JPS59111815A - Thermal decomposition of thermoplastics - Google Patents

Thermal decomposition of thermoplastics

Info

Publication number
JPS59111815A
JPS59111815A JP57221614A JP22161482A JPS59111815A JP S59111815 A JPS59111815 A JP S59111815A JP 57221614 A JP57221614 A JP 57221614A JP 22161482 A JP22161482 A JP 22161482A JP S59111815 A JPS59111815 A JP S59111815A
Authority
JP
Japan
Prior art keywords
particles
gas
thermoplastics
thermal decomposition
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221614A
Other languages
Japanese (ja)
Inventor
Terukatsu Miyauchi
宮内 照勝
Yoneichi Ikeda
米一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Standard Research Inc
Original Assignee
Fuji Standard Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Standard Research Inc filed Critical Fuji Standard Research Inc
Priority to JP57221614A priority Critical patent/JPS59111815A/en
Publication of JPS59111815A publication Critical patent/JPS59111815A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • C10B49/20Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form
    • C10B49/22Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form according to the "fluidised bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/065Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts containing impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To thermally decompose thermoplatics stably and effectively without causing any slugging phenomenon by contacting the thermoplastics with a fluidized layer consisting of heated specific solid particles. CONSTITUTION:Heat-resistant porous spherical substances, having a fine pore volume of 0.2-1.5cm<2>1g, a specific surface area of 5-1,500m<2>/g, a bulk density of 0.3-1.5g/cm<3>, and a weight average diameter of 0.025-0.5mm., (e.g., fine porous alumina particles by a particle circulation method, silica-alumina catalyst for fluidized catalytic decomposition by internal heating method, etc.) are used solid perticles for forming a fluidized layer. As a gas for fluidization in the thermal decomposition process, a gas containing oxygen in an amount anough to only a part of thermoplastics to be treated is preferably used. The thermal decomposition can be more effectively performed by a particle circulation method.

Description

【発明の詳細な説明】 発明の背景 技術分野 本発明は、熱可塑性プラスチックを固体粒子の流動層内
で熱分解する方法に関する。さらに具体的には、本発明
は、使用する固体粒子の性状に特徴を有する熱分解法に
関する。
BACKGROUND OF THE INVENTION TECHNICAL FIELD This invention relates to a method for pyrolyzing thermoplastics in a fluidized bed of solid particles. More specifically, the invention relates to a pyrolysis process characterized by the properties of the solid particles used.

熱可塑性プラスチックが大量に使用されるようになって
から、その廃物の処理も重要な問題となっている。
Since large quantities of thermoplastics have been used, the disposal of their waste has also become an important issue.

熱可塑性プラスチックの処理法としてはこれを熱分解す
る方法が提案されており、そのうちでも加熱された固体
粒子の流動層内でこの熱分解を行なう方法は下記の利点
によって有力な手段となっている。
A method of thermally decomposing thermoplastics has been proposed as a method for processing thermoplastics, and among these methods, the method of thermally decomposing in a fluidized bed of heated solid particles is an effective method due to the following advantages: .

(イ)原料を予じめ溶融させる必要がない。(a) There is no need to melt the raw materials in advance.

(ロ)分解速度が大きい。(b) Decomposition rate is high.

(/つ運転操作が容易である。(Easy to drive/operate.

に)大型化が比較的容易である。) It is relatively easy to increase the size.

しかし、これまでの流動層法では流動粒子として粒径や
嵩密度が大きくて非多孔質の砂や熱分解によって生成す
るコークス等が用いられており、均一な流動状態の形成
や溶融物による粒子の粘着の防止などに関して特別な工
夫がなされていなかった。その結果、下記のような欠点
が避けられ彦かった。
However, in the conventional fluidized bed method, non-porous sand with large particle size and bulk density, coke generated by thermal decomposition, etc., have been used as fluidized particles, and it is difficult to form a uniform fluid state or to form particles by melting. No special measures were taken to prevent the adhesive from sticking. As a result, the following drawbacks were avoided.

(r)熱分解すべき熱可塑性プラスチックの層内滞留時
間が短かくならざるを得す、その結果、熱分解が不十分
となって、ワックス状物が生成する。
(r) The residence time of the thermoplastic to be thermally decomposed in the layer must be shortened, resulting in insufficient thermal decomposition and the formation of wax-like substances.

(ロ)低温では粒子の粘着が起って、流動化が不可能と
なり易い。
(b) At low temperatures, particles tend to stick together, making fluidization impossible.

(ハ)高温では熱分解がよく進行して流動性の油が多く
生成するけれども、ガスの発生も多くなる。
(c) At high temperatures, thermal decomposition progresses well and a large amount of fluid oil is produced, but a large amount of gas is also generated.

発明の概要 要旨 本発明は上記の点に解決を与えることを目的とし、流動
粒子として特定の性状のものを使用することによってこ
の目的を達成しようとするものである。
SUMMARY OF THE INVENTION The present invention aims to provide a solution to the above-mentioned problems, and attempts to achieve this aim by using fluidized particles with specific properties.

従って、本発明による熱可塑性プラスチックの熱分解法
は、熱可塑性プラスチックを加熱された固体粒子の流動
層に接触させて熱分解する方法において、該固体粒子が
下記の性質を有する耐熱性多孔質体の球状物であること
、を特徴とするものである。
Therefore, the method of pyrolyzing thermoplastics according to the present invention is a method of pyrolyzing thermoplastics by bringing them into contact with a fluidized bed of heated solid particles, in which the solid particles form a heat-resistant porous body having the following properties. It is characterized by being a spherical object.

