JPS59114606A - Positioning controlling method - Google Patents

Positioning controlling method

Info

Publication number
JPS59114606A
JPS59114606A JP22434882A JP22434882A JPS59114606A JP S59114606 A JPS59114606 A JP S59114606A JP 22434882 A JP22434882 A JP 22434882A JP 22434882 A JP22434882 A JP 22434882A JP S59114606 A JPS59114606 A JP S59114606A
Authority
JP
Japan
Prior art keywords
angular velocity
motor
positioning
command
loop system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22434882A
Other languages
Japanese (ja)
Inventor
Akio Hirahata
平畑 秋穂
Toshihiro Ide
井手 利弘
Shoji Nakatani
中谷 祥二
Megumi Kuroiwa
黒岩 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22434882A priority Critical patent/JPS59114606A/en
Publication of JPS59114606A publication Critical patent/JPS59114606A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To execute a positioning at a high speed by driving a DC motor by executing a linear accelerating operation at the time of start and a linear decelerating operation at the time of deceleration from the highest angular velocity, a command angular velocity, etc. CONSTITUTION:An angular velocity given to a speed loop system is operated by a command pulse and a feedback pulse from a pulse oscillator 14 connected to a DC motor 12 by an operator 9. This result is compared 10 with the angular velocity of the motor 12 detected by a tachogenerator 13, and the motor concerned 12 is driven through an amplifier 11. This operation is derived by an accelerating angular velocity omegau=omegam(thetan/thetau)<1/2>, and a decelerating angular velocity omegad=omegac(thetar/thetad)<1/2>. (Provided that omegam; the highest angular velocity, Wc; a command angular velocity, thetau and thetar; the number of remaining pulses required for a linear acceleration extending from zero to omegam and to the end point, and thetan and thetad; the number of pulses which are moved already and also required for a linear deceleration extending from omegac to zero.) As a result, after omegau=omegac, thetar=thetad, and after thetar=thetad, each command is outputted until the positioning is ended.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は直流サーボを用いたディ考タルサーボ′による
位置決め制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a positioning control method using a digital servo using a DC servo.

従来例の構成とその問題点 従来、ディシイタルサーボを用いた位置決めは高精度、
高速性などの特徴を備え自動機械などを中心に巾広く採
用されており、その構成を第1図および第2図について
説明する。
Conventional configuration and its problems Traditionally, positioning using digital servo has high precision,
It has features such as high speed and has been widely adopted mainly in automatic machines, and its configuration will be explained with reference to FIGS. 1 and 2.

第1図はサーボ構成図で指令パルスが入力されるとその
パルス周波数に対応してモータ6は除々に速度を増して
回転する。この様子を第2図に示す。一方モータ6の反
負荷軸に直結されたパルス発生器8によってモータ6の
回転角はパルス列に変換されフィートノ(ツクされる。
FIG. 1 is a servo configuration diagram, and when a command pulse is input, the motor 6 rotates at a gradually increasing speed in response to the pulse frequency. This situation is shown in FIG. On the other hand, the rotation angle of the motor 6 is converted into a pulse train by a pulse generator 8 directly connected to the counter-load shaft of the motor 6, and then the rotation angle is converted into a pulse train.

