JPS59112421A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS59112421A
JPS59112421A JP22059582A JP22059582A JPS59112421A JP S59112421 A JPS59112421 A JP S59112421A JP 22059582 A JP22059582 A JP 22059582A JP 22059582 A JP22059582 A JP 22059582A JP S59112421 A JPS59112421 A JP S59112421A
Authority
JP
Japan
Prior art keywords
magnetic
elements
yoke
resistance
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22059582A
Other languages
Japanese (ja)
Other versions
JPH0440776B2 (en
Inventor
Toshio Yamagata
山形 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22059582A priority Critical patent/JPS59112421A/en
Publication of JPS59112421A publication Critical patent/JPS59112421A/en
Publication of JPH0440776B2 publication Critical patent/JPH0440776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • G11B5/3948Heads comprising more than one sensitive element the sensitive elements being active read-out elements
    • G11B5/3951Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged on several parallel planes
    • G11B5/3954Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged on several parallel planes the active elements transducing on a single track

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a reproducing output having no error by providing a magnetic bias in the opposite direction to each other, to two MR element placed in the vicinity of the other end face of a yoke contacting with a magnetic recording medium, and outputting a difference of a resistance variation quantity of two MR elements. CONSTITUTION:A titled magnetic head contains a yoke 11 consisting of a high permeability magnetic material thin film, two ferromagnetic magneto-resistance effect (MR) elements 12, 13, and a conductive body stripe 14 for forming a magnetic bias of the opposite direction. They are installed on a head slider or in its inside, and an opposed surface 15 is opposite to a magnetic recording medium 16. The MR elements 12, 12 are placed so as to be adjacent to each other, in the vicinity of the other end face 18 of the yoke 11, and a conductive stripe 14 is placed between them. A variation of resistance due to a temperature is determined by only a resistance temperature coefficient of an MR element material, therefore, the resistance variation of the MR elements 12, 13 becomes the same phase. Accordingly, a reproducing output which is not influenced by a temperature variation can be obtained by outputting a difference of the resistance variation quantity of both elements.

Description

【発明の詳細な説明】 本発明は強磁性磁気抵抗効果素子を使った磁気ヘッドに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic head using a ferromagnetic magnetoresistive element.

強磁性磁気抵抗効果素子(以下風素子と略す)は印加さ
れる磁界に応じて電気抵抗が変化する素子であり、検出
感度が高いことから再生用磁気ヘッドとして応用されつ
つある。代表的材料としてはN i F e合金やN 
i Co合金等がよく知られていへこれらは磁界による
抵抗変化率が2〜5チ程度であるが、同時に温度によっ
ても抵抗変化を生じ、4〜10′C程度の温度変化は信
号磁界による変化1に匹敵する程度にまで達する。この
ような温度変化しこよって生じる疑似信号成分を除弄す
るため、従来の磁気ヘッドでは第1図に示すように2つ
のMR$子を配貨して差動出力、すなわち抵抗変化Iの
差を出力とする方法が知られている。これは磁気記録媒
体3に近い方のMR素子1には信号磁界が印加されるの
に対し、磁気記録媒体3から離れたMR1子2では磁界
が印加されないことを利用して、その差動をとることに
より、温度変化によって生ずる同相の抵抗変化分を除去
するものである。しかし、この方式はゆっくりとした広
域的な温度変化には対応できるのであるが磁タヘッドの
ように磁気He録媒体との摺動ないし微小凸起との衝突
によって生ずる局所的瞬間的な温度変化に対してはM’
R素子1と2の温度上昇の時間差のため、スパイク状の
疑似信号の発生が不可避であった。
A ferromagnetic magnetoresistive element (hereinafter abbreviated as a wind element) is an element whose electrical resistance changes depending on an applied magnetic field, and is being applied as a reproducing magnetic head because of its high detection sensitivity. Typical materials include N i Fe alloy and N
I-Co alloys are well known, and these have a resistance change rate of about 2 to 5 degrees due to a magnetic field, but at the same time they also change resistance depending on temperature, and a temperature change of about 4 to 10'C is due to a signal magnetic field. It reaches a level comparable to 1. In order to eliminate spurious signal components caused by such temperature changes, conventional magnetic heads distribute two MR elements as shown in Figure 1 to generate a differential output, that is, the difference in resistance change I. There is a known method for outputting . This takes advantage of the fact that a signal magnetic field is applied to the MR element 1 closer to the magnetic recording medium 3, whereas no magnetic field is applied to the MR element 2 farther from the magnetic recording medium 3, and the differential is This eliminates in-phase resistance changes caused by temperature changes. However, although this method can cope with slow, wide-area temperature changes, it cannot cope with local, instantaneous temperature changes caused by sliding with a magnetic He recording medium or collision with minute protrusions, such as in a magnetic head. For M'
Because of the time difference between the temperature rises of R elements 1 and 2, the generation of spike-like pseudo signals was unavoidable.

