JPS59111819A - Formation of multi-layered inflation film - Google Patents

Formation of multi-layered inflation film

Info

Publication number
JPS59111819A
JPS59111819A JP57220166A JP22016682A JPS59111819A JP S59111819 A JPS59111819 A JP S59111819A JP 57220166 A JP57220166 A JP 57220166A JP 22016682 A JP22016682 A JP 22016682A JP S59111819 A JPS59111819 A JP S59111819A
Authority
JP
Japan
Prior art keywords
resin
cylinder
molten resin
density polyethylene
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57220166A
Other languages
Japanese (ja)
Other versions
JPH0121781B2 (en
Inventor
Yukio Honda
本田 由起雄
Hitoshi Komatsu
仁 小松
Osamu Nakamura
中村 収
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP57220166A priority Critical patent/JPS59111819A/en
Publication of JPS59111819A publication Critical patent/JPS59111819A/en
Publication of JPH0121781B2 publication Critical patent/JPH0121781B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/147Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
    • B29C48/1472Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle at the die nozzle exit zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/007Using fluid under pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a multi-layered inflation film havng a high strength and a high uniformity with lesser directivity by a method in which a simple device is provided at the lower end part of a molten resin cylinder molded of a resin having a great frictional resistance when melted for its inner layer and a high- density polyester resin for its outer layer. CONSTITUTION:A resin (e.g., low-density polyethylene resin, etc.) having a great frictional resistance when melted for an inner layer and a highdensity polyethylene resin for an outer layer are extruded from the annular slit 3 of an annular die to form a molten resin cylinder 4. The molten resin cylinder 4 is then expanded and cooled from outside by airing to the outside of the annular die 2 to form a multi-layered inflation film. In this case, an air sucker 7 is provided to the lower end of the molten resin cylinder 4, and air is passed through the opening 8 for airing 5 and a rectifying cylinder 9 provided around the resin cylinder 4 for cooling the cylinder to obtain a desired molding.

Description

【発明の詳細な説明】 本発明は多層インフレーションフィルムの成形方法に関
し、詳しくは内層として低密度ポリエチレンのような溶
融時に摩擦抵抗が大きい樹脂を用いた積層フィルムであ
っても、内層として高密度ポリエチレンを用い、かつ中
芯(安定体)を使用したと同様の70ストライン高さお
よびブロー比の成形ができ、しかも簡単な設備でがっ検
品に運転制御しうる多層インフレーションフィルムの成
形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a multilayer blown film, and more specifically, even if the inner layer is a laminated film using a resin that has high frictional resistance when melted, such as low-density polyethylene, the inner layer may be made of high-density polyethylene. The present invention relates to a method for forming a multilayer blown film, which can be formed to the same 70-line height and blow ratio as when using a core (stabilizer), and which can be operated and controlled with simple equipment to quickly inspect the product.

一般に多層インフレーションフィルムの成形ハ、少なく
とも二層からなる積層フィルムを、環状ダイの環状スリ
ットから押出して溶融樹脂筒状体とし、その後膨張させ
外周からエアーリングにより冷却することによりなされ
ている。
Generally, multilayer blown film is formed by extruding a laminated film consisting of at least two layers through an annular slit of an annular die to form a molten resin cylinder, which is then expanded and cooled by an air ring from the outer periphery.

ところで、高密度ポリエチレンフィルムは強度。By the way, high-density polyethylene film is strong.

腰の強さなどにすぐれたものであるが、ヒートシール性
、透明性などが十分でないという欠点かあ・つた。そこ
でこの、欠点を改良するために高密度ボリエチレンと低
密度ポリエチレンを積層してなるフィルムが知られてい
る。これら積層多層フィルムを成形する場合、ヒートシ
ール性の改良の点から内層フィルムとして低密度ポリエ
チレンを用いることが必要となる。しかしながら、内層
が低密度ポリエチレンの場合には、内面の溶融状態にあ
ル低密度ホ゛リエチレンの摩擦抵抗が大きくなる。
Although it has excellent stiffness, it has drawbacks such as insufficient heat sealability and transparency. Therefore, in order to improve this drawback, a film made by laminating high-density polyethylene and low-density polyethylene is known. When forming these laminated multilayer films, it is necessary to use low-density polyethylene as the inner layer film in order to improve heat sealability. However, when the inner layer is made of low-density polyethylene, the frictional resistance of the low-density polyethylene increases because the inner surface is in a molten state.