このフィード)(ツクパルスと前記指令)くルスは比較
器1により同期比較され、その偏差分が偏差レジスタ2
に貯えられる。モータ6の角速度ω。に相当する指令・
くルス周波数を入力した時のモータ6の起動特性は、G
  t ω=ω。(1−ε pl)     ・・7・・・・・
・■となる。ここでωはモータ角速度、Gpは位置ル−
プゲイン、tl は起動時間である。一方前記指令パル
スを停止すると偏差レジスタ2に貯えられた偏差量が減
小し、D/A変換器3の出力電圧力玉子りモータ角速度
が下る。この時も式■と同様にその減速特性は 、−5゜g−Gpt2.、、、、、、、、■となる。こ
こでt はモータ6がω。のセ転数力)ら停止するまで
の時間を表わす。式■及び式■よシモータ6の起動停止
特性は指数関数の曲線でろる事が分る0式■及び■より
位置ル−プゲインG を大きくすると位置決め時間は短
縮される力;、使用するモータ、負荷、モータ駆動装置
などのサーボ特性によシとり得るGpの最大値は決まり
、その値を超えると位置ループ系は不安定となり振動現
象を起す。従ってGpの値が決まってしまうと時間t1
及びt2は必然的に決定されてしまう。
This feed) (tsuku pulse and the above command) pulses are synchronously compared by comparator 1, and the deviation is recorded in deviation register 2.
can be stored in Angular velocity ω of motor 6. Directives equivalent to
The starting characteristics of the motor 6 when the pulse frequency is input are G
tω=ω. (1-ε pl) ・・7・・・・
・It becomes ■. Here, ω is the motor angular velocity, and Gp is the position loop.
tl is the start-up time. On the other hand, when the command pulse is stopped, the amount of deviation stored in the deviation register 2 decreases, and the output voltage of the D/A converter 3 and the angular velocity of the rotary motor decrease. In this case as well, the deceleration characteristic is -5°g-Gpt2. , , , , , , ■. Here, t is ω of motor 6. It represents the time it takes from the rotation speed (number of rotations) until it stops. From equations ■ and equations 2, it can be seen that the starting and stopping characteristics of the motor 6 follow an exponential curve.From equations 2 and 2, the positioning time is shortened by increasing the position loop gain G. The maximum value of Gp that can be achieved is determined by the servo characteristics of the load, motor drive device, etc., and when that value is exceeded, the position loop system becomes unstable and causes a vibration phenomenon. Therefore, once the value of Gp is determined, time t1
and t2 are inevitably determined.

このように指数関数曲線でモータ角速度が起動停止する
ような第1図の如くサーボ系は、高速位置諏東対して不
利である事が分る 発明の目的 本発明は上記従来の欠点を解消するもので高速位置決め
方式を提供するものである。
It can be seen that a servo system as shown in FIG. 1 in which the motor angular velocity starts and stops according to an exponential curve is disadvantageous for high-speed position Suto.Purpose of the InventionThe present invention solves the above-mentioned conventional drawbacks. This provides a high-speed positioning method.

発明の構成 本発明は、直流モータの最高角速度と指令角速度、最高
角速度に達する直線加減速に要するパルス数2位置決め
開始点からの移動パルス数2位置決め終了点までの残9
パルス数から、直流モータの起動時での直線加速演算と
減速時での直線減速演算を行い、直流モータの角速度を
直線的に駆動する事によりポイント・ツー・ポイント(
FTP)方式での位置決めが高速に行えるという特有の
効果を有している。
Structure of the Invention The present invention provides the maximum angular velocity and command angular velocity of a DC motor, the number of pulses required for linear acceleration/deceleration to reach the maximum angular velocity, 2 the number of movement pulses from the positioning start point, 2 the remaining 9 until the positioning end point.
From the number of pulses, linear acceleration calculations are performed when starting the DC motor, and linear deceleration calculations are performed during deceleration, and by linearly driving the angular velocity of the DC motor, point-to-point (
It has the unique effect that positioning using the FTP method can be performed at high speed.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の目的に合ったディシイタルサーボ系の
一実施例を示すサーボブロック線図である。9は指令パ
ルスと直流モータ12に直結されたパルス発生器14の
フィードバックパルスを演算処理する演算器である。演
算器9の出力は速度ループサーボ系を構成する比較器1
0に接続され、この比較器12の出力は増巾器11に接
続されており、増巾器11の出力が直流モータ14を駆
動する。又、前記モータ14の角速度はタコゼネレータ
13によシ検出されて前記比較器1oの一方の入力とな
っている。このように構成されたディシイタルサーボ系
にω。なを直流モータの角速度指令パルスが入力される
と演算器9は以下に示す演算処理を行う。直流モータ1
2が零からω。の角速度指令値まで直線的に加速するに
要するパルス数θfは ここでω。は直流モータ12の持つ最高角速度、θ8は
直流モータ12を零から最高角速度ω。
FIG. 3 is a servo block diagram showing an embodiment of a digital servo system suitable for the purpose of the present invention. Reference numeral 9 denotes an arithmetic unit that processes command pulses and feedback pulses from a pulse generator 14 directly connected to the DC motor 12. The output of the calculator 9 is sent to the comparator 1 which constitutes the speed loop servo system.
The output of the comparator 12 is connected to the amplifier 11, and the output of the amplifier 11 drives the DC motor 14. Further, the angular velocity of the motor 14 is detected by the tacho generator 13 and becomes one input of the comparator 1o. ω to the digital servo system configured in this way. When the angular velocity command pulse of the DC motor is inputted, the computing unit 9 performs the following computing process. DC motor 1
2 is from zero to ω. The number of pulses θf required to linearly accelerate to the angular velocity command value is ω. is the maximum angular velocity of the DC motor 12, and θ8 is the maximum angular velocity ω of the DC motor 12 from zero.

