JPS59115401A - Cooled blade of gas turbine - Google Patents

Cooled blade of gas turbine

Info

Publication number
JPS59115401A
JPS59115401A JP22506782A JP22506782A JPS59115401A JP S59115401 A JPS59115401 A JP S59115401A JP 22506782 A JP22506782 A JP 22506782A JP 22506782 A JP22506782 A JP 22506782A JP S59115401 A JPS59115401 A JP S59115401A
Authority
JP
Japan
Prior art keywords
blade
cooling
gas turbine
cooling fluid
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22506782A
Other languages
Japanese (ja)
Inventor
Fumio Otomo
文雄 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22506782A priority Critical patent/JPS59115401A/en
Publication of JPS59115401A publication Critical patent/JPS59115401A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To remove cooling fluid without mixing it with main flow gas, by a method wherein a cylindrical injection tube, which extends radially and is coupled to a cooling passage in a blade body, is mounted to the forward end of a cooled blade. CONSTITUTION:A cylindrical injection tube 20, extending radially, is mounted to the forward end of a cooled blade 23. Cooling fluid, fed to a cooling fluid feed port 11 formed in the base part of the blade 23, passes through cooling passages 12 from the interior of a platform 19, and is guided in a gap 22 inside the forward end to be ejected outside the blade through the injection tube 20. The ejected cooling fluid is collected in a collector 15 mounted in the peripheral direction of a turbine casing 18. This enables the cooling fluid to be removed without mixing it with main flow gas.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は冷却媒体によりて冷却されるガスタービン冷却
翼において、上記冷却媒体をケーシング部で回収して主
流ガスとの混合をなくシ、ガスタービン装置の熱効率を
向上させるガスタービン冷却翼に関する。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention relates to a gas turbine cooling blade that is cooled by a cooling medium, in which the cooling medium is collected in a casing part to eliminate mixing with mainstream gas, and to improve the gas turbine cooling blade. The present invention relates to a gas turbine cooling blade that improves the thermal efficiency of a turbine device.

〔従来技術とその問題点〕[Prior art and its problems]

周知のように、ガスタービンは、往復機関に比較して小
形軽量で大馬力が得られるなどの多くの利点を有してい
る。
As is well known, gas turbines have many advantages over reciprocating engines, such as being smaller, lighter, and more powerful.

このようなガスタービン、たとえば等圧燃焼式のものを
例にとると、通常、第1図に示すように筒状のケーシン
グ1内に軸2を回転自在に設け、この軸2の両端部とケ
ーシング1との間にそれぞ圧縮機Jとパワータービン生
とを構成し、圧縮機3で圧縮された高圧空気で燃焼器5
内の圧力を高め、この状態で燃料を噴射させて燃焼させ
、この燃焼によって生じた超扁圧の高温ガスをパワータ
ービン4に導いて膨張させることにより軸2の回転動力
を得るように構成されている。そして、圧縮機3は、図
の場合では案内羽根6と回転羽根7とを軸方向へ配列し
て軸流型とし、また、パワータービン4は軸2に固定さ
れた動翼8とケーシング1に固定された静翼9とを軸方
向へ交互に配列して構成されている。
Taking such a gas turbine, for example, an isobaric combustion type, as shown in FIG. A compressor J and a power turbine generator are respectively configured between the casing 1 and the combustor 5 with high pressure air compressed by the compressor 3.
The internal pressure is increased, fuel is injected and combusted in this state, and the ultra-flat high temperature gas generated by this combustion is guided to the power turbine 4 and expanded, thereby obtaining rotational power for the shaft 2. ing. In the case shown in the figure, the compressor 3 is an axial flow type in which guide vanes 6 and rotary vanes 7 are arranged in the axial direction. It is constructed by alternately arranging fixed stator vanes 9 in the axial direction.

ところで、上記のようなガスタービンにおいて、効率を
向上させるためには、パワータービン±の入口における
ガス温度を高めることが最も有効な手段であると云われ
ている。しかし、ノ<ワータービン4を構成する金属材
料の許容温度は、一般的にs o o ’o程度であり
、これ以上にガス温度を上げることはできない。したが
って、上記の値以上にガス温度を上げるには、パワータ
ービン東を構成する部材、特に翼を効率よく冷却する必
要がある。
By the way, in order to improve the efficiency of the above-mentioned gas turbine, it is said that increasing the gas temperature at the inlet of the power turbine is the most effective means. However, the permissible temperature of the metal material constituting the water turbine 4 is generally about so, and the gas temperature cannot be increased beyond this. Therefore, in order to raise the gas temperature above the above value, it is necessary to efficiently cool the members constituting the power turbine east, especially the blades.