細孔容積       0.2〜1.5cm/g比表面
積       5〜1500m /g嵩密度    
    0.3〜1.5g/cm3重量平均径    
  0.025〜0 、5mmまた、本発明によるもう
一つの熱可塑性プラスチックの熱分解法は、熱可塑性プ
ラスチックを加熱された固体粒子の流動層に接触させて
熱分解することからなる熱分解工程とこの工程からの該
固体粒子を流動状態で加熱して耐着可燃物をガス化する
ことからなる再生工程とを両工程間に該固体粒子を循環
させながら実施する方法において、該固体粒子が下記の
性質を有する耐熱性多孔質体の球状物であること、を特
徴とするものである。
Pore volume 0.2-1.5cm/g Specific surface area 5-1500m/g Bulk density
0.3-1.5g/cm3 weight average diameter
0.025 to 0.5mm Another method of pyrolyzing thermoplastics according to the present invention includes a pyrolysis step in which thermoplastics are brought into contact with a heated fluidized bed of solid particles and pyrolyzed. In a method in which a regeneration step consisting of heating the solid particles from this step in a fluidized state to gasify the deposit-resistant combustible material is carried out while circulating the solid particles between both steps, the solid particles are as follows: It is characterized by being a spherical heat-resistant porous material having the following properties.

細孔容積       0.2−1 、5cm /g比
表面積       5〜1500m 1g嵩密度  
      0.3〜1.5g/cm3重量平均径  
    0.025〜0.5mm効果 本発明で使用する流動粒子は、その細孔容積および比表
面積が上記の通りであることによって細孔径が10〜5
000オングストロームという微細な細孔が多数存在す
るものであるので、熱分解温度で液状となった熱可塑性
プラスチックは表面張力によって細孔内に速やかに吸蔵
される。流動層内の粒子には任意の滞留時間を与えるこ
とができるから、従って溶融熱可塑性プラスチックを該
粒子に吸蔵させて流動層内に長時間保持して熱分解反応
を十分に進行させることができる。
Pore volume 0.2-1, 5cm/g Specific surface area 5-1500m 1g bulk density
0.3-1.5g/cm3 weight average diameter
0.025 to 0.5 mm effect The fluidized particles used in the present invention have a pore size of 10 to 5 mm because their pore volume and specific surface area are as described above.
Since there are many fine pores of 1,000 angstroms in diameter, the thermoplastic plastic, which becomes liquid at the thermal decomposition temperature, is quickly absorbed into the pores by surface tension. Since the particles in the fluidized bed can be given an arbitrary residence time, the molten thermoplastic can be occluded by the particles and retained in the fluidized bed for a long time to allow the thermal decomposition reaction to proceed sufficiently. .

溶融熱可塑性プラスチックが粒子細孔内に吸蔵されるこ
とによって、液状となったプラスチックは細孔内に留ま
って粒子表面を濡らすことがなく、従って粒子の粘着に
よる流動状態の悪化も生じない。
Since the molten thermoplastic plastic is occluded within the pores of the particles, the liquefied plastic remains within the pores and does not wet the surface of the particles, thus preventing deterioration of the fluid state due to adhesion of the particles.

本発明で使用する流動粒子は前記の重量平均径および嵩
密度の規定から明らかなように微細かつ軽量の球状物で
あるので、このような粒子は低粘度の液体のように流動
性がよくて輸送などの取扱いが容易であるばかりでなく
、極めて均一な流動状態を示すので、粒子と流動化ガス
と十分に接触するうえに流動層はスラッギング現象など
を起すことがないから、流動層の運転操作が極めて容易
である。本発明がこのような微細軽量粒子使用による利
点を十分に享受しえていることは、この粒子が多孔質体
であるということと密接な関係があるというべきである
。何故ならば、微細軽量粒子は、その表面を濡らす液体
によって粘着し易いからである。
The fluidized particles used in the present invention are fine and lightweight spherical objects, as is clear from the above-mentioned weight-average diameter and bulk density specifications, so such particles have good fluidity like a low-viscosity liquid. Not only is it easy to transport and handle, but it exhibits an extremely uniform fluidized state, allowing sufficient contact between the particles and the fluidizing gas, and the fluidized bed does not cause slagging phenomena, making it easy to operate the fluidized bed. Extremely easy to operate. The fact that the present invention can fully enjoy the advantages of using such fine and lightweight particles is closely related to the fact that these particles are porous. This is because fine, lightweight particles tend to stick to liquids that wet their surfaces.

基本工程 本発明による熱可塑性プラスチックの熱分解法は、この
プラスチックを加熱された固体粒子の流動層に接触させ
ることからなる。前記のように、この基本工程自身は公
知である。
Basic Steps The process for pyrolysis of thermoplastics according to the invention consists in contacting the plastic with a fluidized bed of heated solid particles. As mentioned above, this basic process itself is known.

流動状態にある加熱された固体粒子を熱源とする有機物
質の熱分解の場合には該粒子にはコーク等の可燃物が耐
着するが、その除去を目的として熱分解工程からの粒子
を流動状態で加熱して耐着可燃物をガス化除去すること
からなる再生工程も一般に公知であるが、本発明でもこ
の再生工程を熱分解工程との間に粒子を循環させながら
実施することができる。
In the case of thermal decomposition of organic substances using heated solid particles in a fluidized state as a heat source, combustible substances such as coke adhere to the particles, but in order to remove them, the particles from the thermal decomposition process are fluidized. A regeneration process consisting of gasifying and removing adhesion-resistant combustible materials by heating in a heated state is also generally known, but in the present invention, this regeneration process can also be carried out while circulating particles between the pyrolysis process and the pyrolysis process. .

