JPS59114418A - Automatic injection measuring apparatus - Google Patents

Automatic injection measuring apparatus

Info

Publication number
JPS59114418A
JPS59114418A JP57225470A JP22547082A JPS59114418A JP S59114418 A JPS59114418 A JP S59114418A JP 57225470 A JP57225470 A JP 57225470A JP 22547082 A JP22547082 A JP 22547082A JP S59114418 A JPS59114418 A JP S59114418A
Authority
JP
Japan
Prior art keywords
discharge
stock solution
injection
amount
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57225470A
Other languages
Japanese (ja)
Other versions
JPH0113044B2 (en
Inventor
Atsuki Wada
和田 篤機
Kazuhisa Ogasawara
和久 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP57225470A priority Critical patent/JPS59114418A/en
Publication of JPS59114418A publication Critical patent/JPS59114418A/en
Publication of JPH0113044B2 publication Critical patent/JPH0113044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/04Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes

Abstract

PURPOSE:To inject raw liquid into a separate container efficiently at a required accuracy by automatically using discharge nozzles of a large and small diameter provided on row liquid tanks according to the required quantity of injection and allowable error in quantity of injection. CONSTITUTION:Raw liquid tanks 1 separately storing raw liquids A, B, C... are each equipped with a liquid feed tube 4 for delivery of raw liquid at the bottom thereof and the pressure in the tanks is linked to an air header 5 to be adjusted with a pressure adjustor 7. The liquid feed tube 4 of each raw liquid tank 1 is provided with two discharge valve 8-1 and 8-2 and the tip of each thereof is provided with discharge nozzles 9-1 and 9-2 different in the diameter. A controller controls the adjustor 7 and the opening or closing of electromagnetic valves 10-1 and 10-2 to obtain a specified injection level of the raw liquid 1 based on setting conditions, operational conditions and a signals inputted from detectors whereby a lift and a conveying device are regulated with an electromagnetic valve 14 when the injection and blending of various raw liquids is completed.

Description

【発明の詳細な説明】 技術分野 不発明は、塗料などの粘度液(以下原液という)の調合
装置に関し、詳しくはタンクに収容された原液を任意の
設定処方に従って別容器内に自動的に注入計量する装置
に関する。
[Detailed Description of the Invention] The technical field of the invention relates to a device for preparing viscous liquids such as paints (hereinafter referred to as stock solution), and more specifically, a device for automatically injecting stock solution stored in a tank into another container according to an arbitrary set prescription. It relates to a measuring device.

目的 本発明は、とくに塗料の調合等において見られる如き原
液ごとに要求されど一合量やその調合精度が広範囲にわ
たるような調合作業の自動化を目的とし、より具体的に
はタンク内に収容された原色塗料等の原液を要求される
精度のもとて能率よく別容器内に注入することのできる
自動注入計量装置を提供することを目的とするものであ
る。
Purpose The present invention aims to automate the preparation work where the amount and mixing precision required for each stock solution vary over a wide range, such as in the preparation of paints. The object of the present invention is to provide an automatic injection/measuring device capable of efficiently injecting stock solutions of primary color paints and the like into separate containers with the required precision.

構成 以下、本発明を実施例に従って詳細に説明する。composition Hereinafter, the present invention will be explained in detail according to examples.

第1図は不発明装置を複数基設けた自動調合装置を表わ
し−1はエアモータ2により駆動される攪拌具3を内蔵
する密閉された原液タンクで、原液A、 B、  C,
・・・をそれぞれ貯留し、下部に原液搬出用の送液管4
を備え、タンク内圧力はエアヘッダ5につながり、制御
装置6により制御される圧力調節器7により調節されて
いる。各原液タンク1の送液管4には2個の吐出弁8−
1. 8−2が設けられ、各吐出弁の先端には口径の一
様な細管で形成された吐出ノズル9−1.9−2が設け
られている。一方の吐出ノズル9−1は口径が大きく、
他方の吐出ノズルは口径が小さい。10−1.10−2
はそれぞれ吐出弁8−1. 8−2につながり、制御装
置6により開閉が制御される電磁弁であり、この電磁弁
10−1.10−2が開くとエアへラダ5からの空気圧
力により吐出弁8−1.8−2が開く、電磁弁10−1
.10−2としては1基の原液タンク1に設けられた1
対の吐出弁8−1.8−2に対応するもののみが図示さ
れているが、他の吐出弁についても同様にして電磁弁が
設けられている。
Fig. 1 shows an automatic blending device equipped with a plurality of uninvented devices. -1 is a sealed stock solution tank containing a stirrer 3 driven by an air motor 2, in which stock solutions A, B, C,
. . . are stored respectively, and there is a liquid sending pipe 4 at the bottom for carrying out the stock solution.
The tank internal pressure is regulated by a pressure regulator 7 connected to an air header 5 and controlled by a control device 6. Two discharge valves 8- are installed in the liquid feed pipe 4 of each stock solution tank 1.
1. 8-2, and a discharge nozzle 9-1, 9-2 formed of a thin tube with a uniform diameter is provided at the tip of each discharge valve. One discharge nozzle 9-1 has a large diameter;
The other discharge nozzle has a smaller diameter. 10-1.10-2
are respectively discharge valves 8-1. 8-2, which is a solenoid valve whose opening and closing are controlled by the control device 6. When this solenoid valve 10-1.10-2 opens, air pressure from the ladder 5 causes the discharge valve 8-1.8- to open. 2 opens, solenoid valve 10-1
.. 10-2 is 1 installed in one stock solution tank 1.
Although only the discharge valves corresponding to the pair of discharge valves 8-1 and 8-2 are shown, electromagnetic valves are similarly provided for the other discharge valves.

