶液と同じ比のものであり
、経済的である。
Example 9 50 Biao of an aqueous solution containing 7% sodium borohydride and 245% sodium hydroxide was added to 100 ml of the same rhodium catalyst solution with reduced activity as that used in Example 4, and the mixture was stirred at 20°C for 2 hours under a nitrogen atmosphere. did. After the treatment, the rhodium catalyst solution was washed three times with 875-g water and the activity was measured, and it was found that K = 2. 9, and the activity was recovered without any problem even in a high concentration borohydride solution containing sodium hydroxide. It should be noted that the ratio of boron hydride used in this study to IJium hydroxide is the same as the 12% + 42% aqueous solution from the NaBH4 production process, making it economical. be.

実施例10 実施例4で使用したと同じ活性の低下したロジウム触媒
液100mlに水素化ホウ素ナトリウムを固体のま又で
用y加え窒素雰囲下20’Cで2時間攪拌した。処理後
固体の水素化ホウ素ナトリウムをr過により除き、ロジ
ウム触媒液を86ゴの水で3回洗浄し、活性を測定した
ところに−28であり、固体状態の水素化ホウ素化合物
を用いても充分活性が回復した。
Example 10 To 100 ml of the same rhodium catalyst solution with reduced activity as used in Example 4, sodium borohydride was added in solid form and stirred at 20'C for 2 hours under nitrogen atmosphere. After the treatment, the solid sodium borohydride was removed by filtration, and the rhodium catalyst solution was washed three times with 86 g of water.The activity was measured to be -28, and even if a solid state borohydride compound was used, the rhodium catalyst solution was washed with 86 g of water three times. Activity has fully recovered.

実施例11 活性の低下していないロジウム触媒液100−に硫化水
素を触媒液中に含まれるロジウムに対して等モル量論え
ると活性はに−25であったものかに−08まで低下し
た。この触媒液を実施例1と同じ処理を行なうことによ
り、活性はに−25となり、完全に回復した。
Example 11 When hydrogen sulfide was added to the rhodium catalyst liquid 100-100, which had not decreased its activity, in an equimolar amount to the rhodium contained in the catalyst liquid, the activity decreased from -25 to -08. . By subjecting this catalyst solution to the same treatment as in Example 1, the activity became -25, completely recovered.

比較例1゜ 水素化ホウ諮ナトリウムのかわりに水酸化ナトリウムを
用いた他は実施例1と同じ処理を行なった結果、活性ば
に=0.24Hr となり、むしろ低下した。
Comparative Example 1 The same treatment as in Example 1 was carried out except that sodium hydroxide was used instead of sodium borohydride. As a result, the activity was 0.24 Hr, which was actually lower.

比較例2 水素化ホウ素ナトリウムのかわりにヒドラジンを用いた
他は実施例1と同じ処理を行なった結果、活性員−に=
1. Of■rで、全く回復していフ、[かった。
Comparative Example 2 The same treatment as in Example 1 was carried out except that hydrazine was used instead of sodium borohydride. As a result, the active member - =
1. Of■r, I had not recovered at all.

比較例3 水素化ホウ素ナトリウムのかわりにリチウムアルミニラ
ムノ・イドライドを月見・た他は実施例10と同じ処理
を行なった結果、活性はに一12Hrで、全く回復して
いなかった。
Comparative Example 3 The same treatment as in Example 10 was carried out, except that lithium aluminum rhamnohydride was used instead of sodium borohydride. As a result, the activity was 12 hours, with no recovery at all.

比較例4 水素化ホウ素ナトリウムのかわりに水素化カルシウムを
用いた他は実施例1oと同じ処理を行なった結果、活性
はに=0.98Hr で、全く回復していなかった。
Comparative Example 4 The same treatment as in Example 1o was carried out except that calcium hydride was used instead of sodium borohydride. As a result, the activity was 0.98 Hr, and no recovery was observed at all.

特許出願人 ダイセル化学工業株式会社patent applicant Daicel Chemical Industries, Ltd.