熱分解工程での生成物は、主として、常温で油状物、ガ
ス状物および残渣である。それらの組成や生成割合は原
料プラスチックの種類によって異なる。ポリエチレンや
ポリプロピレンなどの炭素、水素のみからなるプラスチ
ックを原料とする場合には、油状物は発熱量が約950
0 kcal/kgの炭化水素油である。ガス状物はそ
れぞれエチレン、プロピレンが主成分である。たソし、
流動化ガスとして水蒸気以外に分子状酸素含有ガスを併
用する場合には、油状物が少量の酸素含有化合物を含み
、ガス状物が一酸化炭素、炭酸ガス等を含む。また、ポ
リメタクリル酸やポリ塩化ビニール等の炭素、水素以外
の元素を含むプラスチックを原料とする場合には、炭化
水素類とともに炭素、水素以外の元素を含む油状物およ
びガス状物となる。
The products of the pyrolysis process are mainly oils, gases and residues at room temperature. Their composition and generation rate vary depending on the type of raw plastic. When plastics such as polyethylene and polypropylene are made from carbon and hydrogen, the calorific value of the oil is approximately 950.
It is a hydrocarbon oil of 0 kcal/kg. The main components of the gaseous substances are ethylene and propylene, respectively. Tasoshi,
When a molecular oxygen-containing gas is used in addition to water vapor as the fluidizing gas, the oily substance contains a small amount of an oxygen-containing compound, and the gaseous substance contains carbon monoxide, carbon dioxide, and the like. Furthermore, when plastics containing elements other than carbon and hydrogen, such as polymethacrylic acid and polyvinyl chloride, are used as raw materials, oily and gaseous substances containing elements other than carbon and hydrogen are produced along with hydrocarbons.

残渣は、炭素を主成分とし、その他に微量の水素等を含
んでいる。流動化ガスとして水蒸気を用いた場合には、
残渣の大部分が流動粒子の細孔内に保持されている。流
動化ガスとして分子状酸素含有ガスを併用する場合には
、燃焼やガス化反応によって残漬の一部または全部が炭
酸ガスや一酸化炭素等のガス状物となる。
The residue is mainly composed of carbon and also contains trace amounts of hydrogen and the like. When water vapor is used as the fluidizing gas,
Most of the residue is retained within the pores of the fluidized particles. When a molecular oxygen-containing gas is used as the fluidizing gas, part or all of the residue becomes gaseous substances such as carbon dioxide and carbon monoxide due to combustion and gasification reactions.

再生工程での生成物は、前述した流動粒子中の残渣が燃
焼やガス化された炭酸ガスや一酸化炭素を含むガス状で
あり、そのほかに窒素や水、水素等が含まれることがあ
る。
The product in the regeneration step is a gas containing carbon dioxide gas and carbon monoxide, which are obtained by burning or gasifying the residue in the fluidized particles described above, and may also contain nitrogen, water, hydrogen, etc.

熱可塑性プラスチック 本発明で熱分解の対象とする熱可塑性プラスチックは、
熱分解温度において液状となる任意のものでありうる。
Thermoplastics The thermoplastics targeted for thermal decomposition in the present invention are:
It can be anything that becomes liquid at the pyrolysis temperature.

熱可塑性プラスチックには、加熱されたときに対応モノ
マーに分解されるものがあるが、そのようなものも本発
明で対象とする熱可塑性プラスチックの範囲に入るもの
とする。
Some thermoplastics are decomposed into corresponding monomers when heated, and such plastics also fall within the scope of the thermoplastics targeted by the present invention.

このような熱可塑性プラスチックの具体例を挙げれば、
たとえば、ポリエチレン、ポリプロピレン、ポリスチレ
ン、ポリメタクリル酸エステル、ポリ塩化ビニル、ポリ
アミr1 ポリエチレンテレフタレートその他がある。
Specific examples of such thermoplastics include:
Examples include polyethylene, polypropylene, polystyrene, polymethacrylate, polyvinyl chloride, polyamino polyethylene terephthalate, and others.

これらは、廃物となった各種成形品の形であっても、重
合ないし成形時に発生した不良品であっても、よい。
These may be in the form of various molded products that have become waste, or may be defective products generated during polymerization or molding.

熱分解工程に導入するときは、これらプラスチックはで
きるだけ均一な粒状物の形となっていることが好ましい
When introduced into the pyrolysis process, these plastics are preferably in the form of granules that are as uniform as possible.

固体粒子 本発明で使用する流動層用粒子は、下記の性質を有する
耐熱性多孔質体の球状物である。
Solid Particles The fluidized bed particles used in the present invention are heat-resistant porous spherical particles having the following properties.

(イ)細孔容積      0.2〜1.5cm 7g
好ましくは0.3〜1.2cm 7g (ロ)比表面積      5〜1500m 7g好ま
しくは10〜1000m /g 0→嵩密度       0 、3−1 、5g/cm
2好ましくは0・4〜1・3g/cm2 に)重量平均径     0.025−0.5mm好ま
しくは 0.03〜0.25mm ここで「耐熱性」というのは、これらの性質が使用温度
において少なくとも運転期間中(好ましくは、1ケ月以
上)安定に保たれることを意味する。また、「球状物」
とは、個々の粒子に若干の凹凸があっても全体として外
観がはソ球形であり、しかも全粒子中の約90重量%以
上がそのような粒子で占められていることを意味する。
(a) Pore volume 0.2-1.5cm 7g
Preferably 0.3-1.2cm 7g (b) Specific surface area 5-1500m 7g Preferably 10-1000m /g 0→Bulk density 0, 3-1, 5g/cm
(preferably 0.4 to 1.3 g/cm2) Weight average diameter 0.025 to 0.5 mm, preferably 0.03 to 0.25 mm Here, "heat resistance" means that these properties are This means that it remains stable at least during the operating period (preferably for one month or more). Also, "spherical objects"
This means that even if the individual particles have slight irregularities, the overall appearance is spherical, and moreover, such particles account for about 90% by weight or more of the total particles.

