JPS59115578A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59115578A
JPS59115578A JP57228170A JP22817082A JPS59115578A JP S59115578 A JPS59115578 A JP S59115578A JP 57228170 A JP57228170 A JP 57228170A JP 22817082 A JP22817082 A JP 22817082A JP S59115578 A JPS59115578 A JP S59115578A
Authority
JP
Japan
Prior art keywords
layer
infrared sensor
temperature
conductivity type
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57228170A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakai
宏 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57228170A priority Critical patent/JPS59115578A/en
Publication of JPS59115578A publication Critical patent/JPS59115578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • H01L31/1032Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIBVI compounds, e.g. HgCdTe IR photodiodes

Abstract

PURPOSE:To obtain an infrared ray sensor which has small size and is accurately controlled at the temperature by forming the first and second N type insular layers on a P type compound semiconductor substrate, providing an infrared sensor on the first insular layer, and using the second insular layer as its temperature sensor. CONSTITUTION:Windows are opened at a ZnS film 5 on a P type HgCdTe substrate 1, heated in Hg atmosphere to form N type insular layers 2, 3. An Au electrode 6 is formed through a ZnS film on the surface of the layer 2, and an Au ohmic electrode 7 is attached to the surface of the layer 3. According to this configuration, a normal infrared sensor arranged with many picture elements on the layer 2 and an infrared sensor having diodes with the substrate 1 and the layer 3 are completed, and the temperature difference between the sensors and the diodes can be extremely reduced by approaching the layers 2, 3, thereby detecting the sensor temperature accurately, and forming a small size in such a manner that both are integrated.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置に係り、特に水銀・カドミウム・テ
ルル(HgCdTe)等の化合物半導体結晶を基板材料
とするMIS構造の赤外線センサの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device, and particularly to an improvement of an infrared sensor having an MIS structure using a compound semiconductor crystal such as mercury-cadmium-tellurium (HgCdTe) as a substrate material.

(b)  従来技術と問題点 HgCdTe等よりなる赤外線センサは、これを実際に
使用する際に冷却を必要とする。そのため冷却器に取り
付けられたHgCdTe赤外線センサの近傍に、別個に
作成されたシリコン(Si)等よりなる温度センサを取
り付け、この温度センサによってHgCdTe赤外線セ
ンサの温度を検知し、所定の温度に保つよう制御してい
た。
(b) Prior Art and Problems An infrared sensor made of HgCdTe or the like requires cooling when it is actually used. Therefore, a separately manufactured temperature sensor made of silicon (Si) is installed near the HgCdTe infrared sensor attached to the cooler, and this temperature sensor detects the temperature of the HgCdTe infrared sensor and maintains it at a predetermined temperature. I was in control.

ところが上記構成では赤外線センサと温度センサとが離
れているため、赤外線センサの温度を高精度に制御する
ことが出来ないこと、また別個に作成された21[1i
1の素子を使用するため、赤外線検知器の容積が大きく
なり、検知器の小型化に限界を生じる。
However, in the above configuration, the infrared sensor and the temperature sensor are separated, so the temperature of the infrared sensor cannot be controlled with high precision.
Since only one element is used, the volume of the infrared detector becomes large, which puts a limit on miniaturization of the detector.

FC+  発明の目的 本発明の目的は赤外線検知器をより小型化可能で且つ、
赤外線センサの温度制御をより高精度化し得るMIS構
造の赤外線センサを提供することにある。
FC+ OBJECTS OF THE INVENTION An object of the present invention is to make an infrared detector more compact;
It is an object of the present invention to provide an infrared sensor having an MIS structure that allows for higher precision temperature control of the infrared sensor.