各原液タンク1内の原液は、エアヘッダ51からの空気
や窒素ガス等の不活性ガヌの加圧力により送液管4.吐
出弁8−1又は8−2及び吐出ノズル9−1又は9−2
を経て受器11内に注入される。その際各吐出ノズル9
−1.9−2から吐出される原液の吐出速度が原液の粘
度にかかわらず所定値になるように各原液タンクへの加
圧力が前記圧力調節器7により調節される。12は原液
タンクlの加圧力を検出し、制御装置6へその信号を送
信する圧力計である。
The stock solution in each stock solution tank 1 is transferred to the liquid sending pipe 4 by the pressurizing force of an inert gas such as air or nitrogen gas from the air header 51. Discharge valve 8-1 or 8-2 and discharge nozzle 9-1 or 9-2
The liquid is injected into the receiver 11 through the process. At that time, each discharge nozzle 9
The pressure applied to each stock solution tank is adjusted by the pressure regulator 7 so that the discharge speed of the stock solution discharged from -1.9-2 becomes a predetermined value regardless of the viscosity of the stock solution. 12 is a pressure gauge that detects the pressurizing force of the stock solution tank l and transmits the signal to the control device 6.

13は受器11内に注入された原液重量を検出する電子
天秤で、上記吐出弁が開かれ原液が注入されつつある状
態での該重量即ち動的重量及び吐出弁が閉じられてから
所定時間経過した後の該重量即ち静的重量を検出してそ
の信号を制御装置6へ送信する。
Reference numeral 13 denotes an electronic balance that detects the weight of the stock solution injected into the receiver 11, and detects the weight when the discharge valve is opened and the stock solution is being injected, that is, the dynamic weight, and the predetermined time after the discharge valve is closed. The weight after the lapse of time, that is, the static weight is detected and a signal thereof is sent to the control device 6.

15は受器11の昇降装置で、受器11は該昇降装M1
5及び図示されていない搬送装置ζこより電子天秤13
上に設置され又他の所定位置まで移送される。16は原
液温度を検出し、その信号を制御装置6へ送信する温度
計である。
15 is a lifting device for the receiver 11, and the receiver 11 is the lifting device M1.
5 and an electronic balance 13 from the transport device ζ (not shown).
and transported to another predetermined location. 16 is a thermometer that detects the temperature of the stock solution and transmits the signal to the control device 6.

制御装置6はマイクロコンピュータと入力及び出力イン
ターフエーヌとからなり、予めテープ又はキー人力した
設定条件や運転条件及び上記各検出器から入力した信号
に基づいて、各原液夕、ンクlに収容された原液を所定
の調合順序に従って順次所定の注入圧のもとて所定の注
入量が得られるよう、圧力調節器7及び電磁弁10−1
.10−2の開閉を制御し、各原液の注入即ち調合の完
了を検知したときは電磁弁14により昇降装置及び搬送
装置を動作させるよう制御するものである。
The control device 6 is composed of a microcomputer and an input/output interface, and is configured to control the amount of stock solution stored in each tank based on the setting conditions and operating conditions entered in advance using a tape or key, and the signals input from each of the above-mentioned detectors. A pressure regulator 7 and a solenoid valve 10-1 are used so that a predetermined injection amount is obtained by sequentially applying the stock solution at a predetermined injection pressure according to a predetermined preparation order.
.. 10-2 is controlled to open and close, and when the completion of injection of each stock solution, that is, completion of preparation, is detected, the solenoid valve 14 is controlled to operate the lifting device and the conveying device.

第2図に本発明の一実施例を更に詳細に説明する。An embodiment of the present invention will be explained in more detail in FIG.

20は粘度・比重補正回路で、温度検出器16が検出し
た温度を入力信号として、粘度一温度テーブル及び比重
一温度テーブルを用いて原液の粘度と比重を補正する。
20 is a viscosity/specific gravity correction circuit which uses the temperature detected by the temperature detector 16 as an input signal and corrects the viscosity and specific gravity of the stock solution using a viscosity-temperature table and a specific gravity-temperature table.

21は吐出圧演算回路で一粘度・比重補正回路20で補
正された粘度と、吐出速度、吐出圧補正定数及びノズル
条件C口径。
21 is a discharge pressure calculation circuit, which contains the viscosity corrected by the viscosity/specific gravity correction circuit 20, the discharge speed, the discharge pressure correction constant, and the nozzle condition C diameter.

長さ)の設定値を入力して吐出圧を演算し、第1及び第
2吐出ノズルからの原液の吐出速度が所定値になるよう
に比較制御回路22を介して圧力調節器7を制御する。
The discharge pressure is calculated by inputting the set value of the length), and the pressure regulator 7 is controlled via the comparison control circuit 22 so that the discharge speed of the stock solution from the first and second discharge nozzles becomes a predetermined value. .

比較制御回路22は比較回路23からの信号に従って、
吐出圧演算回路21で算出された吐出圧信号又は設定さ
れた微量注入吐出圧信号を入力し、圧力検出器12の信
号がそれらの吐出圧と一致するように圧力調節器7を制
御するものである。これらの粘度・比重補正回路20゜
吐出圧演算回路21及び比較制御回路22で吐出圧制御
手段を構成する。
The comparison control circuit 22 follows the signal from the comparison circuit 23,
A discharge pressure signal calculated by the discharge pressure calculation circuit 21 or a set microinjection discharge pressure signal is input, and the pressure regulator 7 is controlled so that the signal of the pressure detector 12 matches the discharge pressure. be. These viscosity/specific gravity correction circuit 20° discharge pressure calculation circuit 21 and comparison control circuit 22 constitute a discharge pressure control means.

24は吐出制御値演算回路で、吐出制御値定数、ノズル
口径、及び粘度・比重補正回路20で補正された原液比
重を入力して、所定の吐出速度のもとにおける第1及び
第2吐出ノズルの吐出制御値を演算する。
24 is a discharge control value calculation circuit which inputs the discharge control value constant, the nozzle diameter, and the specific gravity of the stock solution corrected by the viscosity/specific gravity correction circuit 20, and calculates the first and second discharge nozzles under a predetermined discharge speed. The discharge control value is calculated.

