JPS59115123A - Wire cut electric discharge machining device - Google Patents
Wire cut electric discharge machining deviceInfo
- Publication number
- JPS59115123A JPS59115123A JP22109882A JP22109882A JPS59115123A JP S59115123 A JPS59115123 A JP S59115123A JP 22109882 A JP22109882 A JP 22109882A JP 22109882 A JP22109882 A JP 22109882A JP S59115123 A JPS59115123 A JP S59115123A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power supply
- workpiece
- wire
- machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/04—Apparatus for supplying current to working gap; Electric circuits specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、ワイヤと被加工物との間に間欠的に放電を発
生して被加工物に対する切断等の加工を行なうワイヤカ
ット放電加工装置に関する0ワイヤカツト放電加工装置
は、テーブル上に載置された被加工物に対して微小間隔
でワイヤを対向せしめ、加工電源の一方端をワイヤと接
触する退ともに他方端を被加工物に接続し、ワイヤと被
加工物間に所定の間隔で放電を発生させることによ′シ
、被加工物を任意形状に切断する装置である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wire-cut electric discharge machining apparatus that performs machining such as cutting on a workpiece by intermittently generating electrical discharge between a wire and a workpiece. , the wire is placed opposite the workpiece placed on the table at a minute interval, one end of the machining power source is brought into contact with the wire, and the other end is connected to the workpiece, and the wire is connected to the workpiece. This is a device that cuts a workpiece into an arbitrary shape by generating electrical discharge at predetermined intervals.
第1図は従来のワイヤカット放電加工装置の電気回路図
である。FIG. 1 is an electrical circuit diagram of a conventional wire-cut electric discharge machining apparatus.
図で、1は数値制御されるテーブル上に固定された被加
工物、2は被加工物1に微小間隔をもって対向するワイ
ヤ電極、3はワイヤ電極2が巻回されているワイヤリー
ル、4はワイヤ電極2を巻取るワイヤ巻取リール、5は
ワイヤ電極2のガイ7は直流電源、8は直流電源7の電
圧を所定の周期で断続するスイッチング素子、9はスイ
ッチング素子8を前記所定周期で導通、非導通とするノ
くルス電源、10はスイッチング素子に流れる電流を制
限する電流制限抵抗である。11は加工電源6の一方の
端子とワイヤ電極2とを接続する通電端子であシ、加工
電源6の他方の端子は被加工物1に接続される。被加工
物1とワイヤ電極2との間には、加工屑除去等のため水
又は油等の加工液が満たされている。In the figure, 1 is a workpiece fixed on a numerically controlled table, 2 is a wire electrode facing the workpiece 1 with a minute interval, 3 is a wire reel around which the wire electrode 2 is wound, and 4 is a wire electrode. A wire take-up reel for winding the wire electrode 2; 5, a guy 7 of the wire electrode 2; a DC power supply; 8, a switching element that connects the voltage of the DC power supply 7 on and off at a predetermined cycle; 10 is a current limiting resistor that limits the current flowing through the switching element. Reference numeral 11 denotes a current-carrying terminal that connects one terminal of the machining power source 6 and the wire electrode 2, and the other terminal of the machining power source 6 is connected to the workpiece 1. A machining fluid such as water or oil is filled between the workpiece 1 and the wire electrode 2 to remove machining debris.
パルス電源9によ)スイッチング素子8を所定間隔でO
N、OFFすると、スイッチング素子8のON期間にお
いて、被加工物1とワイヤ電極2との間に放電が発生し
、被加工物1はこれによシ切断される。放電を行なった
ワイヤ電極2はワイヤ巻取リール4に順次巻取られる。The switching element 8 is turned on at predetermined intervals by the pulse power supply 9.
When the switching element 8 is turned OFF, a discharge occurs between the workpiece 1 and the wire electrode 2, and the workpiece 1 is thereby cut. The wire electrode 2 that has undergone discharge is sequentially wound onto a wire take-up reel 4.
テーブルを移動することによシ被加工物1は任意形状に
切断加工される。By moving the table, the workpiece 1 is cut into an arbitrary shape.