このような諸要件を満たす粒子の具体例を挙げれば、灯
軽油の接触分解用のシリカ−アルミナ系流動触媒、ゼオ
ライト系流動触媒、流動触媒の担体として用いられてい
るアルミナ質微小球状粒子、廃ガスや廃水処理などに用
いられている微小球状粒子、などがある。これらは耐熱
性に関して必ずしも同一ではないから、使用温度の高低
に応じて最適なものを選ぶべきである(詳細後記)。
Specific examples of particles that meet these requirements include silica-alumina fluidized catalysts for catalytic cracking of kerosene, zeolite fluidized catalysts, alumina microspherical particles used as carriers for fluidized catalysts, and waste materials. Microscopic spherical particles used in gas and wastewater treatment, etc. Since these are not necessarily the same in terms of heat resistance, the most suitable one should be selected depending on the operating temperature (details will be described later).

実施例 本発明の実施態様の例を第1図および第2図に示す。第
1図は、熱可塑性プラスチックの熱分解工程と熱分解に
よって流動化粒子に耐着して幼る可燃物を燃焼またはガ
ス化する粒子再生工程とを、両工程との間に流動化粒子
を循環させながら実施する方法の例を示すものである。
EXAMPLE An example of an embodiment of the invention is shown in FIGS. 1 and 2. Figure 1 shows the process of thermally decomposing thermoplastic plastics and the particle regeneration process of burning or gasifying combustible materials that adhere to the fluidized particles and become young through thermal decomposition. This shows an example of a method carried out while circulating.

第2図は、単一の流動層によって熱可塑性プラスチック
の熱分解と粒子附着可燃物の燃焼またはガス化とを実漬
所法の例を示すものである。ここでは、前例を「粒子循
環式」、後者を「内熱式」と呼ぶことにする。
FIG. 2 shows an example of the pyrolysis method in which thermal decomposition of thermoplastics and combustion or gasification of combustible particles adhering to the particles are carried out using a single fluidized bed. Here, we will refer to the former as the "particle circulation type" and the latter as the "internal heating type."

従来の実施例はほとんどが内熱式である。それは粒子の
循環が不要であることから、装置が簡単であって運転操
作が容易であるということによる。
Most conventional embodiments are internally heated. This is because the apparatus is simple and easy to operate since no particle circulation is required.

しかしながら、この内熱方式では粒子附着可燃物を燃焼
ないしガス化するための空気などの酸素含有ガス中の構
成成分ガスや燃焼ないしガス化されたガスによって熱可
塑性プラスチックの熱分解によって生成した油状物やガ
ス状物が稀釈されるために、油状物の冷却による回収に
負担がか\す、またガスの発熱量が低下する。さらには
原料プラスチック中に酸素化合物が含まれない場合でも
生成油状物中に有機酸素化合物が含まれて、適当な留分
を分離・回収するなどの必要があるなどの欠点がある。
However, in this internal heating method, the component gases in the oxygen-containing gas such as air to burn or gasify the combustible materials adhering to particles, and the oily substance generated by the thermal decomposition of thermoplastics by the combustion or gasified gas. Since the oil and gaseous substances are diluted, recovery by cooling the oily substances becomes a burden, and the calorific value of the gas decreases. Furthermore, even when oxygen compounds are not contained in the raw material plastic, organic oxygen compounds are contained in the produced oil, and there is a drawback that it is necessary to separate and recover appropriate fractions.

これに対して粒子循環式は、装置が複雑ではあるが、粒
子附着物の燃焼ないしガス化用のガスと熱可塑性プラス
チックの熱分解による生成物とが分けられているので、
油状物の冷却が容易であり、生成ガスの発熱量が高くな
り、さらに油状物中に有機酸素化合物が含まれることが
ない。
On the other hand, the particle circulation type has a complicated device, but the gas for combustion or gasification of particle adhesion is separated from the products of thermal decomposition of thermoplastics.
The oil can be easily cooled, the generated gas has a high calorific value, and the oil does not contain organic oxygen compounds.

本発明の方法は、内熱式に適用することによっても、従
来法にない多くの利点が生ずる。即ち、本発明流動層は
極めて均一な流動状態を示すことから、不安定なスラッ
ギング現象などを起すことがないので、運転操作が極め
て容易であり、また溶融性可燃物が粒子の細孔内に長時
間保持され、流動層高を犬にすることによって熱分解物
と粒子の接触時間が増大できることから、粒子の粘着に
よる流動悪化などを起すことがなく一1熱分解反応を十
分に進行させることができる。さらには粒子の摩砕や装
置の摩耗によるトラブルを起すことがほとんどない。
Even when applied internally, the method of the present invention provides many advantages over conventional methods. In other words, the fluidized bed of the present invention exhibits an extremely uniform fluid state and does not cause unstable slagging phenomena, making operation extremely easy and preventing molten combustibles from entering the pores of the particles. By holding the fluid for a long time and increasing the height of the fluidized bed, the contact time between the pyrolyzed product and the particles can be increased, so the 11 pyrolysis reaction can proceed sufficiently without causing deterioration of fluidity due to adhesion of particles. I can do it. Furthermore, troubles due to particle abrasion and device wear rarely occur.

しかし々がら、本発明の方法は、粒子循環式に適用する
ことによって一層の効果が得られる。従来の砂などの比
較的粗大な重い粒子を用いた場合には、粒子の流動性が
、悪くて粒子循環のための移動や輸送が困難であるうえ
、装置の摩耗などの故障を起し易い。これに対して、本
発明の方法では粒子の流動性がよいために、上記のよう
な困難や故障などを起すことがなく、運転操作もきわめ
て容易であり、さらに前述した内熱式に適用した場合の
利点が加わるからである。
However, the method of the present invention can be more effective when applied to a particle circulation method. When relatively coarse and heavy particles such as conventional sand are used, the particles have poor fluidity and are difficult to move and transport for particle circulation, and are prone to equipment failures such as wear. . On the other hand, since the method of the present invention has good particle fluidity, it does not cause the above-mentioned difficulties and failures, and is extremely easy to operate. This is because the advantage of the case is added.