25は注入残量演算回路で、重量検出器C電子天秤)1
3が検出した動的又は静的注入量を入力信号として、こ
の注入量と原液の目標注入量との動的又は静的注入残量
を演算する。
25 is a calculation circuit for the remaining amount to be poured, and the weight detector C (electronic balance) 1
Using the dynamic or static injection amount detected by step 3 as an input signal, the dynamic or static injection remaining amount between this injection amount and the target injection amount of the stock solution is calculated.

比較回路23は原液の目標注入量又は注入残量演算回路
25からの動的もしくは静的注入残量と吐出制御値演算
回路24からの吐出制御値を比較し、または原液の許容
注入誤差量と注入残量演算回路25からの静的注入残量
を比較し、この比較結果に基づいて吐出弁開閉制御回路
26を介して第1吐出弁8−1及び第2吐出弁8−2の
開閉を制御する。
The comparison circuit 23 compares the target injection amount of the stock solution or the dynamic or static injection remaining amount from the injection remaining amount calculation circuit 25 and the discharge control value from the discharge control value calculation circuit 24, or compares the discharge control value from the discharge control value calculation circuit 24 with the allowable injection error amount of the stock solution. The static remaining injection amount from the remaining injection amount calculation circuit 25 is compared, and based on the comparison result, the opening/closing of the first discharge valve 8-1 and the second discharge valve 8-2 is controlled via the discharge valve opening/closing control circuit 26. Control.

原液の目標注入量が吐出制御値演算回路24からの第2
吐出ノズルの吐出制御値以下である場合、又は注入残量
演算回路25からの静的注入残量が原液の許容注入誤差
量より大きくかつ前記第2吐出ノズルの吐出制御値以下
である場合、比較回路23から比較制御回路22に吐出
圧が微量注入吐出圧になるように圧力調節器7を制御す
る信号が送出される。また、この場合、第2吐出弁開閉
時間算出回路27は、この微量注入吐出圧のもとにおい
て注入残量演算回路25−吐出弁開閉制御回路26及び
タイマー28から信号を入力して、この微量注入吐出圧
のもとにおいて第2吐出ノズルから吐出される原液の最
少単位の吐出量及び吐出時間を測定し、この測定結果に
基づいて第2吐出弁の開閉時間を制御する信号を吐出弁
開閉制御回路26へ送出する。
The target injection amount of the stock solution is determined by the second input from the discharge control value calculation circuit 24.
When the discharge control value of the discharge nozzle is below or the static injection remaining amount from the remaining injection amount calculation circuit 25 is larger than the allowable injection error amount of the stock solution and below the discharge control value of the second discharge nozzle, the comparison is performed. A signal is sent from the circuit 23 to the comparison control circuit 22 to control the pressure regulator 7 so that the discharge pressure becomes the microinjection discharge pressure. In this case, the second discharge valve opening/closing time calculation circuit 27 inputs signals from the remaining injection amount calculation circuit 25 - the discharge valve opening/closing control circuit 26 and the timer 28 under this micro-injection discharge pressure, and Measure the minimum unit discharge amount and discharge time of the stock solution discharged from the second discharge nozzle under the injection discharge pressure, and send a signal to control the opening and closing time of the second discharge valve based on the measurement results. The signal is sent to the control circuit 26.

次に原液の吐出速度を所定値にする動作を説明する。Next, the operation of setting the discharge speed of the stock solution to a predetermined value will be explained.

本装置において原液の吐出速度は吐出原液が受器11外
に飛び散らない程度で可及的速くするととが調合能率上
好ましい。
In this apparatus, it is preferable for the discharge speed of the stock solution to be as fast as possible to the extent that the discharged stock solution does not scatter outside the receiver 11 in terms of mixing efficiency.

本装置において、原液の吐出速度はレイノルズ数Reが
2300以下であれば層流となってハーゲン・ボアズイ
ユの法則がはゾ適用できるので次式により求めることが
できる。
In this apparatus, if the Reynolds number Re is 2300 or less, the discharge velocity of the stock solution becomes a laminar flow and the Hagen-Boiseuille law can be applied, so it can be determined by the following equation.

但し、■;吐出速度(ff/5eC)、P;吐出圧(g
r/画 )、μ;原液粘度(gr−sec/α )、l
;吐出ノズルの長さCCm) −d i吐出ノズルの口
径((7)) 即ち、任意の吐出ノズルを用い、低粘度液について吐出
実験を行い、原液が飛び散らない程度での最高の吐出圧
を実験的に求め、(1)式から吐出速度■0を算出する
However, ■: Discharge speed (ff/5eC), P: Discharge pressure (g
r/image), μ; Stock solution viscosity (gr-sec/α), l
;Length of the discharge nozzle CCm) -di Diameter of the discharge nozzle ((7)) In other words, conduct a discharge experiment with a low viscosity liquid using an arbitrary discharge nozzle, and find the highest discharge pressure to the extent that the stock solution does not scatter. It is determined experimentally and the discharge speed ■0 is calculated from equation (1).

該吐出速度を上記所定値とし、実際の使用吐出ノズルや
原液に応じて、該所定値になるように吐出圧を制御する
ものである。
The discharge speed is set to the predetermined value, and the discharge pressure is controlled to the predetermined value according to the actual discharge nozzle and stock solution used.

この動作を第3図のフローチャートに従って詳しく説明
する。
This operation will be explained in detail according to the flowchart in FIG.