このような従来のワイヤカット放電加工装置においては
、その放電加工中ワイヤ電極2はガイドp−25間に真
直に伸張されている筈であるが、放電力や加工液の圧力
などによシ被加工物lから引離される方向に弓状に変形
する場合がある0そして、ワイヤ電極2がこのように弓
状に変形すると、被加工物lの切断面もこれに従って弓
状となシ2.特に、複雑形状の切断加工を行う場合はコ
ーナ一部分の精度が低下し、高精度加工が不可能になる
という欠点があった。又、従来のワイヤカット放電加工
装置においては、加工速度を向上させるため、しばしば
ワイヤ電極2を振動させて放電点の分散をスムースに行
う手段が採用されていたが、この手段は、ワイヤガイド
を機械的に振動させる手段であるため、機構的に極めて
複雑で高価となる欠点があつfc。In such a conventional wire-cut electrical discharge machining device, the wire electrode 2 is supposed to be stretched straight between the guides P and 25 during electrical discharge machining, but it is damaged by discharge force, machining fluid pressure, etc. 2. When the wire electrode 2 is deformed into an arcuate shape in the direction of being pulled away from the workpiece l, the cut surface of the workpiece l also becomes an arcuate shape.2. Particularly, when cutting a complicated shape, the accuracy of a portion of the corner decreases, making high-precision machining impossible. In addition, in conventional wire-cut electric discharge machining equipment, in order to improve the machining speed, a method was often adopted to vibrate the wire electrode 2 to smoothly disperse the discharge points. Since fc is a means of mechanical vibration, it has the disadvantage of being extremely complex and expensive.
本発明の目的は、上記従来の欠点を除き、高精度、かつ
、高能率をもって加工を行なうことができるワイヤカッ
ト放電加工装置を提供するにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a wire-cut electric discharge machining apparatus that can perform machining with high precision and high efficiency, while eliminating the above-mentioned conventional drawbacks.
この目的を達成するため、本発明は、被加工物とワイヤ
電極との間に、間欠的な放電電圧とは別に継続的に電圧
を印加する電圧印加手段を設けたことを特徴とする。In order to achieve this object, the present invention is characterized in that a voltage applying means is provided between the workpiece and the wire electrode for continuously applying a voltage in addition to the intermittent discharge voltage.
以下、本発明を図示の実施例に基づいて説明する0
第2図は本発明の一実施例に係るワイヤカット放電加工
装置の加工電源の回路図である。第2図で、第1図に示
す部分と同一部分には同一符号を付して説明を省略する
。12は被加工物1に接続される端子とワイヤ電極2に
接続される端子との間に接続された補助電源、13は図
示の極性で接続されたダイオードである。補助電源12
の接続は、直流電源7と同一極性側どうしが接続される
ような接続とされる。又、補助電源12の電圧は直流電
源7の電圧よシ低い電圧に設定される。このような構成
によシ、加工中、被加工物lとワイヤ電極2との間に加
えられる電圧は、直流電源7による所定間隔毎のパルス
電圧と補助電源12による連続した一定電圧とが重なシ
合った電圧となる。The present invention will be described below based on the illustrated embodiments. FIG. 2 is a circuit diagram of a machining power source of a wire-cut electric discharge machining apparatus according to an embodiment of the present invention. In FIG. 2, parts that are the same as those shown in FIG. 1 are given the same reference numerals and their explanations will be omitted. 12 is an auxiliary power supply connected between a terminal connected to the workpiece 1 and a terminal connected to the wire electrode 2, and 13 is a diode connected with the polarity shown. Auxiliary power supply 12
The connection is such that the sides of the same polarity as the DC power supply 7 are connected to each other. Further, the voltage of the auxiliary power supply 12 is set to a voltage lower than the voltage of the DC power supply 7. With such a configuration, during machining, the voltage applied between the workpiece l and the wire electrode 2 is composed of a pulse voltage at predetermined intervals from the DC power source 7 and a continuous constant voltage from the auxiliary power source 12. The voltage will match.
第3図はこのような被加工物1とワイヤ電極2間の電圧
波形を示すものであシ、横軸に時間Tが、縦軸に電圧E
がとっである。期間T。nはパルス電源9によシスイツ
チング素子8が導通状態となる期間であシ、この期間T
。nにおいて被加工物1とワイヤ電極2との間に直流電
源7の電圧−EOが印加される。期間T。ffはパルス
電源9によシスイツチング素子8が非導通状態となる期
間であシ、この期間T。ffにおいては、被加工物1と
ワイヤ電極2との間には直流電源7の電圧−Eoは印加
されず、補助電源12の電圧−Elのみ印加される。期
間T。nにおいて放電加工が行なわれる。Figure 3 shows such a voltage waveform between the workpiece 1 and the wire electrode 2, where the horizontal axis represents time T and the vertical axis represents voltage E.
