JPS59112577A - Electrode characteristic evaluation method of electrode material for zinc-bromine battery - Google Patents

Electrode characteristic evaluation method of electrode material for zinc-bromine battery

Info

Publication number
JPS59112577A
JPS59112577A JP22029882A JP22029882A JPS59112577A JP S59112577 A JPS59112577 A JP S59112577A JP 22029882 A JP22029882 A JP 22029882A JP 22029882 A JP22029882 A JP 22029882A JP S59112577 A JPS59112577 A JP S59112577A
Authority
JP
Japan
Prior art keywords
electrode
value
potential
discharge
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22029882A
Other languages
Japanese (ja)
Other versions
JPH0132634B2 (en
Inventor
Akihiko Hirota
広田 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP22029882A priority Critical patent/JPS59112577A/en
Publication of JPS59112577A publication Critical patent/JPS59112577A/en
Publication of JPH0132634B2 publication Critical patent/JPH0132634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To make an almost mean potential value possible to be known in a short period of time as well as to improve the efficiency of electrode material evaluation, by substituting the specific resistance value and ten-point mean roughness value of a discharge mean potential value unknown plastic electrode for a relational expression of the discharge mean potential of various electrodes, the specific resistance value and the ten-point mean roughess value. CONSTITUTION:In regard to various plastic electrodes, those of discharge potential V, specific resistance p and ten-point mean roughness Rz are measured, and when a new factor expressed in that as A=RzX10<-4>/p is brought in from the given data and thereby a relationship to the discharge mean potential V is found, the connection between V and ln1/A shows a linear relationship. Hereupon, in regard to a new plastic electrode whose electrode potential remains unmeasured, the specific resistance value and ten-point mean roughness value only are measured, and the measured specific resistance value and the ten-point mean roughness value are led into this linear expression whereby an almost mean potential value is secured in this manner.

Description

【発明の詳細な説明】 本発明は、亜鉛−臭素電池用電極材料の電極特性評価方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for evaluating electrode properties of electrode materials for zinc-bromine batteries.

電池の電極特性を検討するには、1)電極等電池構成材
料をセルとして組み、実際に充電あるいは放電を行って
電圧効率やクーロン効率を測定し、その効率の良否から
見る方法、2)各電極の電気化学的な反応性として、分
極電圧を種々の手法に基づいて検討する方法、ろ)電極
の電気的な特定として電導度や抵抗率を測定する方法等
の方法がある。
To examine the electrode characteristics of a battery, there are two methods: 1) Assemble battery constituent materials such as electrodes into a cell, actually charge or discharge the battery, measure the voltage efficiency and Coulomb efficiency, and check the quality of each efficiency. As for the electrochemical reactivity of the electrode, there are methods such as examining the polarization voltage based on various methods, and (2) measuring the electrical conductivity and resistivity for electrically specifying the electrode.

亜鉛−臭素二次電池においても同様で、上記の6法を電
極材料の質や争件に応じて使い分け、様々な角度から検
討しているのが現状である3、特に臭素極においては、
充電の際に腐食性の強い臭素が発生し、充・放電を通じ
て、′「U極と電力r(液との界面で臭素との直接反応
が行なわれるため、電極耐体の材質や表面形態が臭素極
の特性として大きく影響を与えている。従って、臭素極
としての4’、lr性を評価する場合には、例えば、ま
ず電力了液中のBr2に対する耐酸性を検討し、この評
価である4“J゛度満足のいく材料については、活物ヂ
↓との電気化学的な反応性を評価する。そして、その評
価で所定の要求に叶った材料については、しかる後に電
池としての寿命を検討する、という様に何段階かの検討
項目を設け、種々の材料を篩い分け、現状で入手でき得
る最適な電極を選定することが必要である。
The same is true for zinc-bromine secondary batteries, and the current situation is that the above six methods are used depending on the quality of the electrode material and the dispute, and are being considered from various angles.3 Especially for bromine electrodes,
Strongly corrosive bromine is generated during charging, and through charging and discharging, a direct reaction with bromine takes place at the interface between the U electrode and the liquid, causing damage to the material and surface morphology of the electrode body. It has a great influence on the characteristics of the bromine electrode. Therefore, when evaluating the 4', lr properties as a bromine electrode, first consider the acid resistance to Br2 in the power solution, and then use this evaluation. 4. For materials that are satisfactory, the electrochemical reactivity with living substances is evaluated.For materials that meet the specified requirements in the evaluation, the lifespan as a battery is evaluated. It is necessary to set up several stages of consideration, sift through various materials, and select the most suitable electrode currently available.

