JPS59113907A - Rolling method of pipe in reducing mill - Google Patents

Rolling method of pipe in reducing mill

Info

Publication number
JPS59113907A
JPS59113907A JP57224014A JP22401482A JPS59113907A JP S59113907 A JPS59113907 A JP S59113907A JP 57224014 A JP57224014 A JP 57224014A JP 22401482 A JP22401482 A JP 22401482A JP S59113907 A JPS59113907 A JP S59113907A
Authority
JP
Japan
Prior art keywords
stand
pipe
rolling
stands
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57224014A
Other languages
Japanese (ja)
Other versions
JPH0252563B2 (en
Inventor
Yasuyuki Hayashi
林 保之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57224014A priority Critical patent/JPS59113907A/en
Publication of JPS59113907A publication Critical patent/JPS59113907A/en
Publication of JPH0252563B2 publication Critical patent/JPH0252563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a sufficient effect for eliminating an increase of wall thickness by performing a speed reduction control of the roll peripheral speed of a stand located at the upstream when a prescribed part of the front or rear end of a blank pipe is rolled by prescribed stands located at the upstream and the downstream. CONSTITUTION:In a rolling method of a blank pipe by draw rolling the pipe through a group of rolling rolls consisting of plural stands, the roll peripheral speed of a stand located at the upstream is controlled by speed reduction when a prescribed part of the front or rear end of the pipe is rolled by the prescribed stands located respectively at the upstream and the downstream. Therefore, the responsiveness of a roll driving motor is enhanced to increase rapidly and surely a tension between the stands acting on the front and rear ends of the pipe, thereby a sufficient effect for eliminating the increase of wall thickness is obtained.

Description

【発明の詳細な説明】 本発明は絞り圧延機における管の圧延方法に関する。[Detailed description of the invention] The present invention relates to a method of rolling a tube in a reducing mill.

一般に、継目無鋼管の製造ラインにおいては、加熱炉に
おいて所要の温度まで加熱された素材を穿孔圧延機にお
いて穿孔して穿孔素管を得た後、穿孔素管を延伸圧延機
において延伸圧延して延伸素管を得た後、更に延伸素管
を絞り圧延機において所要寸法にまで絞り圧延して細管
を得ることを可能としている。
Generally, in a seamless steel pipe production line, a raw material heated to a required temperature in a heating furnace is perforated in a piercing rolling machine to obtain a perforated raw pipe, and then the perforated raw pipe is stretched and rolled in an elongation rolling machine. After obtaining the drawn blank tube, it is possible to further reduce and roll the drawn blank tube to a required size in a reducing mill to obtain a thin tube.

上記絞り圧延機は、複数スタンドからなる圧延ロール群
によって構成され、各スタンドのロール回転速度比を調
整することにより、圧延中の素管に加わるスタンド間張
力を制御し、その肉厚を制御可能としている。
The above-mentioned reducing rolling mill is composed of a rolling roll group consisting of multiple stands, and by adjusting the roll rotation speed ratio of each stand, it is possible to control the inter-stand tension applied to the raw pipe during rolling and control its wall thickness. It is said that

ところで、上記のような絞り圧延機で素管を絞り圧延す
る場合、素管の先端部に作用する張力は零であり、その
状態から素管の軸方向に張力が増大して、素管の中央部
において所定の張力に到達する。また、素管の中央部に
おける定常状態の張力は後端側に向けて次第に減少し、
素管の後端部における張力は零となる。したがって、素
管の先端部側および後端部1111に作用する張力は、
定常圧延の行なわれる中央部に作用する張力に比して小
であり、素管の先端部および後端部の肉厚は他の部分よ
り厚く、増肉せしめられる傾向がある。この素管の先端
部および後端部に生ずる増肉部は、通常、オフゲージの
クロップとして切捨てられ、歩留り低下の原因となる。
By the way, when a raw pipe is reduced and rolled in the above-mentioned reducing mill, the tension acting on the tip of the raw pipe is zero, and from that state the tension increases in the axial direction of the raw pipe, causing the A predetermined tension is reached in the center. In addition, the steady state tension in the center of the tube gradually decreases toward the rear end.
The tension at the rear end of the raw pipe becomes zero. Therefore, the tension acting on the tip side and the rear end 1111 of the raw pipe is:
The tension is smaller than the tension acting on the central portion where steady rolling is performed, and the wall thickness at the tip and rear ends of the blank tube is thicker than other portions and tends to be thickened. The thickened portions that occur at the tip and rear ends of the raw tube are usually cut off as off-gauge crops, causing a decrease in yield.