さて、第1図において、1が熱可塑性プラスチックを熱
分解するための流動層反応塔(熱分解塔)であり、原料
プラスチックは2のホラ・ξ−よりスクリウフィーダー
3によってたとえば、図示のように塔上部から流動層内
に供給される。塔底からは管路4を通って流動用ガスと
して水蒸気含有ガスすなわち純水蒸気または水蒸気とN
2またはCO2、N2などの不活性または非酸化性ガス
との混合物が送入される。熱分解工程での流動用ガスは
、分子状酸素含有ガスでもよい。そのようなガスとして
は、原料プラスチックの一部分しか燃焼させない量の分
子状酸素を含有するものが好ましい。
Now, in Fig. 1, numeral 1 is a fluidized bed reaction tower (pyrolysis tower) for thermally decomposing thermoplastic plastics, and the raw material plastic is fed through a screw feeder 3 from the hole ξ- of 2, for example, as shown in the figure. is fed into the fluidized bed from the top of the column. From the bottom of the tower, a water vapor-containing gas, that is, pure water vapor or water vapor and N
2 or a mixture with an inert or non-oxidizing gas such as CO2, N2, etc. The fluidizing gas in the pyrolysis step may be a molecular oxygen-containing gas. Such a gas preferably contains molecular oxygen in an amount that causes only a portion of the raw plastic to be combusted.

分解塔の上部は拡大されていて、そこに内股されたサイ
クロンによってガス中の同伴粒子が分離されて流動層に
戻される。
The upper part of the cracking tower is enlarged, and a cyclone installed inside the tower separates entrained particles from the gas and returns them to the fluidized bed.

熱分解温度は溶融性可燃物の種類によっても異なるが、
約300〜500℃である。流動化ガスの速度は、空塔
基準で通常、約10〜100cm/秒である。
Thermal decomposition temperature varies depending on the type of meltable combustible material, but
The temperature is approximately 300-500°C. The velocity of the fluidizing gas is typically about 10-100 cm/sec based on the sky column.

原料プラスチックは、通常数mm以下に粉砕したものを
送入する。
The raw material plastic is usually pulverized into pieces of several millimeters or less.

熱分解による生成物は管路6を通り、冷却器7で常温ま
たはそれ以下まで冷却されて、受器8の油状物(分解油
)と管路9のガス状物(分解ガス)とに分けられる。
The products of thermal decomposition pass through a pipe 6, are cooled to room temperature or lower in a cooler 7, and are separated into an oily substance (cracking oil) in a receiver 8 and a gaseous substance (cracking gas) in a pipe 9. It will be done.

粒子は分解塔の底部の管路10から排出され、エゼクタ
−11に到り、水蒸気12によって管路13を通り、粒
子耐着可燃物を燃焼ガス化するための流動層反応塔(再
生塔)14へと輸送される。
The particles are discharged from the pipe 10 at the bottom of the decomposition tower, reach the ejector 11, and pass through the pipe 13 with water vapor 12 to a fluidized bed reaction tower (regeneration tower) for burning and gasifying the particle-resistant combustibles. Transported to 14.

再生塔の底部の管路15からは分子状酸素含有ガス、す
なわち空気もしくは純酸素捷たは両者の混合物あるいは
これらに水蒸気を加えたもの、あるいは水蒸気または水
蒸気含有の非酸化性ガスJ送入される。再生塔の上部は
拡大されていて、そこに内股されたサイクロン16によ
って、同伴子イ央粒子を分離されたガス(再生ガス)が
管路17を経て系外に排出される。再生塔内で粒子附着
物が除かれて加熱昇温された粒子は、管路18を経て分
解塔へと捩される。
A molecular oxygen-containing gas, i.e., air or pure oxygen, a mixture of both, or a mixture thereof with water vapor, or water vapor or a non-oxidizing gas containing water vapor is fed from the pipe 15 at the bottom of the regeneration tower. Ru. The upper part of the regeneration tower is enlarged, and a gas (regeneration gas) from which entrained particles are separated by a cyclone 16 installed therein is discharged to the outside of the system through a pipe 17. The particles that have been heated and heated in the regeneration tower are twisted to the decomposition tower through a pipe 18.

再生温度は、粒子附着物の燃焼ないしガス化を十分に進
め、さらに熱分解に必要な熱を供給する目的から定めら
れる。通常は、約650〜850℃である。再生塔の流
動化ガスの空塔速度は通常的10〜100cm/秒であ
る。
The regeneration temperature is determined for the purpose of sufficiently promoting combustion or gasification of particle adhering particles and further supplying the heat necessary for thermal decomposition. Usually it is about 650-850°C. The superficial velocity of the fluidizing gas in the regeneration tower is typically 10 to 100 cm/sec.

再生塔内の流動層の寥反応雰囲気を再生ガス中にC01
H2、CH4などの可燃性ガスをほとんど含まないいわ
ゆる燃焼またはそれに近い状態とするか、あるいは再生
ガス中に上記可燃性ガスを多く含むいわゆるガス化反応
状態とするかは、再生温度、流動層高、酸素含有ガス量
その他の条件によって適宜調節することができる。
The original reaction atmosphere of the fluidized bed in the regeneration tower is mixed with C01 into the regeneration gas.
The regeneration temperature, fluidized bed height, and , the amount of oxygen-containing gas, and other conditions.

一方、第2図の実施態様では1′が原料プラスチックの
熱分解と粒子附着物の燃焼ないしガス化とを同時に進行
させるための流動層反応塔である。
On the other hand, in the embodiment shown in FIG. 2, reference numeral 1' is a fluidized bed reaction tower for simultaneously proceeding with the thermal decomposition of raw plastic and the combustion or gasification of particle adhering particles.

2は原料プラスチックのホッパー、3ばそのスクリュウ
フィーダーである。塔底の管路4からは流動用ガスとし
て分子状酸素含有ガスが送入される。
2 is a hopper for raw plastic, and 3 is a screw feeder. A molecular oxygen-containing gas is fed as a fluidizing gas from a pipe 4 at the bottom of the tower.