まで直線的に加速するに要するパルス数である。This is the number of pulses required to linearly accelerate up to

次に演算器9は速度ループ系に与える角速度を演算する
。この角速度演算はω。を演算器9が比較器10に与え
る加速角速度指令とするととなる。ここでθ。は位置決
め開始点からすでに移動したパルス数であり、パルス発
生器14からのフィードバックパルスによって知る事が
できる。
Next, the calculator 9 calculates the angular velocity given to the velocity loop system. This angular velocity calculation is ω. If this is the acceleration angular velocity command given by the calculator 9 to the comparator 10, then Here θ. is the number of pulses that have already moved from the positioning starting point, and can be known from the feedback pulse from the pulse generator 14.

式■及び式■より が得られる。このω1なる演算は演算器9で直流モータ
12が加速されている間θ。を変数として遂次行われて
いる。弐〇による速度ループに対する直流モータ12へ
の角速度指令は第4図に示す如く直線加速となっている
。式■で示す加速演算はω。=ω0になるまで続けられ
る0ω0=ω0になった後演算器9は比較器10に対し
てω。なる角速度指令を与えるように演算を行い直流モ
ータ12を指令角速度で制御する。又、演算器9は直流
モータ12を指令角速度ω。から直線的に減速させるた
めに以下に示す演算を行う。0dを指令角速度ω。から
直線的に零まで直流モータ12を減速させるに要するパ
ルス数とすれば となる。ここでθ、は直流モータ12を最高角速度ω。
From formula (■) and formula (2), we obtain. This calculation of ω1 is performed while the DC motor 12 is being accelerated by the calculator 9. This is done successively using variables. The angular velocity command to the DC motor 12 for the velocity loop by 20 is a linear acceleration as shown in FIG. The acceleration calculation shown in formula ■ is ω. After ω0 = ω0, the arithmetic unit 9 outputs ω to the comparator 10. The DC motor 12 is controlled at the commanded angular velocity by performing calculations so as to give an angular velocity command as follows. Further, the calculator 9 commands the DC motor 12 at an angular velocity ω. In order to decelerate linearly from 0d is the command angular velocity ω. The number of pulses required to linearly decelerate the DC motor 12 from to zero is as follows. Here, θ is the maximum angular velocity ω of the DC motor 12.

から直線的に零まで減速するに要するパルス数である。This is the number of pulses required to decelerate linearly from to zero.