(dl  発明の構成 本発明の特徴は、−導電型を有する化合物半導体基板と
、該化合物半導体基板表面に島状に形成された第1の逆
導電型領域と、該第1の逆導電型領域表面に絶縁膜を介
して所定の電極が配設されてなる赤外線センサの、前記
化合物半導体基板表面に前記第1の逆導電型領域とは異
なる位置に島状に形成された第2の逆導電型領域が設け
られ、該第2の逆導電型領域と前記化合物半導体基板と
からなるpn接合ダイオードが前記赤外線センサの温度
センサとして用いられたことにある。
(dl Structure of the Invention The features of the present invention include a compound semiconductor substrate having a conductivity type, a first opposite conductivity type region formed in an island shape on the surface of the compound semiconductor substrate, and the first opposite conductivity type region. A second opposite conductivity type region formed in the form of an island at a position different from the first opposite conductivity type region on the surface of the compound semiconductor substrate of an infrared sensor having a predetermined electrode disposed on the surface with an insulating film interposed therebetween. A pn junction diode including a second reverse conductivity type region and the compound semiconductor substrate is used as a temperature sensor of the infrared sensor.

(e)  発明の実施例 以下本発明の一実施例を図面を参照しながら説明する。(e) Examples of the invention An embodiment of the present invention will be described below with reference to the drawings.

図は本発明の一実施例としての赤外線センサを示す要部
断面図であって、■はp型のHgCdTe結晶基板、2
は上記HgCdTe基板表面に島状に形成された第1の
n型領域、3は同しく島状に形成された第2のn型領域
、4は上記島状に形成された第1のn型領域2表面に形
成された第1の絶縁膜で例えば硫化亜鉛(Zn’S)映
、5は上記第1及び第2のn型領域2,3を除く残りの
領域を被覆する第2の絶縁膜、6は上記第1の絶縁膜4
を介して第1のn型領域2上に形成された多数の画素の
電極、7は第2のn型領域3表面とオーミック接触をな
ずオーミック電極である。
The figure is a cross-sectional view of essential parts of an infrared sensor as an embodiment of the present invention, where ■ is a p-type HgCdTe crystal substrate;
3 is a first n-type region formed in an island shape on the surface of the HgCdTe substrate, 3 is a second n-type region also formed in an island shape, and 4 is the first n-type region formed in an island shape. A first insulating film formed on the surface of region 2 is made of, for example, zinc sulfide (Zn'S), and 5 is a second insulating film that covers the remaining regions except for the first and second n-type regions 2 and 3. The film 6 is the first insulating film 4
A large number of pixel electrodes 7 formed on the first n-type region 2 through the electrodes 7 do not make ohmic contact with the surface of the second n-type region 3 and are ohmic electrodes.

上記p型のHgCdTe結晶基板は、l1gCdTe結
晶基板に加熱処理を施すことにより、HgCdTe結晶
中より水銀(Ilg)が抜は出し、その跡に空格子点が
形成されることによってp型とされたものである。
The above p-type HgCdTe crystal substrate was made p-type by heat-treating the l1gCdTe crystal substrate to extract mercury (Ilg) from the HgCdTe crystal and form vacancies in its wake. It is something.

このl1gの空格子点が形成されたことによりp型とさ
れたHgCdTe結晶基板表面に、上記第2の絶縁膜(
例えばZnS膜)5を形成し、これを選択的に除去して
上記第1及び第2のn型領域2を形成すべき部分に開口
窓を設けて、該開口窓内にHgC,dTe結晶基板1表
面を露出させる。次いで残留せる第2の絶縁膜をマスク
として、上記p型HgCdTe結晶基板1に11g雰囲
気中において加熱処理を施すことにより、上記開口窓内
に露出せるl1gCdTe結晶基板1の表面層の空格子
点には再びHgが埋め込まれ、該表面層部分は島状のn
型領域に変換され、上記第1及び第2のn型領域2,3
が形成される。
The second insulating film (
For example, a ZnS film) 5 is formed and selectively removed to provide an opening window in the portion where the first and second n-type regions 2 are to be formed. 1. Expose one surface. Next, using the remaining second insulating film as a mask, the p-type HgCdTe crystal substrate 1 is subjected to heat treatment in a 11g atmosphere, thereby forming vacancies in the surface layer of the l1gCdTe crystal substrate 1 exposed within the opening window. is again filled with Hg, and the surface layer is covered with island-like n
The first and second n-type regions 2, 3 are converted into type regions.
is formed.