このガスは通常は空気であるが、純酸素あるいは空気な
いし純酸素と水、蒸気、CO2などとの混合物であって
もよい。なお、流動用ガス中の分子状酸素は、原料プラ
スチックが燃焼するために、必要な理論量よりも少なく
送入することが望ましい。
This gas is usually air, but may also be pure oxygen or a mixture of air or pure oxygen with water, steam, CO2, etc. Note that it is desirable to feed less molecular oxygen in the fluidizing gas than the required theoretical amount in order to cause the raw material plastic to burn.

このようにして生成した熱分解物および燃焼ないしガス
化ガスは、塔頂の拡大部に内股されたサイクロン5によ
って同伴した粒子を分離されたのち、管路6を経て、第
1図と同様な冷却器および受器などに導かれて油状物や
ガス状物に分離される。流動層の温度は、この方法では
熱分解と同時に燃焼ガス化反応を進行させる必要がある
ので、前例よりや\高い約400〜600℃が必要であ
る。また、流動化ガスの空塔速度は約10〜100cm
/秒が適当である。
The thermal decomposition products and combustion or gasification gas thus generated are separated from the entrained particles by a cyclone 5 housed in the enlarged section at the top of the tower, and then passed through a pipe 6 in a similar manner to that shown in Fig. 1. It is led to a cooler and receiver, where it is separated into oily and gaseous substances. In this method, the temperature of the fluidized bed needs to be about 400 to 600°C, which is higher than in the previous example, since it is necessary to advance the combustion gasification reaction simultaneously with thermal decomposition. In addition, the superficial velocity of the fluidizing gas is approximately 10 to 100 cm.
/second is appropriate.

粒子循環式では再生工程の温度が約650〜850℃程
度の高温となるので、熱的に安定なアルミナ質、炭素質
などの粒子が好適である。内熱式では使用温度は約40
0〜600℃程度であるので、前粒子よりは熱的に不安
定な灯軽油の流動接触分解用のシリカ・アルミナ触媒や
ゼオライト触媒などが使用できる。
In the particle circulation type, the temperature in the regeneration step is as high as about 650 to 850°C, so thermally stable particles of alumina, carbon, etc. are preferable. The operating temperature for internal heating type is approximately 40℃.
Since the temperature is about 0 to 600°C, silica/alumina catalysts or zeolite catalysts for fluid catalytic cracking of kerosene and gas oil, which are thermally unstable than the previous particles, can be used.

実施例 添附第1図と同様な装置を用いた。熱分解塔は内径5.
4cm、有効高さ約2mのステンレス鋼管であって、塔
頂が内、径10.6cmに拡大されている。
An apparatus similar to that shown in FIG. 1 attached to the Example was used. The pyrolysis tower has an inner diameter of 5.
It is a stainless steel tube with a diameter of 4 cm and an effective height of approximately 2 m, with the top of the column expanded to an inner diameter of 10.6 cm.

原料供給口は流動層上部に、再生塔からの戻り粒子の入
口は流動層の約中間部に、それぞれ設置されている。再
生塔は内径5.4cm、塔頂拡大部10.6cmであり
、有効高さが約1mである。
The raw material supply port is located at the top of the fluidized bed, and the inlet for return particles from the regeneration tower is located approximately in the middle of the fluidized bed. The regeneration tower has an inner diameter of 5.4 cm, an enlarged top section of 10.6 cm, and an effective height of about 1 m.

流動化粒子として流動触媒担体用の微粉球状のアルミナ
多孔質体を4リツトル充填した。
Four liters of alumina porous material in the form of fine powder and spheres for use as a fluidized catalyst carrier was filled as fluidized particles.

流動化粒子の性状は、次の通りである。The properties of the fluidized particles are as follows.

細孔容積 0.70cm3/g 、比表面積 300m
27g嵩密度  0 、42g/am3、重量平均径0
.060mm原料プラスチックとしては、大きさが約2
〜3mmのポリエチレンの廃ペレットを6oog/時で
熱分解塔に供給した。このとき、塔底から約400℃に
予熱した水蒸気を250g/時間で供給し、流動層温度
は450℃に維持した。
Pore volume 0.70cm3/g, specific surface area 300m
27g bulk density 0, 42g/am3, weight average diameter 0
.. As a 060mm raw plastic, the size is approximately 2
~3 mm polyethylene waste pellets were fed to the pyrolysis tower at 6 oog/hour. At this time, steam preheated to about 400°C was supplied from the bottom of the column at a rate of 250 g/hour, and the fluidized bed temperature was maintained at 450°C.

また再生塔には常温空気を21ONIJットル/時送入
し、流動層温度を800°Cに維持した。
In addition, room temperature air was fed into the regeneration tower at 21 ONIJ liter/hour to maintain the fluidized bed temperature at 800°C.

分解塔と再生塔の間の粒子循環量は、約2.5リットル
/時とした。熱分解物は水およびドライアイスを用いて
約o ’c tで冷却して、分解油と分解ガスとにわけ
た。
The particle circulation rate between the cracking tower and the regeneration tower was approximately 2.5 liters/hour. The pyrolysis product was cooled at about o'ct using water and dry ice and separated into cracked oil and cracked gas.

以上のよう々条件で長時間安定に熱分解が行なわれ、運
転継続時間が約5時間以上においては、次のようなはソ
一定した結果が得られた(ポリエチレンg当りの価を示
す)。
Thermal decomposition was carried out stably for a long time under the above conditions, and when the operation was continued for about 5 hours or more, the following constant results were obtained (value per gram of polyethylene).