このような観点から、本願発明者等は現在のところまず
耐臭素性材料の評価及び選別方法についてはある程度確
立し、臭素拡散試験、臭素浸漬試験及び引張り試験等数
多くの試験項目を設け、種々の4A料について検討中で
ある。丑だ、電池としての寿命につい−Cは今後多くの
問題点を解決しながら、サイクル試験、定電力及び定電
流充・放電試験等を通じてなお検討する予定である。一
方。
From this point of view, the inventors of the present application have established a certain degree of evaluation and selection methods for bromine-resistant materials, have established numerous test items such as bromine diffusion tests, bromine immersion tests, and tensile tests, and have conducted various tests. We are currently considering the 4A fee. As for the lifespan of the battery, we plan to solve many problems in the future and continue to study it through cycle tests, constant power and constant current charging/discharging tests, etc. on the other hand.

活物質との電気化学的な反応性の評価については、これ
1で行なわれた実験結果から種々の測定データの間で相
関性のある事実を見い出すことができ、また7)・L気
化学的手法についても電池として適用でき?j)るもの
が認められた。従って、本願明細書では以上の事項につ
いて説明する。
Regarding the evaluation of electrochemical reactivity with active materials, it was possible to find out the fact that there is a correlation between various measurement data from the experimental results conducted in 1. Can the method also be applied to batteries? j) was recognized. Therefore, the above matters will be explained in this specification.

甘ず、電池として適用でき得る電気化学的な評価方法に
ついて始めに説明し、次に′電極の性能評価として採用
したファクターすなわち比抵抗及び十点平均粗さ値につ
いて述べ、それらと前述の電気化学的手法から得られた
データとの相関性を説明し7、電極jT価方法の発明を
最後に述べる。
First, we will explain the electrochemical evaluation method that can be applied to batteries, then we will discuss the factors used to evaluate electrode performance, namely the specific resistance and ten-point average roughness value, and compare them with the electrochemical evaluation method mentioned above. The correlation with the data obtained from the conventional method will be explained, and finally the invention of the electrode jT value method will be described.

まず、電気化学的な評価方法は、第1図の測定原理図で
示される直接法による分極測定法である。
First, the electrochemical evaluation method is a direct polarization measurement method shown in the measurement principle diagram in FIG.