Claims (1)

【特許請求の範囲】 (11活性の低下したロジウム・ホスフィン系ヒドロホ
ルミル化触媒溶液を水素化ホウ素化合物で処理したのち
、塩基性物質を除去することを特徴とするヒドロホルミ
ル化触媒の活性回復法 (2)  アリルオキシ化合物のヒドロホルミル化反応
に用いて活性の低下した触媒を処理する特許請求の範囲
第1項記載の方法
[Claims] (11) A method for restoring the activity of a hydroformylation catalyst characterized by treating a rhodium-phosphine-based hydroformylation catalyst solution whose activity has decreased with a boron hydride compound and then removing the basic substance (2) ) The method according to claim 1 for treating a catalyst with reduced activity for use in a hydroformylation reaction of an allyloxy compound.
JP57225514A 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst Granted JPS59115752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225514A JPS59115752A (en) 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225514A JPS59115752A (en) 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst

Publications (2)

Publication Number Publication Date
JPS59115752A true JPS59115752A (en) 1984-07-04
JPH0237216B2 JPH0237216B2 (en) 1990-08-23

Family

ID=16830505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225514A Granted JPS59115752A (en) 1982-12-22 1982-12-22 Method of reactivating hydroformylation catalyst

Country Status (1)

Country Link
JP (1) JPS59115752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290743A (en) * 1993-03-22 1994-03-01 Arco Chemical Technology L.P. Process for regenerating a deactivated rhodium hydroformylation catalyst system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101011U (en) * 1989-01-30 1990-08-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290743A (en) * 1993-03-22 1994-03-01 Arco Chemical Technology L.P. Process for regenerating a deactivated rhodium hydroformylation catalyst system

Also Published As

Publication number Publication date
JPH0237216B2 (en) 1990-08-23

Similar Documents

Publication Publication Date Title
US4473655A (en) Method for the recovery of rhodium complexes
US4135911A (en) Rhodium recovery from hydroformylation still heel with triaryl phosphite ligand
SU1757458A3 (en) Method of oil aldehyde production
US4396551A (en) Method for the recovery of Group VIII noble metal solid complexes
NL193211C (en) Process for preparing hydroxybutyraldehyde.
NO981937D0 (en) Process for preparing 1,3-propanediol
CN102382143B (en) Preparation method of hydroformylation homogeneous complex catalyst
EP1315693B1 (en) Recovery of metals from olefin hydroformylation reactions
JPS59115752A (en) Method of reactivating hydroformylation catalyst
US5091546A (en) Novel rhodium recovery
JPH0248419A (en) Separation and recovery of oxo synthetic product from distillation residue
JP2588374B2 (en) Method for producing hydridecarbonyltris (triorganophosphorus) rhodium compound
Chudek et al. In situ FTIR study of CO–H 2 reactions over RH/TiO 2 catalysts at high pressure and temperature
US4518805A (en) Process for removing hydroperoxides and aldehydes from allyl-alkyl ether
EP0060523B1 (en) Process for removing hydroperoxides and aldehydes from allyl-alkyl ether
US3634497A (en) Acid reconstitution of spent alkaline wash solutions used in regenerating noble metal unsaturated ester synthesis catalysts
JP2993032B2 (en) Separation and recovery of Group VIII noble metals
JPH058055B2 (en)
RU2203734C2 (en) Method of removing carbonyl compound of cobalt and rhodium from aqueous solution of 3-hydroxypropanal
JPH01203227A (en) Recovery rhodium from aqueous solution containing rhodium complex
JP2009101326A (en) Method for regenerating iridium compound
Muradov et al. New models of monooxygenase on the basis of Sn (II) compounds
JP4122534B2 (en) Method for recovering Group VIII metal from carbonylation reaction solution
JPS59112838A (en) Preparation of noble metal catalyst supported by ion exchange resin
JP3796842B2 (en) Method for recovering Group VIII metal from carbonylation reaction solution