したがって、このような多層フィルムの成形に際して、
高密度ポリエチレンフィルムの成形に一般的に用いられ
ている中芯を使用すると、溶融樹脂筒状体が摩擦のため
スムースに移動せず、多層フィルムの成形ができないと
いう大きな欠点がある。
Therefore, when forming such a multilayer film,
If a core, which is commonly used for molding high-density polyethylene films, is used, there is a major drawback in that the molten resin cylinder does not move smoothly due to friction, making it impossible to mold a multilayer film.

そこで、この摩擦抵抗を少なくするため溶融樹脂チュー
ブを環状ダイの環状スリットの内側にさらに設けられた
冷却マンドレルや冷却リングにより冷却した後、環状グ
イ先端に取付けた安定体の表面に沿わせて縦方向に移動
させ、次いで膨張させて多層インフレーションフィルム
を成形スル方法が提案されている(特開昭57−450
31号)。
Therefore, in order to reduce this frictional resistance, the molten resin tube is cooled by a cooling mandrel or cooling ring that is further provided inside the annular slit of the annular die, and then vertically aligned along the surface of the stabilizer attached to the tip of the annular gouer. A method has been proposed in which a multilayer blown film is formed by moving the film in the direction of
No. 31).

しかしながら、この方法では装置が複雑となってしまい
小型ダイスに適用することができず、しかも冷却匍工御
が困難で安定成形ができないという欠点がある。
However, this method has disadvantages in that the apparatus is complicated and cannot be applied to small dies, and furthermore, it is difficult to control the cooling process and stable molding cannot be achieved.

他方、中芯を用いない場合は1、バブルの70ストライ
ンを低くしたり、ブロー比を小さくしなけt’t ハ安
定して多層インフレーションフィルムラ成形することが
できない。したがって、成形の安定化を図るためにバブ
ルの70ス゛トラインを低くしたりすると、生産性が低
下するとともにTD力方向配合度が低下し、強度バラン
スがとれず物理的に好ましくないという欠点がある。
On the other hand, if a core is not used, stable multilayer inflation film molding cannot be achieved unless the 70-strain line of the bubble is lowered or the blow ratio is lowered. Therefore, if the 70-stripe line of the bubble is lowered in order to stabilize molding, the productivity is lowered, the TD force direction ratio is lowered, and the strength is not balanced, which is physically undesirable.

本発明は従来のこのような欠点を解消して、内層として
低密度ポリエチレンのような溶融時に摩擦抵抗が大きい
樹脂を用いた積層フィルムであっても、内層として高密
度ポリエチレンを用い、かつ中芯を使用したと同様の7
0ストライン高さおよびブロー比の成形ができ、しかも
mj単な設備で、かつ容易に運転制御しうる多層インフ
レーションフィルムの成形方法を提供することを目的と
するものである。
The present invention solves these conventional drawbacks, and even if the laminated film uses a resin with high frictional resistance when melted, such as low-density polyethylene, as the inner layer, high-density polyethylene is used as the inner layer, and the center core is 7 similar to using
It is an object of the present invention to provide a method for molding a multilayer blown film that can be molded with zero strain height and blow ratio, using simple equipment, and whose operation can be easily controlled.

すなわち、本発明は少なくとも二層からなる積層フィル
ムを、環状ダイの環状スリットから押出して溶融樹脂筒
状体とし、その後膨張させ環状ダイの外側のエアーリン
グによシ外周から冷却して多層インフレーションフィル
ムを成形する方法において、内層として溶融時に摩擦抵
抗が大きい樹脂を用い、その外層に高密度ポリエチレン
樹脂を用いるとともに、前記溶融樹脂筒状体を、下端部
に吸気手段を有し、かつエアーリングの開口部と該溶融
樹脂筒状体を囲繞するように設けられた整流筒内を通す
ことによシ冷却するようにしたこと全特徴とする多層イ
ンフレーションフィルムの成形方法を提供するものであ
る。
That is, in the present invention, a laminated film consisting of at least two layers is extruded through an annular slit of an annular die to form a molten resin cylinder, and then expanded and cooled from the outer periphery by an air ring on the outside of the annular die to form a multilayer blown film. In this method, a resin having high frictional resistance when melted is used as the inner layer, a high-density polyethylene resin is used as the outer layer, and the molten resin cylindrical body has an air intake means at the lower end and an air ring. The present invention provides a method for forming a multilayer blown film, characterized in that the molten resin tube is cooled by passing through a rectifying tube provided to surround the molten resin tube.