すなわち、測定する試料電極(1)と対極(2)とによ
りハーフセル(3)を構成し、このノ・−フセル(′こ
fl]′、F、 散(4)を入れる。次いで、試料電極
(1)と対極(2)とを各々電源(5)につなぎ、試料
1.’、i極(1)と対(ぐ弓2)との間に充電方向ち
るいは放電方向の′1(1−γ);「、をτ+i1′、
し、4・II々l’1.U6!シ密度における試料電極
(1)の″IlL位k 1ll11定する。なお、(6
)は記録計、(7)は参(((い(5,極、(81(d
:ギヤピラリ−である。TIに池への適用としてQよ、
主に各8.0. C(充電)状態のBr2濃度での電位
(L−何点か測定し7、それらのデータから一定′1:
ε流題朋放市での放111、前位パターンを描けば良い
。第2図、第5(・4にその一例を示した。すなわち、
まず始めに、3NI・+7’−/IZnBrz + B
r7溶液(温度−25℃)を電解rlt’i−として1
3℃7濃度を変化させることによって何点かのS、 O
,C状胛の電解液を調整する1、次にそノ1.ぞれの′
111、i’:Y液において、第1図の測定II;!、
理に従って、イ1f1々′【11、M晩。
That is, the sample electrode (1) to be measured and the counter electrode (2) constitute a half cell (3), and this half cell (4) is inserted into it.Then, the sample electrode ( 1) and the counter electrode (2) are respectively connected to the power source (5), and between the sample 1.', the i-pole (1) and the pair (bow 2), there is a −γ); “, τ+i1′,
4.II'1. U6! The ``IlL position k 1ll11 of the sample electrode (1) at the density is determined. Note that (6
) is the recorder, (7) is the reference (((i(5, pole, (81(d)
: Gear pillar. Q as an application to TI,
Mainly each 8.0. Potential at Br2 concentration in C (charged) state (L-measured at several points7, constant from those data'1:
All you have to do is draw the Ho-111, front-place pattern at the ε-style Daiho Hohoichi. An example is shown in Fig. 2, 5(・4). That is,
First of all, 3NI・+7'-/IZnBrz + B
r7 solution (temperature -25℃) as electrolytic rlt'i-1
By changing the concentration at 3℃7, some points of S, O
, Adjusting the electrolyte solution for the C-shaped spider 1, then part 1. each'
111, i': Measurement II in FIG. 1 in Y solution;! ,
According to the theory, I1f1' [11, M evening.

密度における試料電極の放電4位を測定する4、このよ
うな操作をあらかじめ調整されたすべての電解液につい
て行い、それをグラフにしメーのが第2図である。この
第2図を利用し、4+4i輔に電解rfシBr2の度を
とり、縦Q’+l+に電位をとり、種々の電流密度にお
ける放電4位として書き直したのが第6図である。仁の
第6図は、試料電極の亜鉛−臭素電池用臭素極としての
1ザイクルの放電々位ノくターンを示しており、Br2
濃度5u/を付近が放電初期、Brze度Q M / 
l伺近が放電末期に相当するわけである。従って、x!
+r々の電極材料につき、上記のように測定して、放電
々位パターン図を描けば、比較検討が可能である。第4
図は3種の電極材料について電流密度20mA / c
rlの放電4位を比較したものである。この第4図から
、金属電極であるptが旨い電位を示し、優れた特性を
有していることが認められる。
Measuring the discharge level of the sample electrode at different densities 4. This operation was performed for all the electrolytes prepared in advance, and the results were graphed as shown in Figure 2. Using this Fig. 2, the degree of electrolytic rf Br2 is set to 4+4i, the potential is set to vertical Q'+l+, and the result is rewritten as the 4th position of discharge at various current densities, as shown in Fig. 6. Figure 6 of Jin shows the discharge successive turns of one cycle of the sample electrode as a bromine electrode for a zinc-bromine battery.
The concentration is 5u/ near the initial stage of discharge, Brze degree Q M/
This means that the near distance corresponds to the final stage of discharge. Therefore, x!
Comparative studies can be made by measuring the +r electrode materials as described above and drawing a discharge level pattern diagram. Fourth
The figure shows a current density of 20 mA/c for three types of electrode materials.
This is a comparison of the 4th discharge of rl. From FIG. 4, it can be seen that the metal electrode PT exhibits a good potential and has excellent characteristics.

この様にして (H!iにプラスチック電極について放
電4位を測定し、比較検討されるわけであるが、電極性
能の評価として他のファクターについても同時に検討し
ている。その1つは、電極自体の電導性を見るものとし
て比抵抗の測定がある。これは、四探針法によるもので
、電極の固有抵抗ρ(Ω・Crn)が得られる。他の1
つは、電極表面の形状を見るもので、十点平均粗さR9
(μ)の測定である。この測定から電極面積の相対的な
比較が可(iヒである。。
In this way (H!i), we measure and compare the discharge level of plastic electrodes, but we also consider other factors at the same time to evaluate electrode performance. Measurement of specific resistance is a way to measure the conductivity of the electrode itself.This is based on the four-point probe method, and the specific resistance ρ (Ω・Crn) of the electrode can be obtained.
One is to look at the shape of the electrode surface, which is the ten-point average roughness R9.
(μ). From this measurement, a relative comparison of electrode area is possible.