演算器9は位置決め終了点までの残りパルス数θ、を常
にチェックし、式■で示すθdが01に等しくなった時
次に示す直流モータ12の直線減速演算を行う。ωdを
演算9が比較器10に与える減速角速度指令とすると となる。弐〇及び弐のから を得る。このωdなる演算は演算器9で直流モータ12
が減速されている間、θ1なる残シパルス数を変数とし
て遂次性われている。式■による速度ループ系に対する
直流モータ12への角速度指令は第4図に示す如く直線
減速となっている。
The calculator 9 constantly checks the number of pulses θ remaining until the positioning end point, and when θd shown in equation (2) becomes equal to 01, performs the following linear deceleration calculation of the DC motor 12. If ωd is the deceleration angular velocity command given to the comparator 10 by the calculation 9, then Obtain 2〇 and 2 from. This calculation ωd is performed by the calculator 9 on the DC motor 12.
While the speed is being decelerated, successiveness is determined using the remaining pulse number θ1 as a variable. The angular velocity command to the DC motor 12 for the velocity loop system according to equation (2) is a linear deceleration as shown in FIG.

以上のように本実施例によれば直流モータの起動時には
開始点から移動したパルス数を変数とする演算を行う事
で直流モータを直線加速する事が出来、又減速時には位
置決め終了点までの残りパルース数を変数とする演算を
行う事で直流モータを直線的に減速させる事が出来、高
速位置決めかで゛ きるという大きな効果を有している
As described above, according to this embodiment, when starting the DC motor, the DC motor can be linearly accelerated by performing calculations using the number of pulses moved from the starting point as a variable, and when decelerating, the DC motor can be linearly accelerated until the positioning end point. By performing calculations using the number of pulses as a variable, it is possible to linearly decelerate the DC motor, which has the great effect of enabling high-speed positioning.

なお第3図に示す演算器9は一般のノ・−ドロシックで
構成できるがマイコンなどのソフトウェアで実現できる
Note that the arithmetic unit 9 shown in FIG. 3 can be constructed from a general computer, but it can also be realized by software such as a microcomputer.

また、速度ループ系はアナログ方式の場合と全ディシイ
タル方式のいづれの場合でも本発明が適用できる事は言
うまでもない。
It goes without saying that the present invention can be applied to both analog and all-digital speed loop systems.