そこで、従来、素管の先端所定部分または後端所定部分
が、素管の進行方向に関する所定の上流スタンドと下流
スタンドとにおいて圧延される時、下流スタンドのロー
ル周速度を加速制御して、先端部または後端部により大
きな張力を付与することにより、上記増肉現象を緩和す
る提案がなされている。しかしながら、このように下流
スタンドのロール周速度を加速方向で制御する場合には
、ロール駆動モータの応答性が遅くなり、十分な増肉解
消効果を得ることができない。
Conventionally, when a predetermined tip portion or a predetermined rear end portion of a blank pipe is rolled in a predetermined upstream stand and a downstream stand in the traveling direction of the blank pipe, the roll peripheral speed of the downstream stand is accelerated and controlled to roll the tip of the blank pipe. Proposals have been made to alleviate the above-mentioned thickening phenomenon by applying greater tension to the front end or the rear end. However, when the peripheral speed of the roll of the downstream stand is controlled in the acceleration direction in this way, the responsiveness of the roll drive motor becomes slow and a sufficient effect of eliminating thickening cannot be obtained.

本発明は、素管の先端部および後端部に作用するスタン
ド間張力を迅速かつ確実に増加し、十分な増肉解消効果
を得ることができる絞り圧延機における管の圧延方法を
提供することを目的とする。
The present invention provides a method for rolling a pipe in a reducing mill that can quickly and reliably increase the inter-stand tension acting on the tip and rear ends of a blank pipe and obtain a sufficient effect of eliminating thickening. With the goal.

上記目的を達成するために、本発明は、複数スタンドか
らなる圧延ロール群によって素管を絞り圧延する絞り圧
延機における管の圧延方法において、素管の先端所定部
分または後端所定部分が、所定の上流スタンドき下流ス
タンドとにおいて圧延されるとき、上流スタンドのロー
ル周速度を減速制御するようにしたものである。
In order to achieve the above object, the present invention provides a method for rolling a pipe in a reducing mill in which a raw pipe is reduced and rolled by a roll group consisting of a plurality of stands, in which a predetermined tip portion or a predetermined rear end portion of the raw tube is When rolling is performed in the upstream stand and the downstream stand, the roll circumferential speed of the upstream stand is controlled to be decelerated.

まず、本発明成立の根拠について説明すれば、以下の通
りである。すなわち、絞り圧延機においてスタンド間弛
力を増減すべく、ロール周速度制御を行なう場合に、制
御信号がでてから矩形的にロール周速度が変化すること
が、張力制御の効果上望ましい。しかしながら、実際に
は、駆動系の慣性や制御系の応答性により、第1図に示
すような挙動を示す。ここで、応答時間τは、一般的に
下記(1)式によって表わされる。
First, the basis for establishing the present invention will be explained as follows. That is, when controlling the roll circumferential speed in order to increase or decrease the slack force between stands in a reducing rolling mill, it is desirable from the viewpoint of tension control that the roll circumferential speed changes in a rectangular manner after a control signal is issued. However, in reality, the behavior shown in FIG. 1 occurs due to the inertia of the drive system and the responsiveness of the control system. Here, the response time τ is generally expressed by the following equation (1).

上記(1)式において、ΣGD2は駆動系の慣性モーメ
ントの総和、Nはモータの回転速度、Toは有効トルク
である。ただし上記有効トルクT。は、下記(2)式に
よって表わされる。
In the above equation (1), ΣGD2 is the sum of the inertia moments of the drive system, N is the rotational speed of the motor, and To is the effective torque. However, the above effective torque T. is expressed by the following equation (2).