本発明の目的は上記の欠点をなくし、より完全な温度補
償を行なって誤りのない再生出力が得られる磁気ヘッド
を提供することkある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a magnetic head that can perform more complete temperature compensation and provide error-free reproduction output.

本発明の磁気ヘッドは磁気記録媒体対向面上に1つの端
面を有する高透磁率磁性体薄膜からなるヨーク、及びこ
のヨークのもう一方の娼面に近接して配置した2つのM
R素子、及びこの2つの■ムR素子に互いに逆方向の磁
気バイアスを形成する機構とを有しして構成され、2つ
のMR素子の抵抗変化量の差を出力とすることを特徴と
する。
The magnetic head of the present invention includes a yoke made of a high magnetic permeability magnetic thin film having one end surface on a surface facing a magnetic recording medium, and two M
It is characterized by having an R element and a mechanism for forming magnetic biases in opposite directions to the two MR elements, and outputs the difference in the amount of resistance change between the two MR elements. .

次に本発明の実施例について図面を参照して訝明する。Next, embodiments of the present invention will be explained with reference to the drawings.

第2図を参照すると、本宵明の第1の5.1施例は高透
磁率磁性体薄膜から成るヨーク11.2つのへ4R素子
12.13、及びこれに逆方向の磁気バイア7゜を形成
する機構としての導電体ストライプ14とを庁む。この
国でけiffのため省略しているが、これらはヘッドス
ライダ−上、ないしその内部に設装置され対向面15が
磁気記録n体16に向き合さ。”l−り11 ノ1ツf
7)4面1714.”:、17)幻1ijJ Th、i
l 5上にある。IR鍬子12,13、はヨーク11の
もう1方の端面18の近13に−り、いに近拌して配置
し、その間に、jll電体ストライプ14が1’、*L
、!・おる。
Referring to FIG. 2, the first 5.1 embodiment of this evening consists of a yoke 11 made of a high permeability magnetic thin film, two 4R elements 12 and 13, and a magnetic via 7° in the opposite direction. The conductive stripes 14 serve as a mechanism for forming the conductor stripes. Although they are omitted for convenience in this country, these are installed on or inside the head slider, and the facing surface 15 faces the magnetic recording body 16. "l-ri11 no1tsu f
7) 4 sides 1714. ”:, 17) Illusion 1ijJ Th,i
It's on l 5. The IR spades 12 and 13 are placed near the other end surface 18 of the yoke 11, and are arranged in a manner that they are closely spaced.
,! ·is.

次にこの動作を説明する。磁気記録媒体16の磁化から
の磁界はヨーク11を磁化し、この磁化によって生ずる
磁界が更に皿素子12.13  を磁化する。よく知ら
れているよ5に、MR素子の磁化方向をそこに流すセン
ス電流方向に対して45″傾くように磁気バイアスする
ととKより、感度の良い線形出力が得られる。■素子1
2.13は導電体ストライプ14に流すバイアス設定電
流から発生する磁界により、互いに逆方向、すなわちM
R素子のセンス電流方向に対してそれぞれ45°、及び
−45°に磁気バイアスしておくのでヨーク11、から
の磁界に応じて互いに逆相の抵抗変化を生じる。一方温
度による抵抗の変化は飄素子材料の抵抗温度係数のみで
決まるので凧素子12.13の抵抗変化は同相となる。
Next, this operation will be explained. The magnetic field from the magnetization of the magnetic recording medium 16 magnetizes the yoke 11, and the magnetic field produced by this magnetization further magnetizes the dish element 12.13. It is well known that if the magnetization direction of the MR element is magnetically biased so as to be inclined by 45'' with respect to the direction of the sense current flowing therein, a linear output with better sensitivity can be obtained.■Element 1
2.13 are in opposite directions, that is, M
Since the R element is magnetically biased at 45 degrees and -45 degrees with respect to the sense current direction, resistance changes in opposite phases occur depending on the magnetic field from the yoke 11. On the other hand, since the change in resistance due to temperature is determined only by the temperature coefficient of resistance of the kite element material, the changes in resistance of the kite elements 12 and 13 are in the same phase.