It's great. Period T. n is the period during which the switching element 8 is in a conductive state by the pulse power source 9, and this period T
. At step n, a voltage -EO of the DC power supply 7 is applied between the workpiece 1 and the wire electrode 2. Period T. ff is a period during which the switching element 8 is in a non-conductive state by the pulse power source 9; this period is T. In ff, the voltage -Eo of the DC power supply 7 is not applied between the workpiece 1 and the wire electrode 2, and only the voltage -El of the auxiliary power supply 12 is applied. Period T. Electric discharge machining is performed at n.
ここで、被加工物1とワイヤ電極2との間に印加される
平均電圧’t’ ElLVとすると、となる。ところで
、通常のワイヤカット放電加工においては、期間T。n
は1〜5μS であシ、一方、期間Toffは数100
μS〜数10m5である。したがって、期間T。nは期
間T。ffに対してほとんど無視できる値であるので、
平均電圧E&Vは、EhV中=】EI
となる。即ち、加工期間中、被加工物1とワイヤ電極2
との間に加えられる電圧はほぼ補助電源12の電圧と等
しくなる。Here, if the average voltage 't' applied between the workpiece 1 and the wire electrode 2 is 't' ElLV, then the following equation is obtained. By the way, in normal wire cut electrical discharge machining, the period T. n
is 1 to 5 μS, while the period Toff is several hundred
μS to several tens of m5. Therefore, the period T. n is the period T. Since it is an almost negligible value for ff,
The average voltage E&V is EhV=]EI. That is, during the machining period, the workpiece 1 and the wire electrode 2
The voltage applied between the two is approximately equal to the voltage of the auxiliary power supply 12.
よく知られているように物体間に働くクーロン力は、そ
れら物体間の距離と電圧の関数であるから、この場合、
被加工物1とワイヤ電極2との間に働くクーロン力は、
両者間のギャップと前記平均電圧、即ち、補助電源12
の電圧−Elの関数とな、l) (fcだし、加工液の
誘電率を一定とする。)、結局、両者間に働くクーロン
力は補助電源12の電圧で制御することができることと
なる。そして、このクーロン力が働く方向は、前述の放
電力が働く方向とは反対方向であるので、補助電源12
の電圧を被加工物1とワイヤ電極2との間に印加してや
ることによシ、ワイヤ電極2が放電力によって弓状に変
形するのを阻止することができるのである。As is well known, the Coulomb force acting between objects is a function of the distance and voltage between them, so in this case,
The Coulomb force acting between the workpiece 1 and the wire electrode 2 is
The gap between the two and the average voltage, that is, the auxiliary power supply 12
is a function of the voltage −El, l) (fc, and the dielectric constant of the machining fluid is constant). As a result, the Coulomb force acting between the two can be controlled by the voltage of the auxiliary power supply 12. Since the direction in which this Coulomb force acts is opposite to the direction in which the aforementioned discharge force acts, the auxiliary power supply 12
By applying this voltage between the workpiece 1 and the wire electrode 2, it is possible to prevent the wire electrode 2 from deforming into an arched shape due to the discharge force.
第4図は第2図に示す補助電源の具体例を示す回路図で
ある。12aは可変電圧電源、12bはこれに直列に接
続されたダイオードである。このように、補助電源12
の電圧を可変としておけば、放電力に対応して、被加工
物lとワイヤ電極2との間に働くクーロン力を調節する
ことができる。FIG. 4 is a circuit diagram showing a specific example of the auxiliary power supply shown in FIG. 2. 12a is a variable voltage power supply, and 12b is a diode connected in series thereto. In this way, the auxiliary power supply 12
By making the voltage variable, the Coulomb force acting between the workpiece l and the wire electrode 2 can be adjusted in accordance with the discharge force.
ここで、具体例を挙げると、直流電源7の電圧E。Here, to give a specific example, the voltage E of the DC power supply 7.
を30Off) とし、補助電源12の電圧E1
を50(V)〜200 (V)の間で変化させたとき、
通常のワイヤカット放電加工におけるワイヤ電極2の中
心部分の変位量の差は、数μmから数10μmとなる。30Off), and the voltage E1 of the auxiliary power supply 12 is
When changing between 50 (V) and 200 (V),
The difference in the amount of displacement of the center portion of the wire electrode 2 in normal wire-cut electrical discharge machining ranges from several μm to several tens of μm.