T、 = ITM−TR−T、l        ・・
 (2)上記(2)式において、TMはモータトルク、
TRは圧延トルク、TFは摩擦トルクである。すなわち
、モータを定常回転状態から加減速する場合には、モー
タトルクT1六圧延トルクおよび摩擦トルクきの和(T
R+TF)との差分だけが有効トルクTI。
T, = ITM-TR-T, l...
(2) In equation (2) above, TM is motor torque,
TR is rolling torque, and TF is friction torque. That is, when accelerating or decelerating the motor from a steady rotation state, the motor torque T1 is the sum of the rolling torque and the friction torque (T
Only the difference between R+TF) is the effective torque TI.

として加減速仕事に関与する。したがって、モータトル
クTMが一定の場合(通常のモータでは定格出力の20
0%)には、圧延中に加速する場合に比して、圧延中に
減速する場合の方が有効トルクT、が大きくなり、した
がって応答時間τが小となる。すなわち、絞り圧延時に
上流スタンドのロール周速度を減速制御すれば、スタン
ド間張力が迅速かつ確実に増加せしめられ、張力制御の
効果を増大することが可能きなる。
It is involved in acceleration and deceleration work. Therefore, if the motor torque TM is constant (for a normal motor, 20% of the rated output
0%), the effective torque T is larger when decelerating during rolling than when accelerating during rolling, and therefore the response time τ is smaller. That is, by controlling the roll peripheral speed of the upstream stand to reduce the speed during reduction rolling, the tension between the stands can be increased quickly and reliably, making it possible to increase the effect of tension control.

以下、本発明の具体的実施例について説明する。Hereinafter, specific examples of the present invention will be described.

ここで、この実施例においては、第2図に示す絞り圧延
機100の全スタンド数が24であり、第1〜第10ス
タンドにおいて本発明の制御を行ない、当該制御が加え
られる素管101の先端部もしくは後端部の所定長さ域
は、最大で、隣接する2つのスタンド間領域が画成する
長さく2L)であるものきする。
In this embodiment, the total number of stands of the reducing rolling mill 100 shown in FIG. 2 is 24, and the control according to the present invention is performed in the first to tenth stands, and The predetermined length region of the leading end or the trailing end is at most the length 2L defined by the region between two adjacent stands.

まず、圧延開始前における上記第1〜第10スタンドの
ロール周速度は、第3図に示すように、それらのスタン
ド(i)における常常圧延時の定常速度Niに対して、
適消な比率の加減速量δiだけ増速された速度Ni (
1+δi)で待機せしめられる。
First, as shown in FIG. 3, the roll peripheral speeds of the first to tenth stands before the start of rolling are as follows:
The speed Ni (
1+δi).

なお、第3図は時間を横軸にとり、第1スタンド、第2
スタンド、第3スタンド、第iスタンドにおけるロール
周速度変化をそれぞれ実線、破線、1点鎖線、2点鎖線
で示している。
In addition, in Figure 3, time is taken on the horizontal axis, and the
Changes in roll circumferential speed in the stand, the third stand, and the i-th stand are shown by solid lines, broken lines, one-dot chain lines, and two-dot chain lines, respectively.

次に、素管101の先端部が第i+lスタンドに噛込ん
だことが検出器102によって検知されると、制御器1
03は、第illスタンドに対する上流スタンドとして
の第iスタンドのロール周速度を、 のように減速制御するときもに、第iスタンドに対する
上流スタンドとしての第i−1スタンドのロール周速度
を、 のように減速制御する。すなわち、−上記減速制御によ
り、素管101の先端部は、ロール周速度が定常状態に
おける速度差より大なる速度差に基づがNi+1(1+
δ1+1)で増速待機せしめられている第i+1スタン
ドとの間で、定常状幅における速度差より大なる速度差
に基づく張力を付加される。
Next, when the detector 102 detects that the tip of the raw tube 101 is caught in the i+l-th stand, the controller 1
03, when the roll peripheral speed of the i-th stand as an upstream stand with respect to the ill-th stand is decelerated as follows, the roll peripheral speed of the i-1st stand as an upstream stand with respect to the i-th stand is controlled as follows. Control deceleration so that That is, - due to the above-mentioned deceleration control, the tip end of the raw pipe 101 is Ni+1 (1+
A tension based on a speed difference greater than the speed difference in the steady state width is applied between the stand and the i+1th stand, which is placed on standby for speed increase at δ1+1).