この後、第1のn型領域2表面にZnSのような第1の
絶縁膜を所定の厚さに形成し、その上に金(Au)のよ
うな金属よりなる多数の画素電極6を形成し、更に第2
のn型領域3表面に例えば金(Au)よりなるオーミッ
ク電極7を形成する。
After this, a first insulating film such as ZnS is formed to a predetermined thickness on the surface of the first n-type region 2, and a large number of pixel electrodes 6 made of a metal such as gold (Au) are formed thereon. And then the second
An ohmic electrode 7 made of, for example, gold (Au) is formed on the surface of the n-type region 3 .

このようにして得られた本実施例のMIS構造の赤外線
センサの完成体は、第1のn型領域2に多数の画素が配
設された通常の赤外線センザ部と、p型のl1gcdT
e結晶基板lと第2基板型領域3とにより構成されたダ
イオード部とを具備してなる。
The completed infrared sensor with the MIS structure of this example thus obtained consists of a normal infrared sensor section in which a large number of pixels are arranged in the first n-type region 2, and a p-type l1gcdT
It comprises a diode section constituted by an e-crystal substrate 1 and a second substrate type region 3.

温度センサは一般にpn接合ダイオードの逆方向或いは
順方向の電圧−電流特性の温度依存性を利用したもので
ある。本実施例は同一基板上に赤外線センサ部とともに
、温度センサとして使用し得るダイオード部とを設けた
ものである。
Temperature sensors generally utilize the temperature dependence of the reverse or forward voltage-current characteristics of a pn junction diode. In this embodiment, an infrared sensor section and a diode section that can be used as a temperature sensor are provided on the same substrate.

このようにダイオード部を赤外線センサ部と同一基板上
に設けた本実施例においては、ダイオード部の温度と赤
外線センサ部の温度との差は極めて小さいので、上記ダ
イオード部を温度センサとして用いることにより、赤外
線センザ部の温度を高精度で検出することが出来る。し
がもこのように両者を一体化することにより赤外線検知
器の小型化が容易となる。
In this embodiment, in which the diode section is provided on the same substrate as the infrared sensor section, the difference between the temperature of the diode section and the temperature of the infrared sensor section is extremely small, so the diode section can be used as a temperature sensor. , the temperature of the infrared sensor section can be detected with high precision. However, by integrating the two in this way, it becomes easy to downsize the infrared detector.

なお上記一実施例ではHgCdTe結晶基板を用いた赤
外線センサを掲げて説明したが、本発明の赤外線センサ
の基板材料はこれに限定されるものではなく、赤外線セ
ンサを作成するのに通常用いられる化合物半導体1例え
はインジウム・アンチモン(InSb)等を用いること
も出来る。
In the above embodiment, an infrared sensor using a HgCdTe crystal substrate was explained, but the substrate material of the infrared sensor of the present invention is not limited to this, and compounds commonly used for making infrared sensors can be used. As an example of a semiconductor, indium antimony (InSb) or the like may be used.

また第1及び第2の絶縁膜或いは電極等は、通電使用し
得るいかなる材料を使用しても良いことは特に説明する
までもない。
It is needless to say that the first and second insulating films, electrodes, etc. may be made of any material that can be used to conduct electricity.

(f)  発明の詳細 な説明した如く本発明によれば、赤外線センサの温度を
高精度で検出すること示可能となり、しかも赤外線検知
器の小型化が容易となる。
(f) Detailed Description of the Invention According to the present invention, it is possible to detect the temperature of an infrared sensor with high accuracy, and the infrared detector can be easily miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す要部断面図であって、1は
一導電型を有する化合物半導体基板、2は上記化合物半
導体基板1表面に島状に形成された第1の逆導電型領域
、3は同じく島状に形成された第2の逆導電型領域、4
は上記島状に形成された第1の逆導電型領域2表面に形
成された第1の絶縁膜5は上記第1及び第2の逆導電型
領域2゜3を除く残りの領域を被覆する第2の絶縁膜、
6は上記第1の絶縁膜4を介して第1の逆導電型領域2
上に形成された多数の画素の電極、7は第2の逆導電型
領域3表面とオーミック接触をなずオーミック電極を示
す。 355−
The figure is a sectional view of a main part showing an embodiment of the present invention, in which 1 is a compound semiconductor substrate having one conductivity type, and 2 is a first opposite conductivity type formed in an island shape on the surface of the compound semiconductor substrate 1. Region 3 is a second opposite conductivity type region 4 similarly formed in an island shape.
The first insulating film 5 formed on the surface of the island-shaped first opposite conductivity type region 2 covers the remaining area except for the first and second opposite conductivity type regions 2°3. a second insulating film,
6 is a first opposite conductivity type region 2 via the first insulating film 4.
A large number of pixel electrodes 7 formed thereon are not in ohmic contact with the surface of the second opposite conductivity type region 3 and represent ohmic electrodes. 355-