そして、fl[々のプラスチック電極について、上[シ
己の方法で放電々位、比抵抗及び十点平均粗さを1ll
ll定し、得られたデータを検討したところ、次のよう
な相関関係が認められた。第5図は、表面状態がほぼ同
じ電極についての電流密度20mA /ca K #、
−けるBr2濃度3〜1M/lの平均電位V2゜と比抵
抗ρとの関係の一例を示している。31′均市: イ:
7: V2OE、1第6図のような放電々位曲線からイ
!Iられる(triで、らる。すなわち、第5図はプラ
スチック電極の表面状態が同じ場合、比抵抗が小さけれ
ば放1シI、々イ1シーカく一般に高いことを示してい
る。第5図に描かit /F−直線はプロットされた点
を基にして最小自乗法で求められたものである。次に、
第6図は、比抵抗値がほぼ同じ電極についての平均1(
位■20と十点平均粗さRzをプロットしたものである
 (比↓1(1ノ”1゜値中0.4Ω・crn)。第6
図から、電極の電導性カニ1ijJじであれば表面状態
の違いにより電位は異なり、一般に表4Mが大きいもの
ほど電位が高いとと力;うtされている。従って、第5
図及び第6図からフ“ラスチック電極の放電4位と比抵
抗及び粗さとは相関性があり、比抵抗が小さく、十点平
均粗さ75二大きければ、放電4位は高いことが推ff
1llされるわけである。そこで、比抵抗値ρ(Ω・C
rn)と十点平均粗さRZ(μ)なる2つの独立したフ
ァクターを1つに4とめて、A=RzX 10−’/ρ
〔■〕という新しいファクターを求め、この値と放電平
均電位VXとの関係を検討した。第7図はその一例を示
したものである。■2oとin (1/A )とは直線
関係(v20= (−0,0385)tn(1/A) 
+ 1.065相関係数r−−0,96)を示し、上M
己の1ft測が事実として表わされるに至った。この第
7図におけるAはRZ X 10−4/ρであシ、tn
(’/A )のディメンジョンは〔Ω]、V、、0ば2
0mA /adでの放電4位のBr2濃度3.0〜1.
0M/zにおける平均値である。
Then, for each plastic electrode, the discharge level, specific resistance, and ten-point average roughness were measured using the method of
As a result of examining the obtained data, the following correlation was observed. Figure 5 shows current density of 20 mA/ca K # for electrodes with almost the same surface condition.
- shows an example of the relationship between the average potential V2° and the specific resistance ρ at a Br2 concentration of 3 to 1 M/l. 31' Hitoshi: A:
7: V2OE, 1 From the discharge level curve as shown in Figure 6! In other words, Fig. 5 shows that when the surface condition of the plastic electrode is the same, the smaller the specific resistance, the higher the resistance. The it /F-line drawn in is determined by the least squares method based on the plotted points. Next,
Figure 6 shows the average 1(
This is a plot of the 10-point average roughness Rz and the roughness Rz.
From the figure, it can be seen that if the conductivity of the electrode is the same, the potential will differ depending on the surface condition, and in general, the larger the value of Table 4M, the higher the potential. Therefore, the fifth
From the figure and Fig. 6, there is a correlation between the 4th place of discharge and the specific resistance and roughness of the plastic electrode.If the specific resistance is small and the 10-point average roughness is 752, it is inferred that the 4th place of discharge is high.
1ll will be done. Therefore, the specific resistance value ρ(Ω・C
rn) and the ten-point average roughness RZ(μ) are combined into 4, and A=RzX 10-'/ρ
A new factor [■] was found and the relationship between this value and the discharge average potential VX was studied. FIG. 7 shows an example. ■2o and in (1/A) have a linear relationship (v20= (-0,0385)tn(1/A)
+1.065 correlation coefficient r−-0,96), upper M
My 1ft measurement has come to be expressed as a fact. A in this figure 7 is RZ X 10-4/ρ, tn
The dimensions of ('/A) are [Ω], V,, 0ba2
Br2 concentration at 4th position of discharge at 0 mA/ad: 3.0 to 1.
This is the average value at 0 M/z.