なお、素管が第2スタンドに噛込み開始する状態、およ
び第11スタンドに噛込み開始する状態下では、そわ、
ぞれ、第1〜第2スタンド間、第10〜第11スタンド
間においてのみ張力制御が加えられる。
In addition, under the state in which the raw pipe starts to be caught in the second stand and in the state in which it starts to be caught in the 11th stand, there is a stiffness,
Tension control is applied only between the first and second stands and between the tenth and eleventh stands, respectively.

また、素管101の後端部が第i−2スタンドを尻抜け
したことが、検出器102によって検知されると、制御
器103は、第2スタンドのローのように減速制御し、
第11スタンドのロール周速度を、 のように減速制御すると七もに、第i−2スタンドのロ
ール周速度を、 Ni−2(1−δ、7)→Ni−2(1+δ1−2)の
ように増速しで原状態に復帰させ、後続する素管の圧延
開始に向けて待機せしめられる。すなわち、素管101
の後端部は、ロール周速度がで、定常状態における速度
差より大なる速度差に度が定常速度Ni+1に維持され
ている第i+1スタンドとの間で、定常状態における速
度差より大なる速度差に基づく張力を付加される。なお
、上記素管101の後端部が第9スタンドを尻抜けする
場合には、素管101の後端部は第10スタンド〜第1
1スタンド間においてのみ張力制御される。
Further, when the detector 102 detects that the rear end of the raw pipe 101 has passed through the i-2nd stand, the controller 103 performs deceleration control like the low of the second stand,
If the roll circumferential speed of the 11th stand is decelerated as follows, the roll circumferential speed of the i-2nd stand will be changed to The speed is increased to return to the original state, and the rolling stock is put on standby for the start of rolling of the subsequent blank pipe. That is, the raw pipe 101
The rear end has a roll circumferential speed, and the speed difference is greater than the speed difference in the steady state between the i+1th stand maintained at the steady speed Ni+1, and the speed difference is greater than the speed difference in the steady state. Tension is applied based on the difference. Note that when the rear end of the raw pipe 101 passes through the 9th stand, the rear end of the raw pipe 101 passes through the 10th to 1st stands.
Tension is controlled only between one stand.

ところで、上記実施例において各スタンドに設定すべき
適当な増速比率δi々は、各スタンドにおける圧延ロー
ルが形成するカリバー面内の全域で材料よりロール周速
の方が早くなって前方すべりが生じ、到達可能な最大張
力が得られるように設定する。1例として、絞り圧延機
を構成する各スタンドにおけるロールと材料との間の摩
擦係数をμ、ロール半径をR1絞り圧延機の入側、出側
の素管外径をR61hl、入側、出側の素管肉厚をto
、tl、入側、出側のストレッチ係数(素管に作用する
引張応力/素管の降伏強度)を20.21、各スタンド
におけるストレッチ係数の全スタンドに関する平均値と
しての平均ストレッチ係数をZmとすれば、近似的に下
記(3)式が成立する。
By the way, in the above embodiment, the appropriate speed increase ratio δi to be set for each stand is such that the circumferential speed of the roll is faster than the material over the entire area within the caliber plane formed by the rolling rolls in each stand, causing forward slippage. , set to obtain the maximum tension that can be achieved. As an example, the coefficient of friction between the rolls and the material in each stand constituting a reducing rolling mill is μ, the roll radius is R1, the outside diameter of the blank tube at the entrance and exit sides of the reducing rolling mill is R61hl, and the entrance and exit diameters are R61hl. The wall thickness of the side pipe is to
, tl, the stretch coefficients on the inlet and outlet sides (tensile stress acting on the raw pipe/yield strength of the raw pipe) are 20.21, and the average stretch coefficient as the average value for all stands of the stretch coefficient in each stand is Zm. Then, the following equation (3) approximately holds true.