本発明の方法においては内層として溶融時に摩擦抵抗が
大きい樹脂を用いることができる。このような樹脂とし
ては低密度ポリエチレン系樹脂やポリプロピレン系樹脂
を挙げることができる。ここで低密度ポリエチレン系樹
脂としては密度が0900〜n94oy/dのものであ
って、メルトインデックス(M工)が05〜101iL
7/10分のものが用いられる。このような低密度ポリ
エチレン系樹脂としては、エチレンの単独重合体をはじ
め、エチレンと他のα−オレフィンとの共重合体、たと
えばエチレン−プロピレン共重合体、エチレン−4−メ
チルペンテン−1共重合体などがあり、直鎮状低密度ポ
リエチレン(LLDPI)を含むものである。さらには
エチレン−酢酸ビニル共重合体。
In the method of the present invention, a resin having high frictional resistance when melted can be used as the inner layer. Examples of such resins include low density polyethylene resins and polypropylene resins. Here, the low density polyethylene resin has a density of 0900 to n94 oy/d and a melt index (M engineering) of 05 to 101 iL.
7/10 minutes is used. Such low-density polyethylene resins include ethylene homopolymers, copolymers of ethylene and other α-olefins, such as ethylene-propylene copolymers, and ethylene-4-methylpentene-1 copolymers. These include straight-line low-density polyethylene (LLDPI). Furthermore, ethylene-vinyl acetate copolymer.

エチレン−アクリル酸共重合体などのエチレンー不飽和
エステル共重合体等やこれらの混合物を挙げることがで
きる。なお、ここで共重合体中においてエチレンと共重
合する成分、すなわちα−オレフィンや不飽和1エステ
ルの含有量は1〜60モル%、好ましくは1〜20モル
%の範囲で定めるべきである。
Examples include ethylene-unsaturated ester copolymers such as ethylene-acrylic acid copolymers, and mixtures thereof. Note that the content of components copolymerized with ethylene in the copolymer, ie, α-olefin and unsaturated monoester, should be determined in the range of 1 to 60 mol%, preferably 1 to 20 mol%.

また、ポリプロピレン系樹脂としては密度が(188〜
αq2ti−/cdtのものであって、メルトインデッ
クス(M工)が1〜20 f710分のものが用いられ
る。このようなポリプロピレン系樹脂としてはプロピレ
ンの単独重合体をはじめ、プロピレンと他のα−オレフ
ィンなどとのランダムまたはブロック共重合体などがあ
る。
In addition, as a polypropylene resin, the density is (188~
A material having αq2ti-/cdt and a melt index (M engineering) of 1 to 20 f710 is used. Such polypropylene resins include propylene homopolymers, random or block copolymers of propylene and other α-olefins, and the like.

次に本発明の方法において上記内層の外層には高密度ポ
リエチレン系樹脂を用いる。このような高密度ポリエチ
レン系樹脂としては密度がCL940〜o、 q 70
 g−/crdOものが用いられ、エチレンの単独重合
体はもちろんのこと、エチレンと他のα−オレフィンと
の共重合体(α−オレフィン単位含量10モル%以下)
、たとえばエチレン−プロピレン共重合体、エチレン−
ブテン−1共重合体などやこれらの混合物を用いること
ができる。また、必要によりゴム類や他のオレフィン重
合体を遠足添加することもできる。
Next, in the method of the present invention, a high-density polyethylene resin is used for the outer layer of the inner layer. Such high-density polyethylene resin has a density of CL940~o, q 70
g-/crdO is used, and not only ethylene homopolymers but also copolymers of ethylene and other α-olefins (α-olefin unit content 10 mol% or less) are used.
, such as ethylene-propylene copolymer, ethylene-
Butene-1 copolymers and mixtures thereof can be used. Additionally, rubbers and other olefin polymers can be added as needed.