従って2つのMR飯子12.13の差動をとる。すなわ
ち両者の抵抗変仕量の差を出力とすることにより、温度
変化の影響を受けない再生出力を得ることができる。尚
、飄素子が再生できる磁気記録媒体の最小ビット長、す
なわち分解能は一般KMR素子と磁気記録媒体との距離
の程度であるため、通常aμから10戸となってしまう
が、本発明の磁気ヘッドではヨーク11によって風素子
を間接的に磁化するため、) 声以下とすることが可能となっている。
Therefore, the differential of the two MR Iikos 12 and 13 is taken. That is, by using the difference in resistance variation between the two as the output, it is possible to obtain a reproduction output that is not affected by temperature changes. Note that the minimum bit length of the magnetic recording medium that can be reproduced by the magnetic head element, that is, the resolution, is approximately the distance between the general KMR element and the magnetic recording medium, so it is usually 10 units from aμ, but the magnetic head of the present invention In this case, since the wind element is indirectly magnetized by the yoke 11, it is possible to reduce the noise to below 100 m.

次にム反の影曽の除去効果を第3図を参照して従来の磁
気ヘッドと比較しながら説明する。第3図(a)はb’
r 2図に示した実施例の断面図であり、第3図(bl
は第1図に示した従来の構成例の断面図である。前述の
ように広域的でゆっくりとした温度変化ではMR索子2
1と22、または23と24の間で温度は静しいりで抵
抗変化の差はなく、差動構成をとることで本発明の磁気
ヘッドでも従来のものでも同株に温度の彩譬を除去でき
る。しかし、磁気ヘッドでは通常磁気記録媒体25.2
6との摺動ないし、微小な凸起との接触があり、これら
は媒体対向面27.28の表面をさな熱源が高速で移動
することに相当する。この熱源が■素子の近傍を通過す
る時、處素子23は点状の熱源に接するため第3図(d
lのR8に示す如く急数な温度上昇をおこす。これに対
し、乃R素子2]、22及び24は媒体対向面27,2
8からはなれているためそれぞれ第3図(c)のR+ 
、R2及び紀3図(dlのR4に示すように比較的ゆっ
(つとした変化となり、特にMR素子21と22は互い
に近接して配置しているので変化は殆んど一致する。従
ってMR素子23と24の差動をとる従来の構成のもの
では第3図(cilの△R2で示すスパイク状の疑似信
号出力が生じのに対し1本実施例の磁気ヘッドでは第3
図(e)の△R8で示すように急激で局所的な温度変化
に対しても全く影響を受けない。
Next, the effect of removing the shadow of the magnetic head will be explained with reference to FIG. 3 while comparing it with a conventional magnetic head. Figure 3(a) is b'
r is a sectional view of the embodiment shown in Figure 2, and Figure 3 (bl
2 is a sectional view of the conventional configuration example shown in FIG. 1. FIG. As mentioned above, when the temperature changes over a wide area and slowly, the MR chord 2
The temperature is quiet between 1 and 22 or 23 and 24, and there is no difference in resistance change, and by adopting a differential configuration, the temperature difference between the magnetic head of the present invention and the conventional one is eliminated. can. However, in a magnetic head, the magnetic recording medium 25.2
6 or contact with minute protrusions, which corresponds to a small heat source moving at high speed on the surface of the medium facing surface 27,28. When this heat source passes near the element 2, the element 23 comes into contact with the point-shaped heat source, so it
A sudden temperature rise occurs as shown in R8 of 1. On the other hand, the R elements 2], 22 and 24 are connected to the medium facing surfaces 27, 2.
R+ in Figure 3(c) because they are far from 8.
, R2 and R4 in Figure 3 (dl), the changes are relatively slow (especially since the MR elements 21 and 22 are arranged close to each other, the changes are almost the same. Therefore, the MR elements In the conventional magnetic head having a differential configuration of 23 and 24, a spike-like pseudo signal output as shown by ΔR2 in FIG.
As shown by ΔR8 in Figure (e), it is completely unaffected by sudden and local temperature changes.