運転を開始すると、所定の原液タンク1の原液Aを注入
する指令信号が出され(ステップs1〕=制御装雪6は
温度検出器16からの温度検出値tiを読み込み、既に
設定されている原液A&r−′iJ)かる粘度一温度テ
ーブルに基づいてその温度【iに対応する粘度μiを算
出する(ステップs2.s3)。次に、使用される吐出
ノズル9−1又は9−2のノズル条件Cロ径di、長さ
/i )、前記吐出速度の所定値vO及び吐出圧補正定
数Pkを読み込み(ステップs4.s5.−56)、第
(2)式に従って吐出圧P1を算出する〔ステップS7
)。
When the operation starts, a command signal is issued to inject the stock solution A in a predetermined stock solution tank 1 (step s1) = the control snow equipment 6 reads the temperature detection value ti from the temperature detector 16, and injects the stock solution that has already been set. A&r-'iJ) Based on the viscosity-temperature table, the viscosity μi corresponding to the temperature [i is calculated (steps s2 and s3). Next, the nozzle conditions C (diameter di, length/i) of the discharge nozzle 9-1 or 9-2 to be used, the predetermined value vO of the discharge speed, and the discharge pressure correction constant Pk are read (steps s4, s5. -56), calculate the discharge pressure P1 according to equation (2) [Step S7
).

この吐出圧P1を圧力調節器7に出力してエアーヘッダ
51から原液タンク1にガヌを送り込み、圧力検出器1
2からの圧力検出値Piを読み込んで、P’i =pl
 となるように圧力調節器7を制御する(ステップ88
.S9,510,5ll)。
This discharge pressure P1 is output to the pressure regulator 7, and the gas is sent from the air header 51 to the stock solution tank 1, and the pressure detector 1
Read the pressure detection value Pi from 2, P'i = pl
The pressure regulator 7 is controlled so that (step 88
.. S9,510,5ll).

以上により、その原液タンク1から吐出される原液Aは
所定値vOの吐出速度で吐出されることになる。この操
作はどの原液タンクlについても同様に行なわれる。
As a result of the above, the stock solution A is discharged from the stock solution tank 1 at a discharge speed of the predetermined value vO. This operation is performed in the same way for any stock solution tank l.

次に原液の注入方式′について説明する。Next, the stock solution injection method' will be explained.

本装置は塗料調合等に見られる如く調合比率が極めて広
範囲(1:2000以上)に互るような調合作業の自動
化を目的とするものであり、各原液の目標注入量や許容
注入誤差量に応じて各吐出ノズルを使い分けることによ
り調合能率と調合精度の向上を計っている。
The purpose of this device is to automate blending operations where the blending ratio varies over an extremely wide range (1:2000 or more), such as in paint blending. By using different discharge nozzles accordingly, we aim to improve blending efficiency and precision.

本装置は基本的に受器11内番こ吐出される原液の重量
を検出して、該検出重量が所定量に達したら原液の吐出
を終了させるものであるが、次のような誤差要因により
必ずしも原液の正確な採取が(]、)残留量誤差(QE
l) この誤差は、吐出ノズル9−1、又は9−2の先端から
受器11の液面間にある原液による誤差で QEt−ρ・−d2・S     ・・・・・ (3)
で示される。
This device basically detects the weight of the undiluted solution discharged from the container 11 and stops dispensing the undiluted solution when the detected weight reaches a predetermined amount.However, due to the following error factors, Accurate sampling of the stock solution does not necessarily result in residual amount error (QE).
l) This error is due to the error caused by the raw liquid between the tip of the discharge nozzle 9-1 or 9-2 and the liquid level of the receiver 11.QEt-ρ・-d2・S... (3)
It is indicated by.

但しS;ノズル先端から受器液面までの距離(Gj)ρ
;原液の比重(gr/α8) (2)重量検出器の応答性等による誤差(QE、、)こ
の誤差は天秤の応答性、サンプリングおよび吐出弁の応
答性等による誤差で、これらによる遅れ時間を【eとす
ると、 QE2=ρ・−d2・■・【e・・・・・(4)で示さ
れる。
However, S: distance from the nozzle tip to the receiver liquid level (Gj) ρ
; Specific gravity of the stock solution (gr/α8) (2) Error due to the response of the weight detector, etc. (QE,...) This error is due to the response of the balance, sampling and discharge valve, etc., and the delay time due to these errors. When [e] is shown, QE2=ρ・−d2・■・[e...(4).

(3)動荷重による誤差(QE8) この誤差は原液の連続吐出にともなって天秤に加わる動
荷重による誤差で、 で示される。
(3) Error due to dynamic load (QE8) This error is due to the dynamic load applied to the balance as the stock solution is continuously discharged, and is expressed as follows.

但しg;重力加速度Catt/sec  )t;ノズル
先端から受器液面までの原液の落下時間(sec) さて、このような誤差要因の合計値QEo ’以下吐出
制御値という)は次式により求めることかでき。
However, g: gravitational acceleration Catt/sec) t: falling time of the stock solution from the nozzle tip to the receiver liquid level (sec) Now, the total value of these error factors QEo' (hereinafter referred to as discharge control value) is calculated by the following formula. I can do it.

QEO=QE1+QE2  QE8 g S、 V、  te Htを定数として与えれば、ρ。QEO=QE1+QE2 QE8 g If S, V, te, and Ht are given as constants, then ρ.

4に応じた吐出制御値を求めることができる。但しVは
前述の所定吐出速度■0である。即ちQEo”Kρd2
・−−−・(7) 但しに;吐出制御値定数 本発明は基本的にはこの吐出制御値に基づいて第4図に
示すような注入方式を採用するものである。
A discharge control value corresponding to 4 can be obtained. However, V is the aforementioned predetermined ejection speed ■0. That is, QEo”Kρd2
(7) However; Discharge control value constant The present invention basically employs the injection method as shown in FIG. 4 based on this discharge control value.

即ち、先ず大口径である第1吐出ノズルからの注入(第
4図中OA)を行うことによって注入時間の短縮化を計
り、天秤による検出重量が目標注入量から第1吐出ノズ
ルの吐出制御値を減じた値に達したら小口径である第2
吐出ノズルからの注入(第4図中のB〕に移行し、調合
精度の向上を計る。さらに天秤による検出重量が目標注
入量から第2吐出ノズルの吐出制御値を減じた値に達し
たら後述する微量注入方式に従って注入する(第4図中
のC) この注入動作を第5図のフローチャートに従って詳しく
説明する。
That is, first, the injection time is shortened by injecting from the first discharge nozzle with a large diameter (OA in Fig. 4), and the weight detected by the balance changes from the target injection amount to the discharge control value of the first discharge nozzle. When the value obtained by subtracting the
Move to the injection from the discharge nozzle (B in Figure 4) to improve the blending accuracy.Furthermore, when the weight detected by the balance reaches the value obtained by subtracting the discharge control value of the second discharge nozzle from the target injection amount, the process will be described later. Inject according to the microinjection method (C in FIG. 4). This injection operation will be explained in detail according to the flowchart in FIG.