本発明の方法においては上記外層の外側にさらに他の層
(第二外層など)を積層して三層以上の多層フィルムと
することもできる。このような樹脂として内層の樹脂と
同様の低密度ポリエチレン系樹脂を用いることKよシ、
フィルムの透明性を向上さぜることができる。また、ゲ
リプロピレン。
In the method of the present invention, another layer (such as a second outer layer) may be further laminated on the outside of the above-mentioned outer layer to form a multilayer film having three or more layers. As such a resin, a low density polyethylene resin similar to that of the inner layer should be used.
The transparency of the film can be improved. Also, gellipropylene.

ポリアミド、エチレレー酢酸ビニル共重合体やそのケン
化物等を用いることもできる。
Polyamide, ethylene vinyl acetate copolymer, saponified products thereof, etc. can also be used.

本発明の方法は第1図のように、少なくとも二層からな
る積層溶融樹脂1を、押出機の環状ダイ2の環状スリッ
ト6から押出して溶融樹脂筒状体4とし、その後膨張さ
せ環状ダイ2の外側に設けられているエアーリング5に
より外周から冷却しテ多層インフレーションフィルム6
を成形スルニ際し、内・外層フィルムとして上記各種の
樹脂を用いるとともに、前記溶融樹脂筒状体4を、下端
部に吸気手段7を有し、かつエアーリング5の開口部8
と溶融樹脂筒状体4を囲繞するように設けられた整流筒
9内を通すことにより冷却するようにしたことを特徴と
するものである。
As shown in FIG. 1, the method of the present invention is to extrude a laminated molten resin 1 consisting of at least two layers through an annular slit 6 of an annular die 2 of an extruder to form a molten resin cylindrical body 4, and then expand the annular die 2. The multilayer blown film 6 is cooled from the outer periphery by an air ring 5 provided on the outside of the multilayer blown film 6.
When molding, the above-mentioned various resins are used as the inner and outer layer films, and the molten resin cylindrical body 4 has an air intake means 7 at the lower end and an opening 8 of the air ring 5.
The molten resin cylindrical body 4 is cooled by passing through a rectifying tube 9 provided to surround the molten resin cylindrical body 4.

すなわち、押出機の環状ダイ2の環状スリット3から押
出されて溶融樹脂筒状体4とされ、その後空気を吹き込
まれて膨張させられるとともに、環状ダイ2の外側に設
けられているエアーリング5から吠き出される冷却風に
よって外周から冷却されて多層インフレーションフィル
ム6とされるが、その際に整流筒9を設けた装置を使用
することが本発明の特徴である。
That is, the molten resin is extruded from the annular slit 3 of the annular die 2 of the extruder to form a molten resin cylinder 4, and then air is blown into it to expand it. The multilayer blown film 6 is cooled from the outer periphery by the cooling air that is blown out, and a feature of the present invention is that a device provided with a rectifying cylinder 9 is used at this time.

本発明の方法に使用する整流筒9は溶融樹脂筒状体4と
工゛アーリング5の開口部8を完全に囲繞するように設
けておくことが必要である。また該整流筒の下端部には
吸気手段7が設けられている。
The rectifying cylinder 9 used in the method of the present invention must be provided so as to completely surround the molten resin cylinder 4 and the opening 8 of the bore ring 5. Further, an air intake means 7 is provided at the lower end of the rectifier cylinder.

本実施例においては吸気手段7として整流筒9に任意形
状の孔を穿って空気取入孔としたものを示している。こ
の吸気手段7は整流筒内部がベンチュリー効果によって
減圧されるのを有効に防止するものであシ、減圧される
程度によって適宜複数個所に設けておくことができ、た
とえば空気取入孔の大きさが5陥φの場合、50〜5(
10個所に設けておくことが好ましい。
In this embodiment, as the air intake means 7, a hole of an arbitrary shape is bored in the rectifier tube 9 to serve as an air intake hole. This air intake means 7 effectively prevents the inside of the rectifying cylinder from being depressurized due to the Venturi effect, and can be provided at multiple locations as appropriate depending on the degree of depressurization. For example, depending on the size of the air intake hole, is 5 holes φ, 50~5(
It is preferable to provide 10 locations.