翼を冷却する手段としては、従来、種々考えられており
、これらを大別すると空冷方式と液冷方式とに分類でき
る。何れの方式も翼の表面下に複数の冷媒通路を設け、
この通路内に空気や冷却液を通流させるようにしている
Conventionally, various means for cooling blades have been considered, and these can be broadly classified into air cooling methods and liquid cooling methods. Both systems have multiple refrigerant passages under the surface of the blade,
Air and cooling liquid are allowed to flow through this passage.

しかしながら、空冷方式を採用したものにあっては、ガ
スの温度を上げようとすると必要空気量が著しく増加し
、それに伴なって付属設備も大容量化し、ガス温度があ
る値以上になるとかえって総合効率が低下する問題があ
った。
However, with air cooling systems, when trying to raise the gas temperature, the amount of air required increases significantly, the attached equipment also increases in capacity, and when the gas temperature exceeds a certain value, the overall There was a problem that efficiency decreased.

凍た液冷方式を採用したものにあっては冷却後の冷却液
は翼の先端及び後縁から噴き出しが行なわれる為、冷却
液の回収は非常に困峻である。第2図は従来用いられて
いる回収器を示したものであるが、ケーシング18に取
付けられた回収器15では冷却翼先端部に面する位置に
設けられた回収孔14を通じて回収器体内17へ導ひか
れ、さらに冷却液取出口16からケーシング18外へ冷
却液を取出す方法がなされているが、これらの方法では
冷却液のほとんど全てを回収できるわけではない。よっ
て上記、回収できなかった冷却液は主流ガス10と混合
して流れる為に主流ガス温度の低下を招き、熱効率の低
下が発生する。又、翼後縁部からの噴き出しの為に後流
ウェークの乱れが増加し、翼列特性が低下する等の問題
があった。
In those that employ a frozen liquid cooling system, the coolant after cooling is spouted out from the tips and trailing edges of the blades, making it extremely difficult to recover the coolant. FIG. 2 shows a conventionally used recovery device. In the recovery device 15 attached to the casing 18, the air flows into the recovery device body 17 through the recovery hole 14 provided at a position facing the tip of the cooling blade. There have been methods for taking the coolant out of the casing 18 through the coolant outlet 16, but these methods do not allow almost all of the coolant to be recovered. Therefore, the cooling liquid that cannot be recovered flows as a mixture with the mainstream gas 10, causing a decrease in the temperature of the mainstream gas and a decrease in thermal efficiency. In addition, there was a problem in that the turbulence of the wake wake increased due to the ejection from the trailing edge of the blade, and the characteristics of the blade cascade deteriorated.

近年、高効率のタービン装置の開発が進められており、
増々主流ガス温度が上昇する傾向にあり、熱効率、翼列
特性の優れたガスタービン冷却翼の出現が強く望まれて
いる。
In recent years, the development of highly efficient turbine equipment has been progressing.
As the mainstream gas temperature tends to rise more and more, there is a strong desire for gas turbine cooling blades with excellent thermal efficiency and blade row characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、高温のガスにさらされるタービ
ン翼の熱効率、翼列特性の向上にあり、特に翼内部通過
する冷却液が主流ガスと混゛合しないようにしたガスタ
ービン冷却翼を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to improve the thermal efficiency and blade cascade characteristics of turbine blades exposed to high-temperature gas, and in particular to improve the cooling fluid passing inside the blades. An object of the present invention is to provide a gas turbine cooling blade that does not mix with mainstream gas.

〔発明の概要〕[Summary of the invention]

本発明は高温・^圧のガスにさらされる液冷タービンの
カスタービン冷却翼において、翼の冷却の為に、翼体内
へ供給される冷却液が翼本体内部の表面近傍内部に複数
設けられた冷却流路を通過し、翼先端部の空隙へ導びか
れさらに翼の先端に設けられた円筒状の噴出管によって
翼外部へ冷却液を噴き出している。一方、上記タービン
翼の外周部にあるケーシングに取付けられた冷却液回収
器は上記噴出管を包含するかたちで設けられており、噴
出管から噴き出てくる冷却液を主流ガスと混合させるこ
となく回収できることを特徴とじている。
The present invention relates to a cast turbine cooling blade of a liquid-cooled turbine that is exposed to high-temperature and high-pressure gas, in which a plurality of cooling liquids are provided inside the blade body near the surface to cool the blade. The cooling liquid passes through a cooling channel, is guided to a gap at the tip of the blade, and is further jetted out to the outside of the blade by a cylindrical jet tube provided at the tip of the blade. On the other hand, the coolant recovery device attached to the casing on the outer periphery of the turbine blade is provided in a manner that encompasses the above-mentioned jet pipe, so that the coolant jetted out from the jet pipe is not mixed with the mainstream gas. It is characterized by the fact that it can be recovered.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第3図に示す。 An embodiment of the present invention is shown in FIG.