即ち、補助電源12の電圧を50(V)〜200(V)
+7)範囲ア可変よオるicよ、よシ、レイヤ電極2の
変形量を数μm〜数10μmの範囲で制御することがで
きる。That is, the voltage of the auxiliary power supply 12 is set to 50 (V) to 200 (V).
+7) Range A: Variable IC: The amount of deformation of the layer electrode 2 can be controlled within the range of several μm to several tens of μm.
このように、本実施例においては、直流電源とは別に補
助電源を設け、被加工物とワイヤ電極と □の間に連
続的に電圧を印加するようにしたので、両者間に働くク
ーロン力を発生させてワイヤ電′極の変形を阻止し、高
精度の加工を行なうことができる。In this way, in this example, an auxiliary power source was provided separately from the DC power source, and a voltage was continuously applied between the workpiece, the wire electrode, and □, so that the Coulomb force acting between them was reduced. It is possible to prevent deformation of the wire electrode by generating it, and to perform highly accurate processing.
第5図は本発明の他の実施例に係るワイヤカット放電加
工装置の加工電源の回路図である。図で、第2図に示す
部分と同一部分KI/i同一符号を付して説明を省略す
る。14は本実施例の補助電源である。補助電源14は
、可変電圧電源14a1ダイオード14b、カウンタ1
4c2演算処理装置14dで構成されている。今、直流
電源7による放電力について考えると、放電力は前述の
ようにワイヤ電極2を被加工物1から引離す力として働
き、この力を平均的にみると、それは、放電繰返し周波
数、即ち第3図に示す期間T。nにおける放電エネルギ
の関数となる。放電エネルギは直流電源7の電圧等によ
ル、I/デぼ定まった値下あるので、放電繰返し周波数
を検出して所定の演算を行なえば放電力を得ることがで
きる。本実施例では、放電繰返し周波数をカウンタ14
cでカウントし、その値に基づき、演算処理装置14d
により放電力を算出するものである。さらに、演算処理
装置14dは、得られた放電力と等しいクーロン力(放
電力と反対方向の力)を演算し、求めたクーロン力を得
るための平均加工電圧を演算する。このようにして演算
処理装[14dで求められた電圧に基づき、この電圧に
等しい電圧が発生するように可変電圧電源14aを制御
すれば、放電力によるワイヤ電極2の変形は完全に阻止
することができる。FIG. 5 is a circuit diagram of a machining power source of a wire-cut electric discharge machining apparatus according to another embodiment of the present invention. In the figure, the same parts KI/i as the parts shown in FIG. 2 are given the same reference numerals, and the explanation will be omitted. 14 is an auxiliary power source of this embodiment. The auxiliary power supply 14 includes a variable voltage power supply 14a, a diode 14b, and a counter 1.
It is composed of a 4c2 arithmetic processing unit 14d. Now, if we consider the discharge force from the DC power supply 7, the discharge force acts as a force to separate the wire electrode 2 from the workpiece 1 as described above, and if we look at this force on average, it is the discharge repetition frequency, that is, Period T shown in FIG. It is a function of the discharge energy at n. Since the discharge energy is within a fixed value depending on the voltage of the DC power source 7, etc., the discharge power can be obtained by detecting the discharge repetition frequency and performing a predetermined calculation. In this embodiment, the discharge repetition frequency is measured by the counter 14.
c, and based on the value, the arithmetic processing unit 14d
The discharge power is calculated by Further, the processing unit 14d calculates a Coulomb force (a force in the opposite direction to the discharge force) that is equal to the obtained discharge force, and calculates an average machining voltage for obtaining the obtained Coulomb force. In this way, if the variable voltage power source 14a is controlled based on the voltage determined by the arithmetic processing unit [14d] so as to generate a voltage equal to this voltage, deformation of the wire electrode 2 due to the discharge force can be completely prevented. I can do it.
本実施例では、放電力、クーロン力、平均加工電圧を正
確に求めるようにしたので、より一層精度のよい加工を
行なうことができ、特に、被加工物のコーナ加工の精度
を著しく向上することができる。In this example, since the discharge force, Coulomb force, and average machining voltage are determined accurately, even more precise machining can be performed, and in particular, the accuracy of corner machining of the workpiece can be significantly improved. I can do it.
第6図は本発明の他の実施例に係るワイヤカット放電加
工装置の加工電源の回路図である。図で、第2図に示す
部分と同一部分には同一符号を付して説明を省略する。FIG. 6 is a circuit diagram of a machining power source of a wire-cut electric discharge machining apparatus according to another embodiment of the present invention. In the figure, parts that are the same as those shown in FIG. 2 are given the same reference numerals, and explanations thereof will be omitted.