また、整流筒の形状は筒状のものであれは特に制限はな
いが通常円筒状のものが用いられる。整流筒の大きさは
ダイ径をDとした場合、径が1.5〜!1.OXDであ
って、高さが2〜8XD、好ましくは3〜6XDである
。整流筒の材質については特に制限はない。
Further, the shape of the rectifying cylinder is not particularly limited as long as it is cylindrical, but a cylindrical one is usually used. The size of the rectifying cylinder is 1.5~, where D is the die diameter! 1. OXD, with a height of 2-8XD, preferably 3-6XD. There are no particular restrictions on the material of the rectifier tube.

溶融樹脂筒状体はこのような整流筒9内を通ることによ
り冷却され、その後該筒状体内部に封入された空気で膨
張させられ、多層インフレーションフィルムが成形され
る。
The molten resin cylinder is cooled by passing through the rectifying cylinder 9, and then expanded by the air sealed inside the cylinder to form a multilayer blown film.

なお、押出温度(成形ダイ温度)は通常170〜210
℃であシ、積層フィルムの厚みは10〜200μ、好ま
しくは20〜120μとし、内・外層の厚みの比は内層
/外層=5〜50/95〜50、好ましくは15〜3 
o/a 5〜7oとする。またブロー比は通常4〜5で
ある。
Note that the extrusion temperature (molding die temperature) is usually 170 to 210
℃, the thickness of the laminated film is 10 to 200μ, preferably 20 to 120μ, and the ratio of the inner and outer layer thickness is inner layer / outer layer = 5 to 50 / 95 to 50, preferably 15 to 3
o/a 5-7o. Moreover, the blow ratio is usually 4 to 5.

このような構成からなる本発明の多層インフレーション
フィルムの成形方法によれば、内層として低密度ホ゛リ
エチレンのような溶融時に摩擦抵抗の大きな樹脂を用い
た積層フィルムであっても、高密度ポリエチレンを用い
、かつ中芯を使用し7たと同様の70ストライン高さお
よびブロー比の成形が可能である。したがって、得られ
るフィルムの強度が高く、しかも方向性が少なく、均一
なフィルムを得ることができる。
According to the method for molding a multilayer blown film of the present invention having such a configuration, even if the inner layer is a laminated film using a resin that has high frictional resistance when melted, such as low density polyethylene, high density polyethylene can be used as the inner layer. In addition, molding with a 70-strain height and blow ratio similar to that of 7 is possible using a core. Therefore, the resulting film has high strength, has little directionality, and is uniform.

しかも本発明の方法によれば、従来の方法のように複雑
な装置を用いることなく簡単な設備で多層インフレーシ
ョンフィルムを成形することができる。しかもグイ径の
小さなものをはじめ、各種、サイズのフィルムを高ブロ
ー比で成形することができる大きな特徴がある。したが
って、設備費。
Moreover, according to the method of the present invention, a multilayer blown film can be formed using simple equipment without using complicated equipment unlike conventional methods. Moreover, it has the great feature of being able to form films of various sizes, including those with a small gooey diameter, at a high blow ratio. Hence, equipment costs.

運転経費が少なくてすみ、省エネルギーを図ることがで
きる。
Operating costs are low and energy can be saved.

さらに、冷却制御など運転制御が容易であって、成形安
定性にすぐれており高速成形が可能であるなどの実用上
の効果を有する。
Furthermore, it has practical effects such as easy operation control such as cooling control, excellent molding stability, and high-speed molding.

以下、本発明の方法を実施例により説明する。The method of the present invention will be explained below using examples.

実施例1,2 内層が低密度ポリエチレン(密度o、 q 20 y−
/d。
Examples 1 and 2 The inner layer is made of low density polyethylene (density o, q 20 y-
/d.

M工=!Loy/1o分)、外層が高密度ポリエチレン
(密度(1955i/Cfft9M1 =αo5y/I
o分)、外層の外側の第二外層が低密度ポリエチレン(
密度a92ofi−/d+Mニーxoy71o分)から
なり、内層/外層/第二外層の層の厚みの比が2 / 
(S / 2の層厚40μの多層インフレーションフィ
ルムを下記条件で成形した。
M engineering=! Loy/1o min), the outer layer is high-density polyethylene (density (1955i/Cfft9M1 = αo5y/I
o minutes), and the second outer layer on the outside of the outer layer is made of low-density polyethylene (
density a92ofi-/d+M knee xoy71o), and the layer thickness ratio of inner layer/outer layer/second outer layer is 2/
(A multilayer inflation film of S/2 with a layer thickness of 40 μm was molded under the following conditions.