分解油収率      91 g/g l 比重      0.872 分解ガス量      44Ncm /g組成 Co21vo1% C2H614〃 C2H429I ”3H814g C3H621〃 再生ガス量      35ONcm /g組成 Co217vo1% Co    3.、r O□   2〃 N27’8#Cracking oil yield 91 g/g l Specific gravity 0.872 Decomposition gas amount 44Ncm/g composition Co21vo1% C2H614〃 C2H429I ”3H814g C3H621〃 Regeneration gas amount 35ONcm/g composition Co217vo1% Co 3. , r O□  〃〃 N27’8#

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は、本発明方法の二つの実施態様を例示する
フローシートである。 1・・・熱分解塔、1′・・・熱分解/再生塔、2・・
・原料プラスチックホラ・ξ−14・・・流動用ガス供
給管路、13.17・・・粒子循環管路、14・・・再
生塔。
1-2 are flow sheets illustrating two embodiments of the method of the present invention. 1... Pyrolysis tower, 1'... Pyrolysis/regeneration tower, 2...
- Raw material plastic hole - ξ-14... Gas supply pipe for fluidization, 13.17... Particle circulation pipe, 14... Regeneration tower.

Claims (1)

【特許請求の範囲】 1、熱可塑性プラスチックを加熱された固体粒子の流動
層に接触させて熱分解する方法におりで、該固体粒子が
下記の性質を有する耐熱性多孔質体の球状物であること
を特徴とする、熱可塑性プラスチックの熱分解法。 細孔容積      0 、2−1 、50m /g比
表面積      5〜1500m /g嵩密度   
    0.3〜1.5g/cm3重量平均径    
 0 、025−0 、5mm2、熱分解工程での流動
化ガスが、該熱可塑性プラスチックの一部分しか燃焼さ
せない量の分子量酸素を含有するものである、特許請求
の範囲第1項記載の方法。 3、熱可塑性プラスチックを加熱された固体粒子の流動
層に接触させて熱分解することからなる熱分解工程とこ
の工程からの該固体粒子を流動状態で加熱して耐着可燃
物をガス化することからなる再生工程とを両工程間に該
固体粒子を循環させながら実施する方法において、該固
体粒子が下記の性質を有する耐熱性多孔質体の球状物で
あることを特徴とする、熱可塑性プラスチックの熱分解
法。 細孔容積      0.2〜1.5cm/g比表面積
      5”−1500m /g嵩密度     
  0.3〜1 、5 g/cm3重量平均径    
 0 、025−0 、5mm4、熱分解工程での流動
化ガスが水蒸気−含有ガスであり、再生工程での流動化
ガスが分子状酸素含有ガスである、特許請求の範囲第3
項に記載の方法。 5、熱分解工程での流動化ガスが、該熱可塑性プラスチ
ックの一部分しか燃焼させない量の分子状酸素を含有す
るものである、特許請求の範囲第3項に記載の方法。
[Claims] 1. A method of thermally decomposing a thermoplastic plastic by bringing it into contact with a fluidized bed of heated solid particles, wherein the solid particles are spherical heat-resistant porous bodies having the following properties. A method for pyrolyzing thermoplastics, characterized by: Pore volume 0, 2-1, 50m/g Specific surface area 5-1500m/g Bulk density
0.3-1.5g/cm3 weight average diameter
2. The method according to claim 1, wherein the fluidizing gas in the pyrolysis step contains an amount of molecular oxygen that causes only a portion of the thermoplastic to be combusted. 3. A thermal decomposition process consisting of bringing the thermoplastic plastic into contact with a fluidized bed of heated solid particles to thermally decompose it, and heating the solid particles from this process in a fluidized state to gasify the adhesion-resistant combustibles. A method of carrying out a regeneration step consisting of Pyrolysis of plastics. Pore volume 0.2-1.5cm/g Specific surface area 5”-1500m/g Bulk density
0.3~1,5 g/cm3 weight average diameter
0, 025-0, 5mm4, the fluidizing gas in the pyrolysis step is a water vapor-containing gas, and the fluidizing gas in the regeneration step is a molecular oxygen-containing gas, Claim 3
The method described in section. 5. The method according to claim 3, wherein the fluidizing gas in the pyrolysis step contains molecular oxygen in an amount that causes only a portion of the thermoplastic to be combusted.
JP57221614A 1982-12-17 1982-12-17 Thermal decomposition of thermoplastics Pending JPS59111815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221614A JPS59111815A (en) 1982-12-17 1982-12-17 Thermal decomposition of thermoplastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221614A JPS59111815A (en) 1982-12-17 1982-12-17 Thermal decomposition of thermoplastics

Publications (1)

Publication Number Publication Date
JPS59111815A true JPS59111815A (en) 1984-06-28

Family

ID=16769506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221614A Pending JPS59111815A (en) 1982-12-17 1982-12-17 Thermal decomposition of thermoplastics

Country Status (1)