この実施例で導電体ストライプ14はヨーク11からの
磁界によるMR素子12.13の抵抗変化を互いに逆相
とするための機構であり、そうした逆方向のバイアス磁
化を形成する機構としては更に変形するととも可能であ
る。第4図(al、(b)はそうした変形の例として簡
単のためにMR素子及び磁気バイアスを形成する機前だ
けを示した図である。
In this embodiment, the conductor stripe 14 is a mechanism for making the resistance changes of the MR elements 12 and 13 due to the magnetic field from the yoke 11 have opposite phases to each other, and the mechanism for forming bias magnetization in such opposite directions can be further modified. Both are possible. FIGS. 4(a) and 4(b) are diagrams showing, for the sake of simplicity, only the stage in front of which the MR element and magnetic bias are formed as an example of such a modification.

第4図(&)に示したものは風素子31及び32の面上
にそれぞれ素子の長手方向とほぼ45″をなす導電体バ
ー33及び34を設けた、いわゆるバーバーポールMR
棄子として知られる構成を行なったものである。信号磁
界が加わらない状態でのん電素子31及び32の磁化方
向をX方向で同じ向きとしておく時は導電体バー33及
び34は互いに直交するように配置し、逆にMR素子3
1.32の磁化方向をX方向で互いに反対向きとしてお
く時には導電体33汲び34は互いに平行とすることで
所定の逆方向バイアス磁化を得ることができる。また第
4図(b)に示したものはMR素子35.36に同方向
の電流を流すように構成したものである。■素子35.
36は互いに近接させているため、そわぞれの抵抗変化
量の検出のために流すセンスvL流I。
The one shown in FIG. 4 (&) is a so-called barber pole MR in which conductive bars 33 and 34 are provided on the surfaces of wind elements 31 and 32, respectively, making a distance of approximately 45'' from the longitudinal direction of the elements.
This is a configuration known as a foundling. When the magnetization directions of the MR elements 31 and 32 are the same in the X direction when no signal magnetic field is applied, the conductor bars 33 and 34 are arranged so as to be orthogonal to each other, and conversely, the MR element 3
When the magnetization directions of 1.32 are set to be opposite to each other in the X direction, a predetermined reverse bias magnetization can be obtained by making the conductors 33 and 34 parallel to each other. Furthermore, the one shown in FIG. 4(b) is constructed so that currents flow in the same direction through the MR elements 35 and 36. ■Element 35.
36 are placed close to each other, so the sense vL flow I flows to detect the respective resistance change amounts.

及びI、によって互い&て逆方向のバイアス磁界H1■
、が印加され所定の逆方向バイアス磁化を形成すること
ができる。こわらの変形例のものは第3図に示したもの
と比較してバイアス磁化の設定の自由度は若干低下する
のであるが、電極端子の数を余分に必要としないという
利点を有している。
and I, bias magnetic fields H1 in opposite directions to each other &
, can be applied to form a predetermined reverse bias magnetization. Although the degree of freedom in setting the bias magnetization in the modified example of Kowara is slightly lower than that shown in Fig. 3, it has the advantage of not requiring an extra number of electrode terminals. There is.