ただし、上記平均ストレッチ係数Zmは、下記(4)式
によって表わされる。
However, the average stretch coefficient Zm is expressed by the following equation (4).

ただし、上記(4)式におけるψ7.ψt、ε□は、そ
れぞれ下記(51、161、(71式によって表わされ
る。
However, ψ7 in the above equation (4). ψt and ε□ are expressed by the following formulas (51, 161, and (71), respectively.

上記(3)式においては、jl + zll zmを除
いて全て既知数である。また、(7!第1スタンドにつ
いて考えた場合、Z(1= Oであるから(3)式に代
入すればZlが求まり、(81M2スタンドについて、
第1スタンド出側のストレッチ係数Z1をZ。とじて(
3)式に代入してZlが求まり、(C)以下、同様の手
順でくり返し計算を行ない1スタンド分づつ計算を進め
ていけば、上記未知数の中で独立な変数はt1のみとな
り、このtlの値を適当に仮定して上記(3)式を計算
し、上記(31式が成立するようなtlの値を算定し、
算定された11に基づいてZlを求めれば、そのZlが
到達可能な最大ストレッチ係数第iスタンドにおいて設
定すべきロール周速度の適当な増速比率δiは、下肥(
8)式によって表わされる。
In the above equation (3), all numbers are known except for jl + zll zm. Also, (7! When considering the first stand, Z (1 = O), so by substituting it into equation (3), Zl can be found, (81M2 stand,
Z is the stretch coefficient Z1 on the exit side of the first stand. Close (
3) Find Zl by substituting it into the equation. (C) If you repeat the calculations in the same manner and proceed with the calculation for one stand at a time, the only independent variable among the above unknowns is t1, and this tl Calculate the above formula (3) by appropriately assuming the value of , calculate the value of tl such that the above formula (31) holds,
If Zl is found based on the calculated 11, the appropriate speed increase ratio δi of the roll circumferential speed that should be set in the i-th stand is the maximum stretch coefficient that Zl can reach.
8) It is expressed by the formula.

!/ δi=k・−7・・ (8) gl! ここで、kは定数であり通常1(=lとする。また、ε
lは、下記(9)式によって表わされる。
! / δi=k・−7・・ (8) gl! Here, k is a constant and is usually 1 (=l). Also, ε
l is expressed by the following formula (9).

以上のように、本発明は複数スタンドからなる圧延ロー
ル群によって素管を絞り圧延する絞り圧延機における管
の圧延方法において、素管の先端所定部分または後端所
定部分が、所定の上流スタンドと下流スタンドとにおい
て圧延されるとき、01) 上流スタンドのロール周速度を減速制御するようlこし
たので、ロール駆動モータの応答性を良好とし、素管の
先端部および後端部に作用するスタンド間張力を迅速か
つ確実に増加し、十分な増肉解消効果を得ることができ
る。
As described above, the present invention provides a pipe rolling method in a reducing mill in which a raw pipe is reduced and rolled by a rolling roll group consisting of a plurality of stands, in which a predetermined tip portion or a predetermined rear end portion of the raw tube is connected to a predetermined upstream stand. When rolled at the downstream stand, 01) The peripheral speed of the rolls at the upstream stand is controlled to decelerate, so the responsiveness of the roll drive motor is improved, and the stand which acts on the tip and rear ends of the blank tube. The tension can be increased quickly and reliably, and a sufficient effect of eliminating thickening can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロール駆動モータの制御1状態を示す線図、第
2図は本発明が実施される絞り圧延機を示す制御系統図
、第3図は本発明に係るロール周速度の制御状態を示す
線図である。 100・・・絞り圧延機、  101・・・素管、10
2・・・検出器、    103・・・制御器。 代理人 弁理士 塩 川 修 治 α2 I1図
FIG. 1 is a diagram showing a first control state of the roll drive motor, FIG. 2 is a control system diagram showing a reducing rolling mill in which the present invention is implemented, and FIG. 3 is a diagram showing the control state of the roll circumferential speed according to the present invention. FIG. 100...Reducing rolling mill, 101...Material pipe, 10
2...Detector, 103...Controller. Agent Patent Attorney Osamu Shiokawa α2 Figure I1