それぞれの樹脂を押出機よシダイ径75wφ。Each resin was extruded using an extruder with a diameter of 75 wφ.

グイリップ1 m 、ダイ温度180°Cで押出し膨張
させてフィルムを成形した。この際第1図に示すように
、エアーリングの開口部と溶融樹脂筒状体を囲繞するよ
うに径165rtva、高さ550欄の整流筒を設けた
ものを使用した。なお、この整流筒の下端部には3馴−
の吸気孔を200個穿設しておいた。
The film was formed by extrusion and expansion at 1 m of Glylip and a die temperature of 180°C. At this time, as shown in FIG. 1, a rectifying cylinder having a diameter of 165 rtva and a height of 550 mm was used so as to surround the opening of the air ring and the molten resin cylinder. Note that there are 3 fittings at the bottom end of this rectifying cylinder.
200 intake holes were drilled.

得られたフィルムの成形性と強度の評価結果を第1表に
示す。
Table 1 shows the evaluation results of the moldability and strength of the obtained film.

比較例1 実施例1において、整流筒の代わりに、高密度ポリエチ
レンの成形方法に通常用いられている中芯(安定体)を
用いて成形したところ、溶融樹脂が中芯に付着しフィル
ムの成形ができなかった。
Comparative Example 1 In Example 1, when molding was performed using a core (stabilizer) commonly used in high-density polyethylene molding methods instead of the rectifying tube, the molten resin adhered to the core and the film formation was interrupted. I couldn't do it.

比較例2 実施例1において、整流筒を用いず、ダイ上部に樹脂押
出方向に第1の吐出スリットおよびその上部に樹脂押出
方向外側に約20度の方向に第2の吐出スリットを有す
る150+++mplの二重スリットエアーリングを用
いて成形し多層インフレーションフィルムを得た。得ら
れたフィルムの成形性と強度の評価結果を第1表に示す
Comparative Example 2 In Example 1, a 150+++ mpl sample was prepared in which the straightening tube was not used, and the die had a first discharge slit in the resin extrusion direction and a second discharge slit in the upper part thereof in a direction approximately 20 degrees outward in the resin extrusion direction. A multilayer blown film was obtained by molding using a double slit air ring. Table 1 shows the evaluation results of the moldability and strength of the obtained film.

第  1  表 −z  、TIS”Z 1702に準拠◆2 フィルム
インパクト法(フィルムをリング状に固定し、1インチ
の衝撃頭をもつ振子でフィルムを打抜き、それに要した
エネルギーを測定した。)(東洋精機製作所製フィルム
インパクトテスター使用)
Table 1-z, based on TIS"Z 1702 ◆2 Film impact method (The film was fixed in a ring shape, the film was punched out with a pendulum with a 1-inch impact head, and the energy required was measured.) (Using Seiki Seisakusho film impact tester)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多層インフレーションフィルムの
成形方法に用いる成形装置の要部断面図である。 1・・・積層溶融樹脂、 2・・・環状ダイ。 6・・・環状スリット、 4・・・溶融樹脂筒状体。 5・・・エアーリング、  6・−・多層インフレーシ
ョンフィルム、  7・・・吸気手段、  8・・・エ
アーリングの開口部、  9・・・整流筒 特許出願人 出光石油化学株式会社
FIG. 1 is a sectional view of essential parts of a molding apparatus used in the method for molding a multilayer blown film according to the present invention. 1... Laminated molten resin, 2... Annular die. 6... Annular slit, 4... Molten resin cylindrical body. 5... Air ring, 6... Multilayer blown film, 7... Intake means, 8... Air ring opening, 9... Rectifier tube patent applicant Idemitsu Petrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  少なくとも二層からなる積層フィルムを、環
状ダイの環状スリットから押出して溶融樹脂筒状体とし
、その後膨張させ環状ダイの外側のエアーリングによシ
外周から冷却して多層インフレーションフィルムを成形
する方法において、内層として溶融時に摩擦抵抗が大き
い樹脂を用い、その外層に高密度ポリエチレン樹脂を用
いるとともに、前記溶融樹脂筒状体を、下端部に吸気手
段を有し、かつエアーリングの開口部と該溶融樹脂筒状
体を囲繞するように設けられた整流筒内を通すことによ
り冷却するようにしたことを%11[とする多層インフ
レーションフィルムの成形方法。
(1) A laminated film consisting of at least two layers is extruded through the annular slit of an annular die to form a molten resin cylinder, and then expanded and cooled from the outer periphery by an air ring on the outside of the annular die to form a multilayer blown film. In this method, a resin having high frictional resistance when melted is used as the inner layer, a high-density polyethylene resin is used as the outer layer, and the molten resin cylindrical body has an air intake means at the lower end and an opening of the air ring. A method for forming a multilayer blown film, wherein the molten resin cylinder is cooled by passing it through a rectifying cylinder provided so as to surround it.
(2)  溶融時に摩擦抵抗が大きい樹脂が低密度ポリ
エチレン系樹脂またはポリプロピレン系樹脂である特許
請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the resin having high frictional resistance when melted is a low-density polyethylene resin or a polypropylene resin.
JP57220166A 1982-12-17 1982-12-17 Formation of multi-layered inflation film Granted JPS59111819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220166A JPS59111819A (en) 1982-12-17 1982-12-17 Formation of multi-layered inflation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220166A JPS59111819A (en) 1982-12-17 1982-12-17 Formation of multi-layered inflation film