運転を開始すると、所定の原液タンク1の原液Aの注入
指令信号が出力され(ステップ512)、制御装置6は
目標注入量Q、許容注入誤差量QEを読み込む(ステッ
プS1:l。次に温度検出器16からの検出温度【iを
読み込み、既に設定されている原液Aの比重一温度テー
ブルからその温度【iに対応する比重Piを算出する(
ステップS14,515)。次に第1及び第2吐出ノズ
ルのノズル条件(口径di 1及び吐出制御値定数Kを
読み込み第1及び第2吐出ノズルの吐出制御値QEO’
Q’EOを算出する(ステップ516,517゜518
)。
When the operation starts, an injection command signal for the stock solution A in a predetermined stock solution tank 1 is output (step 512), and the control device 6 reads the target injection amount Q and the allowable injection error amount QE (step S1: l. Next, the temperature Read the detected temperature [i] from the detector 16, and calculate the specific gravity Pi corresponding to the temperature [i] from the specific gravity-temperature table of stock solution A that has already been set (
Step S14, 515). Next, read the nozzle conditions (aperture di 1 and discharge control value constant K) of the first and second discharge nozzles and set the discharge control value QEO' of the first and second discharge nozzles.
Calculate Q'EO (steps 516, 517, 518
).

目標注入量見と第1吐出ノズルの吐出制御値QEoとを
比較しくステップS 19) 、 Q>QEoの場合は
第1吐出弁が開かれて吐出が開始され、天秤13により
注入量Qniが検出され逐次読み込まれル(ステップ5
20,521)、QDiがQ−QE。
Compare the target injection amount with the ejection control value QEo of the first ejection nozzle (step S19). If Q>QEo, the first ejection valve is opened and ejection is started, and the injection amount Qni is detected by the balance 13. and read sequentially (step 5)
20,521), QDi is Q-QE.

に達したら第1吐出弁が閉じられ吐出が中断する(ステ
ップS22,523)。第1吐出弁閉止後所定時間to
経過したときの天秤13による検出注入量QS iを読
み込む(ステップS24,525)。Q−Qsiと許容
注入誤差量QEとを比較しくy、テップs 26) −
Q−Qsi≦QEの場合は原液Aの注入を完了する。
When the first discharge valve is reached, the first discharge valve is closed and the discharge is interrupted (step S22, 523). Predetermined time to after closing the first discharge valve
The injection amount QS i detected by the balance 13 after the elapsed time is read (step S24, 525). Compare Q-Qsi and allowable injection error amount QE, step s26) -
If Q-Qsi≦QE, the injection of stock solution A is completed.

ステップ519においてQ≦QEoの場合は、さらに目
標注入量Qと第2吐出ノズルの吐出制御値Q’Eoとを
比較しくステップ27 )、 、 Q>Q’EO”場合
及びステップ826においてQ  Qs i > Qm
−oの場合は、さらにQ −Qs iと91EOと比較
しくステップ828)−Q−QSi> Q’EOの場合
は、第2吐出弁が開かれて吐出が開始(再開)される(
ステップ529)。
If Q≦QEo in step 519, the target injection amount Q is further compared with the ejection control value Q'Eo of the second ejection nozzle. >Qm
-o, further compare Q-Qs i and 91EO (step 828) -Q-QSi>Q'EO, the second discharge valve is opened and discharge is started (resumed) (
step 529).

天秤13による検出注入量QD iが逐次読み込まれ、
QDiがQ −Q’Eoに達したら第2吐出弁が閉じら
れ吐出が中断する(ステップ530.S31゜532)
。第2吐出弁閉止後所定時間【0経過したときの天秤1
3による検出注入量QSiを読み込むCステyプ533
,5341 、Q−QSiとQEとを比較しくステップ
s 35) 、 Q−Qsi≦QEの場合は原液Aの注
入を完了する。
The injection amount QD i detected by the balance 13 is read sequentially,
When QDi reaches Q-Q'Eo, the second discharge valve is closed and discharge is interrupted (step 530.S31°532).
. Balance 1 when a predetermined time (0) has passed after the second discharge valve is closed
C step 533 to read the detected injection amount QSi according to 3.
, 5341 , Compare Q-QSi and QE, step s35) , If Q-Qsi≦QE, complete the injection of stock solution A.

ステップI8においてQ−QSi≦Q旨の場合、ならび
にステップS35においてQ−Qsi>QEの場合は微
量注入指令信号が出力される(ステップ536)。
If Q-QSi≦Q in step I8 and if Q-Qsi>QE in step S35, a microinjection command signal is output (step 536).

次に微量注入方式について説明する。Next, the microinjection method will be explained.

目標注入量や許容注入誤差が微量である場合に使用され
る注入方式で、基本的には吐出重器と吐出時間との関係
に基づいて吐出弁の開閉を制御するーものである。
This injection method is used when the target injection amount or allowable injection error is small, and basically controls the opening and closing of the discharge valve based on the relationship between the heavy discharge equipment and the discharge time.