ここで、翼の根元に取付けられた冷却液供給口11へ供
給された冷却液は翼プラットホーム19の内部から翼の
先端部へ向かい、翼表面近傍内部に複数設けられた冷却
流路12を通過し、翼先端内部の空隙22へ導びかれる
。さらに上記空隙22に集められた冷却液は翼先端に設
けられた円筒状の噴出管20から翼外へ噴き出される。
Here, the cooling liquid supplied to the cooling liquid supply port 11 attached to the root of the blade goes from inside the blade platform 19 to the tip of the blade, and passes through a plurality of cooling channels 12 provided inside near the blade surface. and is guided to the air gap 22 inside the blade tip. Further, the coolant collected in the gap 22 is jetted out of the blade from a cylindrical jet pipe 20 provided at the tip of the blade.

一方、タービンケーシング18の周方向に取付けられる
冷却液回収器15は内空隙17を有しており、また上記
冷却翼先端に取付けられた噴出管20の先端は上記内空
隙17に達しており、噴出管20から噴き出された冷却
液のほとんどが回収器15内で回収され、さらに冷却液
取出し口16.21によってケーシング外部へ取出すこ
とが可能となった。
On the other hand, the coolant recovery device 15 attached in the circumferential direction of the turbine casing 18 has an inner gap 17, and the tip of the jet pipe 20 attached to the tip of the cooling blade reaches the inner gap 17, Most of the coolant spouted from the spout pipe 20 is recovered in the recovery device 15, and can be further taken out to the outside of the casing through the coolant outlet 16.21.

〔発明の効果〕〔Effect of the invention〕

従って従来の翼では第2図にも示すように冷却液は翼の
先端及び後縁部の細孔13等から直接主流ガスへ噴き出
している為に主流ガス温度が低下し、熱効率の低下1が
よぎなくされていたものが、上述の方法を採ることによ
り、冷却液を主流ガスと混合することなく簡単に取出す
こと可能となり、従って熱効率の良好なガスタービンの
冷却翼を提供することが可能となった。
Therefore, in conventional blades, as shown in Fig. 2, the cooling liquid is injected directly into the mainstream gas from the pores 13 at the tip and trailing edge of the blade, which lowers the temperature of the mainstream gas and causes a decrease in thermal efficiency. By adopting the method described above, it is now possible to easily take out the cooling fluid without mixing it with the mainstream gas, and it is therefore possible to provide cooling blades for gas turbines with good thermal efficiency. became.

〔発明の他の実施例J 本発明に係る翼に用いた噴出管はかならずしも一個とは
かぎらず翼内部冷却構造の違いに応じて複数個設けても
一部にか壕わない。父、冷却液回収器は上述の説明では
一体型を探っているが第4図に示すように15’、15
”の回収器を二つ割の状態で独立して設け、取付法の簡
便を図ってもよい。
[Other Embodiments of the Invention J The number of jet pipes used in the blade according to the present invention is not necessarily limited to one, and even if a plurality of jet pipes are provided depending on the difference in the internal cooling structure of the blade, it will not be partially recessed. Father, in the above explanation, we are looking for an integrated type of coolant recovery device, but as shown in Figure 4, it is 15', 15
``The recovery device may be separated into two parts and installed independently to simplify the installation method.

さらに上記噴出管20を第5図に示すように噴出管20
の先端部を翼回転方向と対向した方向に曲げ、噴出管2
0の先端をノズル24状の噴出ノズル24に形成し冷却
液を噴出することにより、反力を得て翼の回転に寄与す
る方法を採ってもよい。
Further, as shown in FIG.
Bend the tip of the jet pipe 2 in the direction opposite to the direction of blade rotation.
Alternatively, a method may be adopted in which the tip of the blade is formed into a jet nozzle 24 in the form of a nozzle 24 to jet the coolant, thereby obtaining a reaction force and contributing to the rotation of the blade.