Country Link
JP (1) JPS59111815A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302504A (en) * 1989-05-16 1990-12-14 Ube Ind Ltd Fluidized-bed combustion equipment
JPH0641547A (en) * 1992-04-22 1994-02-15 Bp Chem Internatl Ltd Cracking of polymer
EP0649827A1 (en) * 1993-10-21 1995-04-26 BASF Aktiengesellschaft Process for the recovery of styrene from used polystyrene
WO1996004116A1 (en) * 1994-08-05 1996-02-15 Nippo Ltd. Method of decomposing waste plastics and apparatus therefor
JP2007056124A (en) * 2005-08-24 2007-03-08 Mitsubishi Rayon Co Ltd Apparatus for degrading resin and method for degradation
JP2007154059A (en) * 2005-12-06 2007-06-21 Hiroshi Onodera Method and apparatus for liquefying waste plastic
WO2008108461A1 (en) 2007-03-07 2008-09-12 Mitsubishi Rayon Co., Ltd. Method of recovering resin decomposition product
JP2008214320A (en) * 2007-03-07 2008-09-18 Mitsubishi Rayon Co Ltd Method for recovering methyl methacrylate
JP2013504651A (en) * 2009-09-09 2013-02-07 ユニバーシティ オブ マサチューセッツ Systems and processes for catalytic pyrolysis of biomass and hydrocarbon feedstocks for the production of aromatics with optional olefin recycle, and catalysts having selected particle sizes for catalytic pyrolysis
WO2022090613A1 (en) * 2020-10-26 2022-05-05 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for producing hydrocarbon product and use
EP4151702A1 (en) * 2021-09-17 2023-03-22 Alpha Trading S.p.A. Method for the continuous heat treatment of a feed material stream comprising at least a polymeric material fraction and plant for carrying out said method
CN116409781A (en) * 2023-03-21 2023-07-11 重庆科技学院 Process and device for preparing hydrogen-rich gas and carbon nano tube by PVC catalytic pyrolysis
WO2024042190A1 (en) * 2022-08-25 2024-02-29 Basell Poliolefine Italia S.R.L. Catalytic oxidative depolymerization process and catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895478A (en) * 1972-03-23 1973-12-07
JPS4932979A (en) * 1972-07-25 1974-03-26
JPS502076A (en) * 1973-05-07 1975-01-10
JPS5060578A (en) * 1973-09-28 1975-05-24
JPS5149279A (en) * 1974-10-25 1976-04-28 Japan Gasoline Haipurasuchitsuku no ryudokanetsubunkaishorihoho
JPS5214743A (en) * 1976-03-26 1977-02-03 Chemetron Corp Production of toluene sulphonic acid derivatives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895478A (en) * 1972-03-23 1973-12-07
JPS4932979A (en) * 1972-07-25 1974-03-26
JPS502076A (en) * 1973-05-07 1975-01-10
JPS5060578A (en) * 1973-09-28 1975-05-24
JPS5149279A (en) * 1974-10-25 1976-04-28 Japan Gasoline Haipurasuchitsuku no ryudokanetsubunkaishorihoho
JPS5214743A (en) * 1976-03-26 1977-02-03 Chemetron Corp Production of toluene sulphonic acid derivatives

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302504A (en) * 1989-05-16 1990-12-14 Ube Ind Ltd Fluidized-bed combustion equipment
JPH0641547A (en) * 1992-04-22 1994-02-15 Bp Chem Internatl Ltd Cracking of polymer
EP0649827A1 (en) * 1993-10-21 1995-04-26 BASF Aktiengesellschaft Process for the recovery of styrene from used polystyrene
WO1996004116A1 (en) * 1994-08-05 1996-02-15 Nippo Ltd. Method of decomposing waste plastics and apparatus therefor
JP2007056124A (en) * 2005-08-24 2007-03-08 Mitsubishi Rayon Co Ltd Apparatus for degrading resin and method for degradation
JP2007154059A (en) * 2005-12-06 2007-06-21 Hiroshi Onodera Method and apparatus for liquefying waste plastic
WO2008108461A1 (en) 2007-03-07 2008-09-12 Mitsubishi Rayon Co., Ltd. Method of recovering resin decomposition product
JP2008214320A (en) * 2007-03-07 2008-09-18 Mitsubishi Rayon Co Ltd Method for recovering methyl methacrylate
US8304573B2 (en) 2007-03-07 2012-11-06 Mitsubishi Rayon Co., Ltd. Recovery method of pyrolysis product of resin
JP2013504651A (en) * 2009-09-09 2013-02-07 ユニバーシティ オブ マサチューセッツ Systems and processes for catalytic pyrolysis of biomass and hydrocarbon feedstocks for the production of aromatics with optional olefin recycle, and catalysts having selected particle sizes for catalytic pyrolysis
WO2022090613A1 (en) * 2020-10-26 2022-05-05 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for producing hydrocarbon product and use
EP4151702A1 (en) * 2021-09-17 2023-03-22 Alpha Trading S.p.A. Method for the continuous heat treatment of a feed material stream comprising at least a polymeric material fraction and plant for carrying out said method
WO2024042190A1 (en) * 2022-08-25 2024-02-29 Basell Poliolefine Italia S.R.L. Catalytic oxidative depolymerization process and catalyst
CN116409781A (en) * 2023-03-21 2023-07-11 重庆科技学院 Process and device for preparing hydrogen-rich gas and carbon nano tube by PVC catalytic pyrolysis

Similar Documents

Publication Publication Date Title
USRE21526E (en) Process of producing chemical
TWI488958B (en) Two stage entrained gasification systems and process
US4069024A (en) Two-stage gasification system
AU2012311411B2 (en) Chemical looping combustion method with removal of ash and fines in the reduction area, and a facility using such a method
US2884303A (en) High temperature burning of particulate carbonaceous solids
US2683657A (en) Gasification of carbonaceous solids
JPS59111815A (en) Thermal decomposition of thermoplastics
JPS5940500B2 (en) Method for gasifying solid carbonaceous materials
US3840353A (en) Process for gasifying granulated carbonaceous fuel
JPS61200196A (en) Thermal cracking of heavy oil
DE3262589D1 (en) Process for convertions carbo-metallic oils to lighter products
US3988237A (en) Integrated coal hydrocarbonization and gasification of char
US3320152A (en) Fluid coking of tar sands
US3932146A (en) Process for the fluid bed gasification of agglomerating coals
US3847566A (en) Fluidized bed gasification process with reduction of fines entrainment by utilizing a separate transfer line burner stage
JPS60248793A (en) Thermal decomposition of heavy oil
CA1120722A (en) Prevention of defluidization in the treatment of caking carbonaceous solids
JP2008063185A (en) Method for producing synthesis gas
US2554264A (en) Process for treating hydrocarbon synthesis tail gas
JP2660469B2 (en) Pyrolysis method of coal
WO2022182474A1 (en) Direct biochar cooling gas methods
WO1980000085A1 (en) Process for producing high calorie gas from coal
Mastellone et al. The crucial role of the process modelling during the design of a bubbling fluidised bed gasifier of plastics
JP2019147872A (en) Thermodecomposition method and thermodecomposition facility of organic substance
JPH072953B2 (en) Gasification method for carbonaceous pits