即ち、第6図に示されるように先ず原液1滴を滴下させ
てその重量と吐出時間を測定する〔第6図中のa)。こ
れから単位時間当りの吐出量を算出し、それを基にして
目標注入量の吐出に要する時間を求め、その時間だけ吐
出させる(第6図中のb)。この操作でまだ注入量が許
容注入誤差内に入っていなければ、その後1滴ずつ滴下
させる操作を繰返す(第6図中のc、  d、  e)
That is, as shown in FIG. 6, first, one drop of the stock solution is dropped and its weight and ejection time are measured [a in FIG. 6]. From this, the ejection amount per unit time is calculated, and based on this, the time required to eject the target injection amount is determined, and ejection is performed for that time (b in FIG. 6). If the injection amount is still not within the allowable injection error after this operation, repeat the operation of dropping one drop at a time (c, d, e in Figure 6).
.

この注入動作を第7図のフローチャートに従って詳しく
説明する。
This injection operation will be explained in detail according to the flowchart of FIG.

微量注入指令信号が出力されると(ステップ536)、
制御装置6は微量注入吐出圧△Pと圧力検出器12から
検出圧力Pi とを読み込んで、△P=Pi となるよ
うに圧力調節器7を制御するCステップS37.S38
,839.S40,541)。天秤13による検出注入
量Qsiを読み込んだ後、第2吐出弁を所定時間TOだ
け開き、所定時間【0経過後天秤13による検出注入量
Q’S iを読み込む(ステップ842.S43.S4
4.S45゜S46,547)、Q’SiとQSiとを
比較しくステップ848)” QSi>QSiになるま
でステップ543〜S48を繰返す。
When the microinjection command signal is output (step 536),
The control device 6 reads the microinjection discharge pressure ΔP and the detected pressure Pi from the pressure detector 12, and controls the pressure regulator 7 so that ΔP=Pi.C step S37. S38
,839. S40,541). After reading the injection amount Qsi detected by the balance 13, the second discharge valve is opened for a predetermined time TO, and after the elapse of a predetermined time 0, the injection amount Q'Si detected by the balance 13 is read (step 842.S43.S4
4. Steps 543 to 548 are repeated until QSi>QSi.

Q−Q’Si≦QEであれば原液Aの注入は完了する(
ステップ549)。
If Q-Q'Si≦QE, injection of stock solution A is completed (
step 549).

Q −Q+si> QEであれば単位時間当りの吐出量
Wから吐出時間T1を算出する(ステップS50゜55
1)。ステップ551の式中のαは注入量が目標注入量
を超過しないようにする余裕率で、1以下の定数である
。第2吐出弁をT1時間だけ開き所定時間to経過後天
秤13による検出注入量Q’Siを読み込む(ステップ
S52.S53.S54゜sss、  556)。Q 
 Q’siとQEとを比較しくステップ557)、Q−
Q’Si≦QEであれば原液Aの注入は完了する。Q−
Q’Si>QEであれば第2吐出弁を 10時間だけ開
き、Q −Q+Si≦QEになるまでこの操作を繰返し
くステップS58゜S59,860,561,562.
563)、QQ+si≦QEになれば原液Aの注入は完
了する。
If Q-Q+si>QE, the discharge time T1 is calculated from the discharge amount W per unit time (step S50゜55
1). α in the equation of step 551 is a margin rate that prevents the injection amount from exceeding the target injection amount, and is a constant of 1 or less. The second discharge valve is opened for T1 time and after a predetermined time period has elapsed, the injection amount Q'Si detected by the balance 13 is read (steps S52, S53, S54, 556). Q
Compare Q'si and QE (Step 557), Q-
If Q'Si≦QE, injection of stock solution A is completed. Q-
If Q'Si>QE, open the second discharge valve for 10 hours and repeat this operation until Q-Q+Si≦QE.Step S58°S59, 860, 561, 562.
563), when QQ+si≦QE, the injection of stock solution A is completed.

以上の動作説明は特定の1基の原液タンクの原液Aの吐
出についてのものであるが、同じ操作を異なる原液や原
液を貯留している2以上の原液タンクについて行なえば
所定の重量比で2種類以上の原液を調合できるこ・とは
云うまでもない。
The above operation explanation is about discharging the stock solution A from one specific stock solution tank, but if the same operation is performed for two or more stock solution tanks storing different stock solutions or stock solutions, two or more stock solutions will be discharged at a predetermined weight ratio. Needless to say, it is possible to prepare more than one type of stock solution.

効果 本発明は上記した如く吐出制御値の概念を導入すること
により所要の注入量や許容注入誤差量に応じて原液タン
クに備えた大口径及び小口径の吐出ノズルを自動的に使
い分けるようにしたので、原液の注入時間の短縮化を計
ることができ、又上記した如く吐出弁の開閉時間を制御
する微量吐出方式を設は所要の注入量や許容注入誤差量
に応じて該微量吐出方式に自動的に切替えるようにした
ので所要の注入量が極めて微量な場合あるいは要求され
る注入精度が極めて高い場合でも、これに対処すること
ができる。
Effect As described above, the present invention introduces the concept of discharge control value to automatically use the large-diameter and small-diameter discharge nozzles provided in the stock solution tank according to the required injection amount and allowable injection error amount. Therefore, it is possible to shorten the injection time of the stock solution, and as mentioned above, by setting up a micro-volume dispensing method that controls the opening and closing time of the discharge valve, the micro-dispensing method can be adjusted according to the required injection volume and the allowable injection error amount. Since the switching is automatic, it is possible to deal with cases where the required injection amount is extremely small or the required injection precision is extremely high.