更に、ヨークは第2図及び第3図(alに示した実施例
ではMR零子と磁気記録媒体との間にのみ配置している
が、これを第5図(IL)に示すように反対側にもバッ
クヨーク44を設置すれば1昭素子の42.43の検出
感度をより向上させることが可能である。尚、MTt素
子とヨークとの間隔は電気的な絶縁を保ちなからなるべ
く小さく製作することが望ましいが、より簡単には第5
図(b)に示す如く、MR素子46.47とヨーク45
とを若干型なるようにしても特性上大きな差はない。
Furthermore, in the embodiment shown in Figures 2 and 3 (al), the yoke is placed only between the MR zero and the magnetic recording medium, but this can be reversed as shown in Figure 5 (IL). If a back yoke 44 is installed on the side as well, it is possible to further improve the detection sensitivity of 42.43 of the 1-Sho element.In addition, the distance between the MTt element and the yoke should be kept as small as possible to maintain electrical insulation. It is preferable to make one, but it is easier to make the fifth one.
As shown in Figure (b), the MR elements 46, 47 and the yoke 45
There is no big difference in characteristics even if the shape is made slightly different.

以上の実施例において、MR累素子抵抗変化率の大きい
鉄、ニッケル、コバルトの単体ない゛シ谷金の薄膜であ
り、代表的にはN i F eやNiCoを拐料とし、
膜厚が200^から1000^、ストライプ幅が数戸か
らl0JIである。また、ヨークは膜厚数千久から数7
11程度の鳥透率磁性体であればよくやはり鉄、ニッケ
、ル、コバルトの単体ないし合金を用いることができ、
更に導電体としては金、銅、アルミニウム等が適してい
る。これらは蒸着、スパッター、めっき等の薄膜形成技
術及びフォトエ(9) ッチング等の微細加工技術によって所定の形状、配置に
製作することができる。
In the above embodiments, the MR cumulative element is a thin film of iron, nickel, and cobalt, which have a large resistance change rate, and is typically made of NiFe or NiCo.
The film thickness is from 200^ to 1000^, and the stripe width is from several doors to 10JI. In addition, the film thickness of the yoke ranges from several thousand years to several sevens.
Any magnetic material with a permeability of about 11 is sufficient, and iron, nickel, aluminum, and cobalt alone or alloys can be used.
Furthermore, gold, copper, aluminum, etc. are suitable as the conductor. These can be manufactured into a predetermined shape and arrangement using thin film formation techniques such as vapor deposition, sputtering, and plating, and microfabrication techniques such as photoetching.

本発明は以上説明したように、磁気記録媒体対向面上に
1つの端面な有する高透i率磁性体薄膜から成るヨーク
、及びこのヨークのもう一方の端面に近接して配置した
2つのMR素子、及びこの2つのMR素子に互いに逆方
向の磁気バイアスを形成する機構とを有して構成して2
つの独素子の抵抗変化量の差を出力とすることにより、
局所的瞬間的な温度変化があっても何等影喪を受けるこ
となく、語りのない再生出力信号を得られる効果がある
As described above, the present invention includes a yoke made of a high-permeability magnetic thin film having one end surface on a surface facing a magnetic recording medium, and two MR elements disposed close to the other end surface of the yoke. , and a mechanism for forming magnetic biases in opposite directions to the two MR elements.
By using the difference in resistance change between two German elements as the output,
Even if there is a local instantaneous temperature change, it has the effect of being able to obtain a playback output signal that does not suffer any effects and has no effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気ヘッドの基本構成を示す斜視図、第
2図は本発明の一実施例の基本構成を示す斜視図、u 
:l lkl (al 及び(clけ#: 2 m4i
 i(yr:、 した−実施例の断面図とその出力、t
A3 J (bl及び(dlは年1図に示した従来例の
1I7T面凶とその出力、ai’+ 4N’i (a)
、(b)は逆方向の磁化バイアスを形成する機構の例を
(10) 示した図であり、第5図(a)及び(b)はヨークと胤
素子との配置の例を示した断面図である。 図において、1,2.12.13.21.22.23.
24.31.32.35.36.42.43.46、及
び47は凧素子、3%16.25、及び26は磁り記録
媒体、11.30.41、及び45はヨーク、44はバ
ックヨーク、15.27.28.48及び49は磁気記
録媒体に対向する面、17はヨークの1つの端面、18
はヨークのもう一方の端面、14及び29は逆方向の磁
化バイアスを形成する導電体ストライプであり、33囁
fT21 第2図 12   13 第3図 2C? (αン                      
          (h〕第4 2゜ (α) 第5 C久) tb)
FIG. 1 is a perspective view showing the basic structure of a conventional magnetic head, and FIG. 2 is a perspective view showing the basic structure of an embodiment of the present invention.
:l lkl (al and (clket#: 2 m4i
i(yr:, sectional view of the example and its output, t
A3 J (bl and (dl are the 1I7T surface failure and its output of the conventional example shown in Figure 1), ai'+ 4N'i (a)
, (b) are diagrams showing an example of a mechanism for forming a magnetization bias in the opposite direction (10), and Figures 5 (a) and (b) are cross-sectional views showing examples of the arrangement of the yoke and the seed element It is a diagram. In the figure, 1, 2.12.13.21.22.23.
24.31.32.35.36.42.43.46 and 47 are kite elements, 3% 16.25 and 26 are magnetic recording media, 11.30.41 and 45 are yoke, 44 is back Yoke, 15.27.28.48 and 49 are surfaces facing the magnetic recording medium, 17 is one end surface of the yoke, 18
is the other end surface of the yoke, 14 and 29 are conductor stripes that form magnetization biases in opposite directions, and 33 whisper fT21 Fig. 2 12 13 Fig. 3 2C? (αn
(h) 4th 2゜(α) 5th Cku) tb)