15は本実施例の補助電源であシ、可変電圧電源15a
1ダイオ一ド15b1関数発生器15cで構成されてい
る。関数発生器15cからは所定周波数の信号が出力さ
れ、この信号に応じた周波数によル可変電圧電源15a
の電圧を変化させる。これによル、補助電源15からは
、一定レベルの電圧に交流会を重畳させた直流電圧が出
力される。このような直流電圧の発生手段としては、多
くの手段が知られておシ、これらの手段のうち適宜のも
のを選択して使用することができる。Reference numeral 15 is an auxiliary power supply of this embodiment, which is a variable voltage power supply 15a.
It is composed of one diode 15b and one function generator 15c. A signal with a predetermined frequency is output from the function generator 15c, and the variable voltage power supply 15a is controlled at a frequency corresponding to this signal.
change the voltage. As a result, the auxiliary power supply 15 outputs a DC voltage in which an alternating current voltage is superimposed on a voltage at a constant level. Many means are known as means for generating such a DC voltage, and an appropriate one can be selected and used from these means.
前述の具体例、即ち、直流電源7の電圧を300(V)
とした場合、補助電源15の出力電圧を、例えば振幅7
5(V)の所定周波数の交流分で変化させてやれば、ワ
イヤ電極2の中心部分は数10μmの変位量で前記所定
周波数に応じた変位の繰返えしを行なう。即ち、ワイヤ
電極2は振動し、この結果、放電点の分散はスムースに
行なわれ、荒加工における加工速度を大きくすることが
できる0
このように、本実施例では、補助電源の出力電圧として
、直流電圧に交流分を重畳させるようにしたので、さき
の実施例のものと同じ効果を奏するばかシでなく、さら
に、加工能率を向上させることができる。In the above specific example, the voltage of the DC power supply 7 is 300 (V).
In this case, the output voltage of the auxiliary power supply 15 is set to an amplitude of 7, for example.
If the voltage is changed by alternating current at a predetermined frequency of 5 (V), the central portion of the wire electrode 2 will be repeatedly displaced in accordance with the predetermined frequency by a displacement amount of several tens of micrometers. That is, the wire electrode 2 vibrates, and as a result, the discharge points are dispersed smoothly, making it possible to increase the machining speed during rough machining.Thus, in this embodiment, the output voltage of the auxiliary power source is Since the alternating current component is superimposed on the direct current voltage, the present invention does not have the same effect as the previous embodiment, and it is possible to further improve the processing efficiency.
なお、以上の各実施例では、補助n源の可変電圧電源を
独立のものとしたが、既設の直流電源を利用することも
できる。In each of the above embodiments, the auxiliary n-source variable voltage power supply is independent, but an existing DC power supply may also be used.
以上述べたように、本発明では、被加工物とワイヤ電極
との間に、間欠的な放電電圧とは別に緬続的な電圧を印
加するようにしたので、高精度、かつ、高能率の加工を
行なうことができる。As described above, in the present invention, since a continuous voltage is applied between the workpiece and the wire electrode in addition to the intermittent discharge voltage, high accuracy and high efficiency can be achieved. Can be processed.
81図は従来のワイヤカット放電加工装置の電気回路図
、第2図は本発明の一実施例に係るワイヤカット放電加
工装置の加工電源の回路図、第3図は被加工物とワイヤ
電極間に印加される電圧波形図、第4図は第2図に示す
補助電源の具体例を示す回路図、第5図および第6図は
それぞれ本発明の他の実施例に係るワイヤカット放電加
工装置の加工電源の回路図である。
l・・・・・・被加工物、2・・団・ワイヤ電極、6・
・・・・・加工電源、7・旧・・直流電源、8・・・・
・・スイッチング素子、9・・・・・・パルスに源、1
2.14.15・・団・補助電源。
第1図
第2図 第4図
第3図
第5図
第6図Fig. 81 is an electric circuit diagram of a conventional wire-cut electric discharge machining device, Fig. 2 is a circuit diagram of a machining power source of a wire-cut electric discharge machining device according to an embodiment of the present invention, and Fig. 3 is a diagram showing the electrical circuit diagram between a workpiece and a wire electrode. 4 is a circuit diagram showing a specific example of the auxiliary power supply shown in FIG. 2, and FIGS. 5 and 6 are wire-cut electrical discharge machining apparatuses according to other embodiments of the present invention, respectively. FIG. 2 is a circuit diagram of a processing power source. l... Workpiece, 2... Group wire electrode, 6...