Claims (1)

【特許請求の範囲】[Claims] (1)複数スタンドからなる圧延ロール群によって素管
を絞り圧延する絞り圧延機における管の圧延方法におい
て、素管の先端所定部分または後端所定部分が、所定の
上流スタンドと下流スタンドとにおいて圧延されるとき
、上流スタンドのロール周速度を減速制御することを特
徴とする絞り圧延機における管の圧延方法。
(1) In a pipe rolling method in a reducing mill in which a raw pipe is reduced and rolled by a group of rolls consisting of a plurality of stands, a predetermined tip portion or a predetermined rear end portion of the raw pipe is rolled in a predetermined upstream stand and downstream stand. A method for rolling a pipe in a reducing rolling mill, which comprises controlling the circumferential speed of a roll in an upstream stand to reduce the speed at which the roll is rolled.
JP57224014A 1982-12-22 1982-12-22 Rolling method of pipe in reducing mill Granted JPS59113907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224014A JPS59113907A (en) 1982-12-22 1982-12-22 Rolling method of pipe in reducing mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224014A JPS59113907A (en) 1982-12-22 1982-12-22 Rolling method of pipe in reducing mill

Publications (2)

Publication Number Publication Date
JPS59113907A true JPS59113907A (en) 1984-06-30
JPH0252563B2 JPH0252563B2 (en) 1990-11-14

Family

ID=16807231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224014A Granted JPS59113907A (en) 1982-12-22 1982-12-22 Rolling method of pipe in reducing mill

Country Status (1)

Country Link
JP (1) JPS59113907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199514A (en) * 1984-03-22 1985-10-09 Sumitomo Metal Ind Ltd Draw rolling method of pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017360A (en) * 1973-06-19 1975-02-24
JPS5540012A (en) * 1978-09-08 1980-03-21 Sumitomo Metal Ind Ltd Continuous elongating method of pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017360A (en) * 1973-06-19 1975-02-24
JPS5540012A (en) * 1978-09-08 1980-03-21 Sumitomo Metal Ind Ltd Continuous elongating method of pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199514A (en) * 1984-03-22 1985-10-09 Sumitomo Metal Ind Ltd Draw rolling method of pipe

Also Published As

Publication number Publication date
JPH0252563B2 (en) 1990-11-14

Similar Documents

Publication Publication Date Title
CA1036395A (en) Method of stretch reducing of tubular stock
CN106944479A (en) A kind of thin strip single chassis tandem mill and implementation
US4382375A (en) Method of rolling metal strip
US4086800A (en) Process and rolling mill for stretch reduction of tubes
JPS59113907A (en) Rolling method of pipe in reducing mill
US5660070A (en) Cold rolling mill with tension bridle
US4306440A (en) Methods and apparatus for rolling bars, rods and wire
US6526792B1 (en) Method for minimizing thickened ends during the rolling of pipes in a stretch reducing mill
US4430875A (en) Rolling mill for the stretch-reducing of tubes
JPS60221108A (en) Method for controlling pipe end in reducing mill
JPS63303612A (en) Speed control device for continuous rolling mill
SU997864A1 (en) Method of adjusting reduction expansion mill
JPH01258802A (en) Method for hot finish rolling
JPS63157711A (en) Control method for tension during rolling
JPS63104703A (en) Method for preventing camber at front end in rolling with differential diameter roll
JPH10128438A (en) Method for coiling continuous hot rolling metal strip
JPS6335329B2 (en)
US20150135790A1 (en) Method for the Cold Deformation of a Continuous Metal Strip
JPS61126913A (en) Rolling method of pipe by mandrel mill
JPS60166115A (en) Speed control device of hot-continuous finishing mill
WO1990012664A1 (en) Wire rod dividing method in wire rod mill
JPH06170417A (en) Tension controller for mandrel bar
JPS6030513A (en) Control method of rolling in mandrel mill
JPS6064713A (en) Rolling method of pipe by mandrel mill
JPH04158906A (en) Method for controlling wall thickness of stretch reducer