本発明は以上のような特長を具有するものであるから、
必要により複数基の原液タンク等を設ければ調合処方が
多岐にわたる塗料等の自動調合装置としてまことに好適
なものとなり、調合作業の合理化を著しく推進すること
ができる。
Since the present invention has the above features,
If a plurality of stock solution tanks or the like are provided as necessary, the device becomes suitable as an automatic compounding device for paints and the like that have a wide variety of compounding recipes, and the rationalization of compounding work can be significantly promoted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示す概略図、第2図は一
実施例の構成を示すブロック図、第3図は同実施例にお
いて原液吐出速度を所定値にする動作を示すフP−チャ
ート、第4図は本発明における注入方式を示す図、第5
図は上記実施例の注入動作を示すフローチャート、第6
図は本発明における微量注入方式を示す図、第7図は上
記実施例における微量注入動作を示すフローチャートで
ある。 1・・・・・・原液タンク、8−1.8−2・・・・・
・吐出弁。 9−1.9−2・・・・・・吐出ノズル−11・・・・
・・受器、7・・・・・・圧力調節器、13・・・・・
・重量検出器、16・・・・・・温度検出器、20・・
・・・・粘度・比重補正回路、21・・・・・・吐出圧
演算回路、22・・・比較制御回路。 23・・・・・・比較回路、24・・・・・・吐出制御
値演算回路、25・・・・・・注入残量演算回路、26
・・・・・・吐出弁開閉制御回路、27・・・・・・第
2吐出弁開閉時間算出回路、28・・・・・・タイマー
。 特許出願人 倉敷紡績株式会社 代 理 人 弁理士 青白 葆 外3名第3図 第4図 第6図 □口上出吟関(1)
FIG. 1 is a schematic diagram showing one embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of one embodiment, and FIG. - Chart, Figure 4 is a diagram showing the injection method in the present invention, Figure 5
The figure is a flowchart showing the injection operation of the above embodiment.
The figure shows a micro-injection method according to the present invention, and FIG. 7 is a flowchart showing the micro-injection operation in the above embodiment. 1... Stock solution tank, 8-1.8-2...
・Discharge valve. 9-1.9-2...Discharge nozzle-11...
... Receiver, 7... Pressure regulator, 13...
・Weight detector, 16...Temperature detector, 20...
...Viscosity/specific gravity correction circuit, 21...Discharge pressure calculation circuit, 22...Comparison control circuit. 23... Comparison circuit, 24... Discharge control value calculation circuit, 25... Remaining injection amount calculation circuit, 26
...Discharge valve opening/closing control circuit, 27...Second discharge valve opening/closing time calculation circuit, 28...Timer. Patent applicant: Kurashiki Boseki Co., Ltd. Representative: Patent attorney: Aohaku, Ao, and 3 others Figure 3 Figure 4 Figure 6 □ Kuchijode Ginkan (1)

Claims (1)

【特許請求の範囲】 原液を収容する原液タンクと。 原液タンクからの分岐した送液経路に設けられた第′l
及び第2吐出弁と。 第1及び第2吐出弁の夫々に接続する大口径の第1及び
小口径の第2吐出ノズルと。 注入原液を収容する受器と、゛ 原液タンク内の原液の送液圧を検出し調節する圧力調節
器と。 注入原液の重量を検出する重量検出器とν原液温度を検
出する温度検出器と。 前記温度検出器が検出した温度を入力信号として原液の
粘度を補正し、前記第1及び第2吐出ノズルからの原液
の吐出速度が所定値になるように前記圧力調節器を制御
する信号を出力する吐出圧制御手段と。 前記温度検出器が検出した温度を入力信号として原液の
比重を補正し、所定の吐出速度のもとにおける前記第1
及び第2吐出ノズルの吐出制御値を演算する吐出制御値
演算手段と。 前記重量検出器が検出した動的又は静的注入量を入力信
号として、該注入量と原液の目標注入量との差を演算す
る動的又は静的注入残量演算手段と。 原液の目標注入量又は前記動的又は静的注入残量と前記
吐出制御値、原液の許容注入誤差量と前記静的注入残量
とを夫々比較し、該比較結果に基づいて第1及び第2吐
出弁の開閉を制御する信号を出力する吐出弁制御手段と
。 原液の目標注入量が前記第2吐出ノズルの吐出制御値以
下である場合、又は前記静的注入残量が原液の許容注入
誤差量より大きくかつ前記第2吐出ノズルの吐出制御値
以下である場合に出力される信号を入力信号として、吐
出圧が所定圧になるように前記圧力調節器を制御する信
号を出力し、該所定圧のもとにおいて第2吐出ノズルか
ら吐出される原液の最小単位の吐出量及び吐出時間を測
定し、該測定結果に基づいて第2吐出弁の開閉時間を制
御する信号を出力する微量吐出手段とを備えたことを特
徴とする自動注入計量装置
[Claims] A stock solution tank containing stock solution. No. 1 installed in the liquid feeding route branched from the stock solution tank.
and a second discharge valve. a large-diameter first discharge nozzle and a small-diameter second discharge nozzle connected to the first and second discharge valves, respectively; A receiver that stores the stock solution for injection, and a pressure regulator that detects and adjusts the feeding pressure of the stock solution in the stock solution tank. A weight detector that detects the weight of the stock solution to be injected and a temperature detector that detects the temperature of the stock solution. Correcting the viscosity of the stock solution using the temperature detected by the temperature detector as an input signal, and outputting a signal to control the pressure regulator so that the discharge speed of the stock solution from the first and second discharge nozzles reaches a predetermined value. and a discharge pressure control means. The temperature detected by the temperature detector is used as an input signal to correct the specific gravity of the stock solution, and the first
and a discharge control value calculating means for calculating a discharge control value of the second discharge nozzle. Dynamic or static remaining injection amount calculating means for calculating the difference between the dynamic or static injection amount detected by the weight detector as an input signal and the target injection amount of the stock solution. The target injection amount of the stock solution or the dynamic or static injection remaining amount is compared with the discharge control value, and the allowable injection error amount of the stock solution is compared with the static injection remaining amount, and based on the comparison results, the first and the first injection amount are compared. 2. A discharge valve control means that outputs a signal for controlling opening and closing of the discharge valve. When the target injection amount of the stock solution is less than or equal to the ejection control value of the second ejection nozzle, or when the static injection remaining amount is larger than the allowable injection error amount of the stock solution and less than or equal to the ejection control value of the second ejection nozzle. outputting a signal for controlling the pressure regulator so that the discharge pressure becomes a predetermined pressure using a signal output from the second discharge nozzle as an input signal; an automatic injection metering device characterized by comprising: minute amount discharge means for measuring the discharge amount and discharge time and outputting a signal for controlling the opening/closing time of the second discharge valve based on the measurement results.
JP57225470A 1982-12-21 1982-12-21 Automatic injection measuring apparatus Granted JPS59114418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225470A JPS59114418A (en) 1982-12-21 1982-12-21 Automatic injection measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225470A JPS59114418A (en) 1982-12-21 1982-12-21 Automatic injection measuring apparatus