結局、プラスチック電極の活物質と反応する電4紙反応
有効部分の電導性が太きいものは、電位カニ高いと言え
るわけである。実験データから心ま60 mA/cm2
までの放電4位においては、上記の相関性は高く、直線
式は妥当であると認められた。
After all, it can be said that the electrical conductivity of the effective reaction part of the plastic electrode, which reacts with the active material of the plastic electrode, is higher, the potential is higher. From the experimental data, the estimated value is 60 mA/cm2.
In the fourth discharge position up to, the above correlation was high, and the linear equation was recognized to be appropriate.

従って、上記の事実から、逆にプラスチック’lit。Therefore, from the above facts, plastic'lit on the contrary.

極の電位特性は、その比抵抗値及び十点平均粗さ情から
推測できることにhつだ。すなわち、市(・剣電位未測
定の新だなプラスチック電極についてどの程度の放電4
位が得られるかを検住」する場合、実際に電位測定を行
なわなくとも、第7図のll’3’、 ?Nに式に比抵
抗値及び十点平均粗さ値を入れること(こよっておおよ
その平均電位の値がイ(IられるわtナーCある。この
ことは、電極材181評価におけるスピードアップにな
り、数多くのl、jr、極椙料を短時間で1呪別する場
合に効力を発4s+1するものと「jえる。
The potential characteristics of the pole can be inferred from its specific resistance value and ten-point average roughness. In other words, how much discharge will occur with the new plastic electrode whose electric potential has not yet been measured?
ll'3', ? in Figure 7, without actually measuring the potential. Inserting the specific resistance value and the ten-point average roughness value into the formula for N (thus, the approximate average potential value can be calculated). This speeds up the evaluation of the electrode material 181. , ``jeru'', which takes effect by 4s+1 when a large number of L, JR, and Gokushu charges are separated in a short period of time.

以上のように、電極の特性評価としての主な(Xl1分
は電位測定及びそのデー タ解析にあり、そJ′1.1
′こよって電極の相対比較が可能である。次に、実験デ
ータから放電平均電位と、比抵抗及び十点E17− 」
句粗さとの相関関係が得られ、その直線式から、11J
−位値未知のプラスチック電(への放?l’i+平均電
位カー測定の容易な比抵抗及び十点平均粗さからtff
fl 6111できるようになり、電極評価のスピード
アップ゛が=r有しになった。
As mentioned above, the main part of electrode characteristic evaluation (X1) is potential measurement and data analysis;
'This allows relative comparison of electrodes. Next, we calculated the discharge average potential, specific resistance, and ten points E17- from the experimental data.
A correlation with phrase roughness was obtained, and from the linear equation, 11J
- Emission to a plastic electric current of unknown position value (tff
fl 6111 is now possible, and the speedup of electrode evaluation is now =r.

亜鉛−臭素電池の臭素電極の材料評価として、第1図で
示したような測定原理図に基づき、電極電位の測定を行
い、一定電流密度での1サイクルの放電々粒面線図を作
成する方法は、種々の電極材料を実際にセルに組んで充
・放電を行い、そのときの効率から評価する方法よりも
容易であり、しかも数多くの材料を短時間に比較できる
というメリットがある。
To evaluate the material of the bromine electrode of a zinc-bromine battery, the electrode potential is measured based on the measurement principle diagram shown in Figure 1, and a discharge particle surface diagram for one cycle at a constant current density is created. This method is easier than the method of actually assembling various electrode materials into a cell, performing charging and discharging, and evaluating the efficiency at that time, and has the advantage of being able to compare a large number of materials in a short time.