...Processing power supply, 7. Old... DC power supply, 8...
...Switching element, 9...Pulse source, 1
2.14.15... Group/auxiliary power supply. Figure 1 Figure 2 Figure 4 Figure 3 Figure 5 Figure 6
Claims (1)
のワイヤと前記被加工物との間に放電電圧を間欠的に印
加する電源とを備えたものにおいて、前記ワイヤと前記
被加工物との間に前記放電電圧とは別に継続的に電圧を
印加する電圧印加手段を設けたことを特徴とするワイヤ
カット放電加工装置。 (2、特許請求の範囲第1項において、前記電圧印加手
段は、印加電圧を可変とする装置ヲ有することを特徴と
するワイヤカット放電加工装置。 (3)、特許請求の範囲第1項において、前記電圧印加
手段は、印加電圧を周期的に可変とする装置を有するこ
とを特徴とするワイヤカット放電加工装置。[Claims] (1) A wire that generates an electrical discharge between the wire and the workpiece, and a power source that intermittently applies a discharge voltage between the wire and the workpiece. . A wire-cut electric discharge machining apparatus, characterized in that a voltage applying means for continuously applying a voltage in addition to the discharge voltage between the wire and the workpiece. (2. In claim 1, the voltage applying means has a device for making the applied voltage variable. (3) In claim 1, . A wire-cut electrical discharge machining apparatus, wherein the voltage applying means includes a device that periodically varies the applied voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22109882A JPS59115123A (en) | 1982-12-18 | 1982-12-18 | Wire cut electric discharge machining device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22109882A JPS59115123A (en) | 1982-12-18 | 1982-12-18 | Wire cut electric discharge machining device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59115123A true JPS59115123A (en) | 1984-07-03 |
Family
ID=16761454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22109882A Pending JPS59115123A (en) | 1982-12-18 | 1982-12-18 | Wire cut electric discharge machining device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59115123A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183316A (en) * | 1988-01-19 | 1989-07-21 | Toshiba Corp | Electric discharge machining method and its device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5163092A (en) * | 1974-11-25 | 1976-06-01 | Agie Ag Ind Elektronik | SENJODENKYOKUOSHOSURU HODENKAKOKI |
-
1982
- 1982-12-18 JP JP22109882A patent/JPS59115123A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5163092A (en) * | 1974-11-25 | 1976-06-01 | Agie Ag Ind Elektronik | SENJODENKYOKUOSHOSURU HODENKAKOKI |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183316A (en) * | 1988-01-19 | 1989-07-21 | Toshiba Corp | Electric discharge machining method and its device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880013652A (en) | Arc welding power supply system for consumable electrode and its control method | |
US5750951A (en) | Power supply system for an electric discharge machine | |
JPH03281150A (en) | Contact detecting device | |
US7038158B2 (en) | Wire electrical discharge machining apparatus | |
US5162631A (en) | Power supply unit for electrical discharge machine | |
JPH0329531B2 (en) | ||
JPS60135127A (en) | Positioning device of electric discharge machining unit | |
JPS59115123A (en) | Wire cut electric discharge machining device | |
WO1996019311A1 (en) | Power supply system for electric discharge machine and electric discharge machining method | |
GB1163307A (en) | Electro-Erosive Working Method and Apparatus | |
WO2002067410A1 (en) | Discharge pulse generator | |
JPS6240128B2 (en) | ||
JPS6144611B2 (en) | ||
GB2095426A (en) | Electrical discharge machining | |
JPS5854937B2 (en) | Houden Kakoseigiyohouhou | |
GB2053064A (en) | Electrical discharge machining method and apparatus | |
JPS61260923A (en) | Power source for electric discharge machining | |
JPS6052889B2 (en) | Power supply device for electrical discharge machining | |
SU505550A1 (en) | The method of electroerosive processing | |
JP2626666B2 (en) | EDM method | |
JPS6052891B2 (en) | Power supply device for wire cut electrical discharge machining | |
JP2801280B2 (en) | Wire cut EDM power supply | |
JPS6219322A (en) | Electric power device for wire-cut electric discharge machining | |
US3192141A (en) | Simultaneous etching and monitoring of semiconductor bodies | |
JPH0429491B2 (en) |