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する化合物半導体基板と、該化合物半導体
基板表面に島状に形成された第1の逆導電型領域と、゛
該第1の逆導電型領域表面に絶縁膜を介して所定の電極
が配設されてなる赤外線センサの、前記化合物半導体基
板表面に前記第1の逆導電型領域とは異なる位置に島状
に形成された第2の逆導電型領域が設けられ、該第2の
逆導電型領域と前記化合物半導体基板とからなるpn接
合ダイオードが前記赤外線センサの温度センサとして用
いられたことを特徴とする半導体装置。
A compound semiconductor substrate having one conductivity type, a first opposite conductivity type region formed in an island shape on the surface of the compound semiconductor substrate, and a predetermined electrode on the surface of the first opposite conductivity type region via an insulating film. An infrared sensor is provided with a second opposite conductivity type region formed in an island shape at a position different from the first opposite conductivity type region on the surface of the compound semiconductor substrate, and the second opposite conductivity type region is A semiconductor device characterized in that a pn junction diode including a region of opposite conductivity type and the compound semiconductor substrate is used as a temperature sensor of the infrared sensor.
JP57228170A 1982-12-22 1982-12-22 Semiconductor device Pending JPS59115578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228170A JPS59115578A (en) 1982-12-22 1982-12-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228170A JPS59115578A (en) 1982-12-22 1982-12-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59115578A true JPS59115578A (en) 1984-07-04

Family

ID=16872316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228170A Pending JPS59115578A (en) 1982-12-22 1982-12-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59115578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170755A (en) * 1984-08-31 1986-04-11 テキサス インスツルメンツ インコーポレイテツド Photodetecting element by metal insulator semiconductor and method of producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170755A (en) * 1984-08-31 1986-04-11 テキサス インスツルメンツ インコーポレイテツド Photodetecting element by metal insulator semiconductor and method of producing same
JPH0587028B2 (en) * 1984-08-31 1993-12-15 Texas Instruments Inc

Similar Documents

Publication Publication Date Title
US5567975A (en) Group II-VI radiation detector for simultaneous visible and IR detection
US6355939B1 (en) Multi-band infrared photodetector
US6483111B1 (en) Thermal infrared-detector array and method of fabrication thereof
US4638345A (en) IR imaging array and method of making same
US20210391505A1 (en) Semiconductor device
JPS58138187A (en) Solid-state image sensor
GB1532859A (en) Charge coupled circuit arrangements and devices
JP2002083995A (en) Multi-wavelength photodiode
EP3766102B1 (en) Surface mesfet
JPH0436470B2 (en)
US4929994A (en) Solid-state imaging device with multiple dielectric layers
JPS62160776A (en) Photovoltage detector and manufacture of the same
US4801991A (en) Semiconductor light receiving device
JPS59115578A (en) Semiconductor device
Zandian et al. Mid-wavelength infrared p-on-n Hg 1− x Cd x Te heterostructure detectors: 30–120 kelvin state-of-the-Art performance
CN207947288U (en) Infrared detecting pixel structure and infrared detector
US5517029A (en) Dual-band IR scanning focal plane assembly having two monolithically integrated linear detector arrays for simultaneous image readout
US20230332942A1 (en) Electromagnetic wave detector and electromagnetic wave detector array
JPH03145763A (en) Photoetching device
JPH03212979A (en) Infrared sensor
JPS59112652A (en) Semiconductor image pickup device
JP2001102644A (en) Thermoelectric conversion device
JPH02219286A (en) Infrared ray sensor and manufacture thereof
JP2012230010A (en) Infrared sensor
JP3364989B2 (en) Avalanche photodiode for split optical sensor