壕だ、上記の方法は、特定のS、 O,C状態の電解液
で分極測定して比較する従来の分極測定による電極評価
方法に比べて、電池の放電4位特性として比較するため
によシ正確な評価方法であると言える。
The above method is more effective for comparing the battery's discharge characteristics than the conventional electrode evaluation method using polarization measurement, which measures and compares polarization with electrolytes in specific S, O, and C states. It can be said that this is an accurate evaluation method.

上記の放電4位測定と並行して行った比抵抗イ16ρ〔
Ω・m〕の測定及び十点平均粗さRZ(μ)値の測定か
ら、プラスチック電極に関しては、Br21〜3M/l
での平均電位■とρ、及びVとRzとは直線的な相関性
が認められ、更に、それぞれ独立したファクターである
ρとRzを1つのファクターとして表わしたA = R
Z X 10−4/ρとVに関しても相関性が認められ
た。特に電流密度60 mAltrl 1での平均型、
位Vxについては直線的な相関関係が認められた。
Specific resistance I16ρ [
Ω・m] and the ten-point average roughness RZ (μ) value, it was found that Br21~3M/l for the plastic electrode.
A linear correlation is recognized between the average potential ■ and ρ, and between V and Rz, and furthermore, A = R, where ρ and Rz, which are independent factors, are expressed as one factor.
A correlation was also observed between Z X 10-4/ρ and V. Especially the average type at a current density of 60 mAltrl 1,
A linear correlation was observed for the position Vx.

このことから、プラスチック電極に関しては比抵抗値が
小さく、表面粗さが太きいものは放1■々位は一般に高
いことが認められた。
From this, it was found that for plastic electrodes, those with a small specific resistance value and a large surface roughness generally have a high resistance value.

上記の実験結果から、放電々位未知の数多くのプラスチ
ック電極材料については、平均’ilL位Vと7n(1
/A)の直線式から、おおよその平均′1(L位仙を短
期間のうちに容易に知ることができるようになり、電極
材料評価の効率が上った。
From the above experimental results, for many plastic electrode materials whose discharge levels are unknown, the average 'ilL level V and 7n(1
From the linear equation of /A), the approximate average '1 (L position) can now be easily determined in a short period of time, improving the efficiency of electrode material evaluation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電極電位測定原理図、第2図は各]1r2濃度
における放電4位面線を示す線図、第6図は電極の放電
4位曲線を示すρj(図、第4図は6JlΦ1L極利料
の放電4位曲線を示す線図、第5図は表面状態がほぼ同
じ電極材料の比抵抗値と平均電位との関係を示す線図、
第6図は固有抵抗がほぼ同じ′電極月料の表面粗さと平
均電位との関係を示す線図、第7μmは平均放電4位V
とRzXlo−4/ρ〔v〕との関係を示す線図である
Fig. 1 is a diagram showing the principle of electrode potential measurement, Fig. 2 is a diagram showing the discharge 4th position surface line at each]1r2 concentration, and Fig. 6 is a diagram showing the discharge 4th position curve of the electrode. Figure 5 is a diagram showing the fourth-position discharge curve of the polar charge, and Figure 5 is a diagram showing the relationship between the specific resistance value and average potential of electrode materials with almost the same surface condition.
Figure 6 is a diagram showing the relationship between the surface roughness and average potential of electrodes with almost the same specific resistance, and the 7th μm is the 4th level of average discharge V.
FIG. 2 is a diagram showing the relationship between RzXlo-4/ρ[v] and RzXlo-4/ρ[v].