発明の効果 以上のように本発明は、直流モータの最高角速度と最高
角速度まで直線加速に要するパルス数と位置決め開始点
から移動したパルス数を変数とする直線加速演算を行い
、直流モータの加速時に直線加速を行ない、減速時には
指令角速度と最高角速度から直線的に零まで減速するに
要するパルス数と位置決め終了点までの残シパルス数を
変数とする直線減速演算を行い、直流モータを指令角速
度から直線的に減速させる事により高速位置決めができ
その実用的効果は大なるものがある0
Effects of the Invention As described above, the present invention performs linear acceleration calculation using as variables the maximum angular velocity of the DC motor, the number of pulses required for linear acceleration to the maximum angular velocity, and the number of pulses moved from the positioning start point, and Performs linear acceleration, and when decelerating, performs linear deceleration calculation using as variables the number of pulses required to linearly decelerate from the commanded angular velocity and maximum angular velocity to zero, and the number of pulses remaining until the positioning end point. High-speed positioning can be achieved by slowing down the speed, which has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のディシイタルサーボのブロック線図、第
29図は同モータの時間対角速度の特性図、第3図は本
発明の一実施例による位置決め制御方法のディシイタル
サーボのブロック線図、第4図は第3図を説明するため
のモータの時間対角速度特性図である。 9・・・・・・演算器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 嶋 第3図 第4図
Fig. 1 is a block diagram of a conventional digital servo, Fig. 29 is a characteristic diagram of the time diagonal velocity of the same motor, and Fig. 3 is a block diagram of a digital servo of a positioning control method according to an embodiment of the present invention. , FIG. 4 is a time versus angular velocity characteristic diagram of the motor for explaining FIG. 3. 9... Arithmetic unit. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 速度ループ系と位置ループ系を備えたディシイタルサー
ボによるポインドリー拳ポイント方式の位置決めにおい
て、前記位置ループ系の中で前記速度ループ系を構成す
る直流モータを直線的に零から最高角速度輻まで加速す
るに榊するパルス数をθU、前記最高角速度から直線的
に零まで減速するに要するパルス数をθ。2位置決め開
始点から移動したパルス数をθ。2位置決め終了点まで
の残シパルス数をθ2.与えられる前記直流ルス演算を
行い、前記演算結果ω。が前記速度指令値ω。に等しく
なるまで前記速度ループ系に前記演算結果へを与え、前
記演算結果ωUが前記角速度指令値ω。に等しくなった
以後前記θ・ がθdに等しくなるまで前記速度ループ
系に前記角速度指令値ω。を与え、前記θ1が前記θd
に等しくなった以後前記直流モータの位置決め終了まで
前記演算結果ωdなる角速度指令を前記速度ループ系に
与え前記直流キータの位置決め起動停止制御を行う位置
決め制御方法。
In positioning using a digital servo with a velocity loop system and a position loop system, a DC motor constituting the velocity loop system is linearly accelerated from zero to a maximum angular velocity in the position loop system. θU is the number of pulses required to linearly decelerate from the maximum angular velocity to zero. 2 The number of pulses moved from the positioning starting point is θ. 2. The remaining number of pulses up to the positioning end point is θ2. Perform the given DC Luss calculation and obtain the calculation result ω. is the speed command value ω. The calculation result is applied to the velocity loop system until the calculation result ω is equal to the angular velocity command value ω. After the angular velocity command value ω becomes equal to θd, the angular velocity command value ω is applied to the velocity loop system until the θ· becomes equal to θd. , and the above θ1 is the above θd
A positioning control method in which an angular velocity command having the calculation result ωd is given to the speed loop system after the angular velocity becomes equal to ωd until the positioning of the DC motor is completed, and the positioning start/stop control of the DC keyer is performed.
JP22434882A 1982-12-20 1982-12-20 Positioning controlling method Pending JPS59114606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22434882A JPS59114606A (en) 1982-12-20 1982-12-20 Positioning controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22434882A JPS59114606A (en) 1982-12-20 1982-12-20 Positioning controlling method

Publications (1)

Publication Number Publication Date
JPS59114606A true JPS59114606A (en) 1984-07-02

Family

ID=16812353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22434882A Pending JPS59114606A (en) 1982-12-20 1982-12-20 Positioning controlling method

Country Status (1)

Country Link
JP (1) JPS59114606A (en)

Similar Documents

Publication Publication Date Title
JPH063994B2 (en) Control method for multiple digital servos
WO1989006066A1 (en) Method of speed control for servomotor
JPS59114606A (en) Positioning controlling method
JPH05228794A (en) Positioning method for main spindle
JPH04352012A (en) Robot-position controlling method
JPH10268947A (en) Dumping starting method used for time variable oscillation mechanism
JPH01214299A (en) Controller for stepping motor
JPH09183589A (en) Control method for swing prevention and positioning of crane
JPH0724886B2 (en) Positioning control method for turnover device
JPS6247708A (en) Speed control method for indudtrial robot
JPS60123908A (en) Actuator controlling method
JPH0642166B2 (en) Servo control method
JPH06195118A (en) Fixed position stop controller
JPS6121511A (en) Control system of positioning mechanism
JPS5942214A (en) Control device of cutter for running article
JPH07337055A (en) Robot controller
JPS59153499A (en) Controlling method for pulse motor
JP2668876B2 (en) Servo motor controller
JPH03253918A (en) Driving control method for positioning table
JPH054213U (en) Drive controller
JPS6235125B2 (en)
JPS619180A (en) Acceleration or deceleration controlling method of servo motor
JPS6214209A (en) Industrial robot
JPH0719176B2 (en) Servo control device
JPH0217801B2 (en)