Publications (2)

Publication Number Publication Date
JPS59111819A true JPS59111819A (en) 1984-06-28
JPH0121781B2 JPH0121781B2 (en) 1989-04-24

Family

ID=16746916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220166A Granted JPS59111819A (en) 1982-12-17 1982-12-17 Formation of multi-layered inflation film

Country Status (1)

Country Link
JP (1) JPS59111819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544098A2 (en) * 1991-11-27 1993-06-02 Mitsubishi Chemical Corporation Polyolefin-based wrapping film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167417A (en) * 1980-05-30 1981-12-23 Nippon Yunikaa Kk Method and apparatus for forming plastic film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167417A (en) * 1980-05-30 1981-12-23 Nippon Yunikaa Kk Method and apparatus for forming plastic film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544098A2 (en) * 1991-11-27 1993-06-02 Mitsubishi Chemical Corporation Polyolefin-based wrapping film

Also Published As

Publication number Publication date
JPH0121781B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
US4169910A (en) Multilayer film including polyolefin layers and a polybutylene layer useful for the production of bags
US4100237A (en) Co-extrusion of ABS/polystyrene multiple-layered sheeting
DE2821257C2 (en) Method of extrusion blow molding a multilayer bottle
US4279957A (en) Laminated film or sheet structure and process for production thereof
US3595735A (en) Blown tubular films
KR20120058503A (en) Expanded polypropylene resin beads and expanded bead molding
US5882782A (en) Separable foamed thermoplastic resin laminate sheet, process for producing the same, and formings produced therefrom
JP6170765B2 (en) Method for producing polyolefin resin foam molding with skin
JPS59111819A (en) Formation of multi-layered inflation film
US3218224A (en) Laminates of olefin polymer films
JP2001348454A (en) Thermoplastic resin sheet and container
JP6038479B2 (en) Polypropylene resin in-mold foam molding
US4076568A (en) Process for the preparation of a multilayer film
JP3791766B2 (en) Method for producing hollow foam molded body and hollow foam molded body
JP2001219466A (en) Inflation film, sealant film for retort made up of inflation film and method for forming inflation film
WO1980000936A1 (en) A process for producing plastic foils with increased surface friction
JPS6050130B2 (en) Manufacturing method of laminated sheet
JPS5916721A (en) Blown film former
JP3448757B2 (en) Laminated polystyrene resin foam container
JPS6049911A (en) Formation of inflation film
JPS62106937A (en) Polyolefin resin composition for foam
JP2001018283A (en) Production of hollow foamed blow molded object
JP2001113654A (en) Multilayered polyolefin foamed sheet
JPH07112480A (en) Resin molded product having foam
JP2697101B2 (en) Multilayer container