なお図中の矢印Aは翼回転方向を示し、23はガスター
ビンの動翼である。
Note that arrow A in the figure indicates the blade rotation direction, and 23 is a rotor blade of the gas turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガスタービンを一部切欠して示す側面図、第2
図は従来用いられている液冷タービン翼の構造図、第3
図は本発明に係るガスタービン冷却翼を示す断面図、第
4図は本発明で用いられる冷却液の回収器の他の実施例
を示す断面図、第5図は本発明で用いられる冷却液の噴
出管の他の実施例を示す斜視図である。 15・・・回収器、20・・・噴出管、22・・・空隙
、23・・・ガスタービンの動翼。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 第2図 P 第8図 1? 第4図 1? / 第5図
Figure 1 is a partially cutaway side view of the gas turbine;
The figure is a structural diagram of a conventionally used liquid-cooled turbine blade.
The figure is a cross-sectional view showing a gas turbine cooling blade according to the present invention, FIG. 4 is a cross-sectional view showing another embodiment of a cooling liquid recovery device used in the present invention, and FIG. 5 is a cross-sectional view showing a cooling liquid collector used in the present invention. FIG. 3 is a perspective view showing another embodiment of the ejection pipe of FIG. 15...Recovery device, 20...Ejection pipe, 22...Gap, 23...Motor blade of gas turbine. Agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 P Figure 8 1? Figure 4 1? / Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)翼根元から冷却媒体が供給され、この冷却媒体が
翼本体の表面近傍内部に複数設けられた冷却流路を通過
して翼の先端及び翼の後縁から冷却媒体を噴出して冷却
されるガスタービン冷却翼において、上記冷却翼先端内
部に上記冷却流路と連結してなる空隙を設ける一方、翼
先端部には翼の半径方向に少なくとも一個以上の円筒状
の噴出管を具備したことを特徴とするガスタービン冷却
翼。
(1) Cooling medium is supplied from the root of the blade, passes through multiple cooling channels provided inside the blade body near the surface, and is jetted out from the tip and trailing edge of the blade for cooling. In the gas turbine cooling blade, a gap connected to the cooling flow path is provided inside the cooling blade tip, and the blade tip is provided with at least one or more cylindrical ejection pipe in the radial direction of the blade. A gas turbine cooling blade characterized by:
(2)円筒状の噴出管にあっては、冷却翼上部のケーシ
ングの周方向に装着されている冷却媒体の回収器内部に
達する長さを持つことを特徴とする特許請求の範囲第1
項に記載のガスタービン冷却翼。
(2) The cylindrical ejection pipe has a length that reaches the inside of the cooling medium recovery device installed in the circumferential direction of the casing above the cooling blade.
The gas turbine cooling blade described in .
JP22506782A 1982-12-23 1982-12-23 Cooled blade of gas turbine Pending JPS59115401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22506782A JPS59115401A (en) 1982-12-23 1982-12-23 Cooled blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22506782A JPS59115401A (en) 1982-12-23 1982-12-23 Cooled blade of gas turbine

Publications (1)

Publication Number Publication Date
JPS59115401A true JPS59115401A (en) 1984-07-03

Family

ID=16823514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22506782A Pending JPS59115401A (en) 1982-12-23 1982-12-23 Cooled blade of gas turbine

Country Status (1)

Country Link
JP (1) JPS59115401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980209A (en) * 1997-06-27 1999-11-09 General Electric Co. Turbine blade with enhanced cooling and profile optimization
JP2017201167A (en) * 2016-05-03 2017-11-09 ゼネラル・エレクトリック・カンパニイ System and method for cooling components of gas turbine engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980209A (en) * 1997-06-27 1999-11-09 General Electric Co. Turbine blade with enhanced cooling and profile optimization
JP2017201167A (en) * 2016-05-03 2017-11-09 ゼネラル・エレクトリック・カンパニイ System and method for cooling components of gas turbine engine

Similar Documents

Publication Publication Date Title
EP0777818B1 (en) Gas turbine blade with cooled platform
US8176720B2 (en) Air cooled turbine component having an internal filtration system
JP4070977B2 (en) Turbine blade for a gas turbine engine and method for cooling the turbine blade
CN106014493B (en) System for cooling a turbine engine
US8307662B2 (en) Gas turbine engine temperature modulated cooling flow
JP5879022B2 (en) Turbine blade cooling circuit
EP3382240B1 (en) Seal element with internal lubricant plenum for rotational equipment
US20070014664A1 (en) Cooled component of a fluid-flow machine, method of casting a cooled component, and a gas turbine
EP1775425B1 (en) Turbine shroud section
US11655718B2 (en) Blade with tip rail, cooling
US20170159568A1 (en) Intercooling system and method for a gas turbine engine
EP0657625A1 (en) Shroud cooling assembly for a gas turbine
US8057163B2 (en) Gas turbine engine cooling system and method
EP3138997A1 (en) Configurations for turbine rotor blade tips
JPH0749041A (en) Jet engine knockdown
EP0789806A1 (en) Gas turbine blade with a cooled platform
US3907457A (en) Labyrinth structure for air outlet of gas turbine engine bearing chamber
US9995173B2 (en) Ducting platform cover plate
EP3228817B1 (en) Air bypass system for rotor shaft cooling
EP3267023A1 (en) Gas turbine engine tail cone
US2631429A (en) Cooling arrangement for radial flow gas turbines having coaxial combustors
JPS59115401A (en) Cooled blade of gas turbine
EP3095962B1 (en) A heat exchanger seal segment for a gas turbine engine
JPS593120A (en) Gas-turbine
US20180355798A1 (en) Plenum for cooling turbine flowpath components and blades