Publications (2)

Publication Number Publication Date
JPS59114418A true JPS59114418A (en) 1984-07-02
JPH0113044B2 JPH0113044B2 (en) 1989-03-03

Family

ID=16829819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225470A Granted JPS59114418A (en) 1982-12-21 1982-12-21 Automatic injection measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59114418A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230919A (en) * 1985-08-01 1987-02-09 Kurabo Ind Ltd Automatic apparatus for injection and weighing
JPS6230920A (en) * 1985-08-01 1987-02-09 Kurabo Ind Ltd Automatic apparatus for injection and weighing
JPS63259422A (en) * 1987-04-15 1988-10-26 Daikin Ind Ltd Liquid measuring apparatus
JPS63274947A (en) * 1987-05-07 1988-11-11 Fuji Photo Film Co Ltd Device for preparing photographic coating liquid
EP0311229A2 (en) * 1987-10-05 1989-04-12 Japan Exlan Company, Ltd. Automatic dispensation of dye solutions
JPH05223627A (en) * 1991-07-23 1993-08-31 Andre Graffin Quantitative distribution method and apparatus
JPH06279716A (en) * 1993-11-15 1994-10-04 Nippon Paint Co Ltd Computer-aided color matching
JP2001279188A (en) * 2000-02-18 2001-10-10 John Michael Friel System for manufacturing dispersion type coating material
JP2003533231A (en) * 2000-05-25 2003-11-11 エイチ ディー エヌ ディベロップメント コーポレーション Method and system for automatically extruding and cutting a dough-based product having a preselected weight
JP2022098275A (en) * 2020-12-21 2022-07-01 株式会社デンソーテン Preparation device and preparation method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230919A (en) * 1985-08-01 1987-02-09 Kurabo Ind Ltd Automatic apparatus for injection and weighing
JPS6230920A (en) * 1985-08-01 1987-02-09 Kurabo Ind Ltd Automatic apparatus for injection and weighing
JPS63259422A (en) * 1987-04-15 1988-10-26 Daikin Ind Ltd Liquid measuring apparatus
JPS63274947A (en) * 1987-05-07 1988-11-11 Fuji Photo Film Co Ltd Device for preparing photographic coating liquid
EP0311229A2 (en) * 1987-10-05 1989-04-12 Japan Exlan Company, Ltd. Automatic dispensation of dye solutions
EP0311229A3 (en) * 1987-10-05 1990-09-05 Japan Exlan Company, Ltd. Automatic dispensation of dye solutions
JPH05223627A (en) * 1991-07-23 1993-08-31 Andre Graffin Quantitative distribution method and apparatus
JPH06279716A (en) * 1993-11-15 1994-10-04 Nippon Paint Co Ltd Computer-aided color matching
JP2554014B2 (en) * 1993-11-15 1996-11-13 日本ペイント株式会社 Computer color matching method
JP2001279188A (en) * 2000-02-18 2001-10-10 John Michael Friel System for manufacturing dispersion type coating material
JP2003533231A (en) * 2000-05-25 2003-11-11 エイチ ディー エヌ ディベロップメント コーポレーション Method and system for automatically extruding and cutting a dough-based product having a preselected weight
JP4731090B2 (en) * 2000-05-25 2011-07-20 エイチ ディー エヌ ディベロップメント コーポレーション Method and system for automatically extruding and cutting dough-based products having a preselected weight
JP2022098275A (en) * 2020-12-21 2022-07-01 株式会社デンソーテン Preparation device and preparation method
US11958028B2 (en) 2020-12-21 2024-04-16 Denso Ten Limited Preparation apparatus

Also Published As

Publication number Publication date
JPH0113044B2 (en) 1989-03-03

Similar Documents

Publication Publication Date Title
JP4084304B2 (en) Method and apparatus for weight distribution of bulk material
KR102239901B1 (en) Method and apparatus for pulsed gas delivery by means of an isolating valve
US6876904B2 (en) Portable concrete plant dispensing system
KR100362054B1 (en) Overfill compensation method for batch delivery equipment
JP3882148B2 (en) Continuous automatic manufacturing system for automobiles and other paints
US3964793A (en) Continuous flow pneumatic conveyor system employing a fluidized bed column for the purposes of control and regulation
US4182383A (en) Fluidized bed powder discharge and metering method and apparatus
JPS59114418A (en) Automatic injection measuring apparatus
US4856563A (en) Method and apparatus for filling liquid into containers
KR102281930B1 (en) Method and Apparatus for Verification of Wide Range of Mass Flow
JPH0245498B2 (en)
KR20080084659A (en) Method and apparatus for providing constant liquid rates and dispensing precisely repeatable liquid volumes
JP2002542118A (en) Equipment for metering and filling liquids in packaging containers
US7802462B2 (en) Gas flowmeter calibration stand
US6170703B1 (en) Chemical Dispensing system and method
KR100871287B1 (en) Fluid feeding apparatus for verification and calibration of flow meter
US11252855B2 (en) Agricultural seed treatment control system for liquid agrochemicals
KR20070041556A (en) Chemical mixing apparatus, system and method
JP2011051624A (en) Method and device for filling with fixed quantity of liquid
CZ88594A3 (en) Process and apparatus for volumetric feeding of flowing matters
CN110155390B (en) Method for filling coating
HU222672B1 (en) Volumetric batch dosing device and method
JPH0136887B2 (en)
JPH05322633A (en) Continuous fixed quantity discharger and blender utilizing it
JPH103317A (en) Method for controlling supply quantity of granular substance