Claims (1)

【特許請求の範囲】[Claims] 種々電極の放電平均電位と比抵抗値と十点平均粗さ値と
を求めてその相関関係式を求め、該関係式に放電平均電
位値未知のプラスチック電極の比抵抗イ1(1及び十点
平均粗さ値を代入して、該プラスチック電極の放電平均
電位を推定することを特徴とする亜鉛−臭素電池用電極
材料の電極特性評価方法。
The discharge average potential, specific resistance value, and 10-point average roughness value of various electrodes are determined, and a correlation equation is obtained between them. 1. A method for evaluating electrode characteristics of an electrode material for a zinc-bromine battery, which comprises estimating a discharge average potential of the plastic electrode by substituting an average roughness value.
JP22029882A 1982-12-17 1982-12-17 Electrode characteristic evaluation method of electrode material for zinc-bromine battery Granted JPS59112577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22029882A JPS59112577A (en) 1982-12-17 1982-12-17 Electrode characteristic evaluation method of electrode material for zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22029882A JPS59112577A (en) 1982-12-17 1982-12-17 Electrode characteristic evaluation method of electrode material for zinc-bromine battery

Publications (2)

Publication Number Publication Date
JPS59112577A true JPS59112577A (en) 1984-06-29
JPH0132634B2 JPH0132634B2 (en) 1989-07-07

Family

ID=16748962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22029882A Granted JPS59112577A (en) 1982-12-17 1982-12-17 Electrode characteristic evaluation method of electrode material for zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPS59112577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638538U (en) * 1992-11-07 1994-05-24 株式会社釣研 Rod-shaped chemiluminescer attachment for through-holes
JPH0686477U (en) * 1993-06-01 1994-12-20 秀紀 迫田 Floating float during synthesis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638538U (en) * 1992-11-07 1994-05-24 株式会社釣研 Rod-shaped chemiluminescer attachment for through-holes
JPH0686477U (en) * 1993-06-01 1994-12-20 秀紀 迫田 Floating float during synthesis

Also Published As

Publication number Publication date
JPH0132634B2 (en) 1989-07-07

Similar Documents

Publication Publication Date Title
Blanke et al. Impedance measurements on lead–acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles
CN104391159B (en) The detection method and system of the single electrode potential of battery
CN104865536B (en) A kind of test of performance of lithium ion battery the reason of decay and diagnostic method
CN107607880A (en) A kind of inside lithium ion cell health characteristics extracting method based on impedance spectrum
CN107516750A (en) A kind of method and device for determining lithium ion battery safe charging condition
JPH05135806A (en) Method for determining remaining capacitance of storage battery
CN111458642A (en) Nondestructive testing method for lithium separation of lithium ion storage battery
CN108508067A (en) A method of evaluating the battery material of lithium ion battery using Symmetrical cells
WO2010132303A1 (en) Method for determining extent and type of capacity fade
CN201397381Y (en) Novel voltage internal resistance testing device for lithium ion battery
Huet et al. Investigation of the high-frequency resistance of a lead-acid battery
Bohlen Impedance-based battery monitoring
Mohsin et al. A new lead-acid battery state-of-health evaluation method using electrochemical impedance spectroscopy for second life in rural electrification systems
CN114609523A (en) Online battery capacity detection method, electronic equipment and storage medium
CN110146826A (en) Commercial li-ion battery electrode degradation analysis method based on three-electrode system
CN105527581A (en) Identification method for hybrid cathode material lithium ion battery key parameter and capacity attenuation mechanism
CN108614012A (en) A method of being applied to lithium battery diaphragm resistance test
JPS59112577A (en) Electrode characteristic evaluation method of electrode material for zinc-bromine battery
Barton et al. Estimation of the residual capacity of maintenance-free lead acid batteries Part 1. Identification of a parameter for the prediction of state-of-charge
Haiying et al. Research on the consistency of the power battery based on multi-points impedance spectrum
Kwiecien Electrochemical impedance spectroscopy on lead-acid cells during aging
CN114076790A (en) Lithium extraction diagnosis method based on electrochemical impedance spectroscopy for lithium ion battery
CN112595986A (en) Battery service life diagnosis method based on differential thermal voltammetry curve characteristics
Feizi et al. Analysis of characteristics for the identification of lead-acid battery technologies used in micro-hybrid vehicles
CN113125974A (en) Method and device for detecting lithium separation of battery