Claims (1)

【特許請求の範囲】 1、磁気記録媒体対向面上に1つの端面を有する高透磁
率磁性体薄膜から成るヨーク、及び該ヨークのもう一方
の端面に近接して配置した2つの強磁性磁気抵抗効果素
子、及びこの2つの強磁性磁気抵抗効果素子に互いに逆
方向の磁気バイアスを形成する機構とを有して構成され
、前記2つの強磁性磁気抵抗効果素子の抵抗変化量の差
を出力とすることを特徴とする磁気ヘッド。 2、磁気バイアスを形成する機構として、2つの強磁性
磁気抵抗効果素子の間に配置された導電体ストライプを
有する特許請求範囲第1項記載の磁気ヘッド。 3、磁気バイアスを形成する機構として、2つの強磁性
磁気抵抗効果素子の面上に該素子の長手方向と略453
をなす導電体バーを設けた特許請求範囲第1項記載の磁
気ヘッド。 4、磁気バイアスを形成する機構として、2つの強磁性
磁気抵抗効果素子のそれぞれに同じ方向の電流を供給す
る機構を含む特許請求範囲第1項記載の磁気ヘッド。
[Claims] 1. A yoke made of a high magnetic permeability magnetic thin film having one end surface on the surface facing the magnetic recording medium, and two ferromagnetic magnetoresistors arranged close to the other end surface of the yoke. an effect element, and a mechanism for forming magnetic biases in opposite directions to the two ferromagnetic magnetoresistive elements, and outputs the difference in resistance change between the two ferromagnetic magnetoresistive elements. A magnetic head characterized by: 2. The magnetic head according to claim 1, which has a conductive stripe arranged between two ferromagnetic magnetoresistive elements as a mechanism for forming a magnetic bias. 3. As a mechanism for forming a magnetic bias, approximately 453 mm is placed on the surfaces of two ferromagnetic magnetoresistive elements in the longitudinal direction of the elements.
2. A magnetic head according to claim 1, further comprising a conductive bar. 4. The magnetic head according to claim 1, which includes a mechanism for supplying current in the same direction to each of the two ferromagnetic magnetoresistive elements as the mechanism for forming the magnetic bias.
JP22059582A 1982-12-16 1982-12-16 Magnetic head Granted JPS59112421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22059582A JPS59112421A (en) 1982-12-16 1982-12-16 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22059582A JPS59112421A (en) 1982-12-16 1982-12-16 Magnetic head

Publications (2)

Publication Number Publication Date
JPS59112421A true JPS59112421A (en) 1984-06-28
JPH0440776B2 JPH0440776B2 (en) 1992-07-06

Family

ID=16753434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22059582A Granted JPS59112421A (en) 1982-12-16 1982-12-16 Magnetic head

Country Status (1)

Country Link
JP (1) JPS59112421A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213781A (en) * 1985-03-14 1986-09-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Reluctance sensor
JPH0261572A (en) * 1988-06-16 1990-03-01 Kernforschungsanlage Juelich Gmbh Magnetic field sensor using ferromagnetic thin-film
FR2645315A1 (en) * 1989-03-29 1990-10-05 Commissariat Energie Atomique MAGNETTIC READING HEAD WITH MAGNETORESISTANCE FOR PERPENDICULAR RECORDING AND METHOD OF MAKING SUCH A HEAD
US5696654A (en) * 1994-04-21 1997-12-09 International Business Machines Corporation Dual element magnetoresistive sensor with antiparallel magnetization directions for magnetic state stability
FR2786909A1 (en) * 1998-12-03 2000-06-09 Jean Pierre Lazarri Large magneto-resistance magnetic reading head for high density data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548825A (en) * 1978-09-29 1980-04-08 Ibm Data reproducer
JPS57437U (en) * 1980-06-02 1982-01-05
JPS57141014A (en) * 1981-02-25 1982-09-01 Canon Electronics Inc Thin film magnetic sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548825A (en) * 1978-09-29 1980-04-08 Ibm Data reproducer
JPS57437U (en) * 1980-06-02 1982-01-05
JPS57141014A (en) * 1981-02-25 1982-09-01 Canon Electronics Inc Thin film magnetic sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213781A (en) * 1985-03-14 1986-09-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Reluctance sensor
JPH0431355B2 (en) * 1985-03-14 1992-05-26
JPH0261572A (en) * 1988-06-16 1990-03-01 Kernforschungsanlage Juelich Gmbh Magnetic field sensor using ferromagnetic thin-film
FR2645315A1 (en) * 1989-03-29 1990-10-05 Commissariat Energie Atomique MAGNETTIC READING HEAD WITH MAGNETORESISTANCE FOR PERPENDICULAR RECORDING AND METHOD OF MAKING SUCH A HEAD
US5196976A (en) * 1989-03-29 1993-03-23 Commissariat A L'energie Atomique Magnetoresistance magnetic head for perpendicular recording on a magnetic support
US5696654A (en) * 1994-04-21 1997-12-09 International Business Machines Corporation Dual element magnetoresistive sensor with antiparallel magnetization directions for magnetic state stability
FR2786909A1 (en) * 1998-12-03 2000-06-09 Jean Pierre Lazarri Large magneto-resistance magnetic reading head for high density data

Also Published As

Publication number Publication date
JPH0440776B2 (en) 1992-07-06

Similar Documents

Publication Publication Date Title
US7502208B2 (en) Magneto-resistive effect element, magnetic sensor using magneto-resistive effect, magnetic head using magneto-resistive effect and magnetic memory
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US5193038A (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US5739987A (en) Magnetoresistive read transducers with multiple longitudinal stabilization layers
US6801411B1 (en) Dual stripe spin valve sensor without antiferromagnetic pinning layer
US6717780B2 (en) Magnetoresistive device and/or multi-magnetoresistive device
US5883763A (en) Read/write head having a GMR sensor biased by permanent magnets located between the GMR and the pole shields
US7486487B2 (en) Magneto-resistive element, magnetic head and magnetic storage apparatus
US5406433A (en) Dual magnetoresistive head for reproducing very narrow track width short wavelength data
JPH04247607A (en) Magnetoresistance effect element
KR100259756B1 (en) Spinvalve magnetoresistive head and method of manufacturing the same and magnetic recording/reproducing apparatus
US6995959B2 (en) Integrated spin valve head
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
US5581427A (en) Peak enhanced magnetoresistive read transducer
JPS59112421A (en) Magnetic head
US20070127162A1 (en) Magnetic head device provided with lead electrode electrically connected to upper shield layer and lower shield layer
US6347022B1 (en) Spin-valve type magnetoresistive thin film element and spin-valve type magnetoresistive thin film head using the same
JPH07176019A (en) Flat magnetoresistance head
US6215301B1 (en) Magnetoresistive detector comprising a layer structure and a current directing means
US6519122B1 (en) Spin-valve thin-film element
JPH0845030A (en) Magneto-resistive magnetic head
US20050264952A1 (en) Magneto-resistive element, magnetic head and magnetic storage apparatus
JPH1021513A (en) Magnetoresistive transduction device
US6333840B1 (en) Magnetic recording apparatus
JP2508475B2 (en) Magnetoresistive magnetic head