JPS59111052A - Apparatus for concentrating and introducing liquid specimen - Google Patents

Apparatus for concentrating and introducing liquid specimen

Info

Publication number
JPS59111052A
JPS59111052A JP57221600A JP22160082A JPS59111052A JP S59111052 A JPS59111052 A JP S59111052A JP 57221600 A JP57221600 A JP 57221600A JP 22160082 A JP22160082 A JP 22160082A JP S59111052 A JPS59111052 A JP S59111052A
Authority
JP
Japan
Prior art keywords
specimen
sample
ion source
introducing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221600A
Other languages
Japanese (ja)
Inventor
Tetsuo Higuchi
哲夫 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57221600A priority Critical patent/JPS59111052A/en
Publication of JPS59111052A publication Critical patent/JPS59111052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To raise measuring sensitivity, by a method wherein a liquid specimen after freezing is transferred under high vacuum to perform freeze drying and the conc. material is introduced into an ion source. CONSTITUTION:A liquid specimen which is cooled by passing a cooling medium such as liquid nitrogen through a cooling pipe 6 and flowed out from an LC column is introduced into a specimen introducing pipe 5 from a specimen effluent pipe 4, the solvent thereof is frozen to be formed into minute ice like crystals and the frozen specimen is extruded onto the introducing belt 8 in a high vacuum region 3 from an opening part to be subjected to freeze drying. The specimen on the introducing belt 8 is melted by an infraed lamp 13 prior to perfectly drying to be converted to a predetermined conc. solution which is in turn introduced into an ion source 2 while receives a matrix such as glycerine added from an introducing pipe 15 and the specimen as the target is irradiated with neutron beam 20 in an ionization part 19 by supplying repeller voltage to obtain ion beam 22. The non-ionized specimen and glycerine are scraped off by a scraper 16 and recovered in a waste specimen sump 18 as drain. By this system, sensitivity can be raised.

Description

【発明の詳細な説明】 この発明は液体クロマトグラフから流出する液体試料を
濃縮しイオン源に導入する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for concentrating a liquid sample flowing out of a liquid chromatograph and introducing it into an ion source.

液体クロマトグラフから流出する液体試料を質量分析装
置のイオン源に導入するだめの接続部であるLC−MS
インターフェースとして、従来よりベルト式、噴霧式等
のものが提案されているが、通常の高速液体クロマトグ
ラフ(HPLC)の流量は0.05−0.5 mlV/
min程度でかなシ多いため、スプリッターを用いて分
流し、一部を質量分析装置に導入しているにすぎない。
LC-MS is a connection part that introduces the liquid sample flowing out of the liquid chromatograph into the ion source of the mass spectrometer.
Belt type, spray type, etc. have been proposed as interfaces, but the flow rate of a typical high performance liquid chromatograph (HPLC) is 0.05-0.5 mlV/
Since there are many cases where the flow rate is around 100 min, a splitter is used to split the flow and only a portion is introduced into the mass spectrometer.

このため、ガスクロマトグラフの試料導入装置である(
) L −M Sインターフェースに比べて、導入部分
におけるロスが非常に犬きく、測定感度を低くするとい
う問題があった。またマイクロカラムを用いたLC−M
Sインターフェースも試料注入量が少ないため、その検
出限界を下げることは期待できない。
For this reason, the gas chromatograph sample introduction device (
) Compared to the L-MS interface, there was a problem in that the loss in the introduction part was very large, lowering the measurement sensitivity. In addition, LC-M using a microcolumn
Since the amount of sample injected into the S interface is also small, it cannot be expected to lower its detection limit.

この発明は上記のような従来のものの問題点を改善する
ためのもので、液体試料を凍結乾燥し、濃縮された状態
でイオン源に導入することにより、多量の試料を利用し
、感度を飛躍的に上昇させることができる液体試料濃縮
導入装置を提供することを目的としている。
This invention is intended to improve the problems of the conventional methods described above. By freeze-drying a liquid sample and introducing it into the ion source in a concentrated state, a large amount of sample can be used and sensitivity can be dramatically increased. The purpose of the present invention is to provide a liquid sample concentration/introduction device that can raise the concentration of a liquid sample.

この発明は液体クロマトグラフから流出する液体試料を
濃縮しイオン源に導入する装置において、前記液体試料
を凍結させる手段と、凍結された試料を高真空中で移送
して凍結乾燥を行い、濃縮された月料を前記イオン源に
導入する手段とを備えたことを特徴とする液体試料濃縮
導入装置である。
This invention provides an apparatus for concentrating a liquid sample flowing out of a liquid chromatograph and introducing it into an ion source. and a means for introducing a monthly charge into the ion source.

以下、この発明を図示実施例によシ説明する。The present invention will be explained below with reference to illustrated embodiments.

第1図はこの発明の一実施例による液体試料濃縮導入装
置を示す垂直断面図で、L C−F A、 Bインター
フェースに適用した例を示す。
FIG. 1 is a vertical cross-sectional view showing a liquid sample concentration and introduction device according to an embodiment of the present invention, and shows an example in which the device is applied to an L C-F A, B interface.

図面において、1はLCカラム、2はイオン源で、両者
の間に高真空領域6が介在している。
In the drawing, 1 is an LC column, 2 is an ion source, and a high vacuum region 6 is interposed between the two.

LCカラム1はHPLC用のもので、その試料流出管4
に試料導入管5が接続している。試料導入管5は摩擦抵
抗が小さく、高圧の絶縁体としても機能する材質、例え
ばテフロンなどにより成形されており、拡大する先端部
が高真空領域6内に挿入され、その挿入部分の外周に冷
却管6が巻きつけられている。
LC column 1 is for HPLC, and its sample outlet tube 4
A sample introduction tube 5 is connected to. The sample introduction tube 5 is made of a material that has low frictional resistance and also functions as a high-voltage insulator, such as Teflon, and its expanding tip is inserted into the high vacuum region 6, and the outer periphery of the inserted portion is cooled. A tube 6 is wrapped around it.

高真空領域6は真空排気管7により高真空系に接続して
10−5〜10−6Torr程度の高真空に維持されて
おり、その内部には試料導入管5の開口端からイオン源
2へ試料を移送するように導入ベルト8が無端状に設け
られている。9は駆動ゾーリ、1o、iiはジーりであ
る。
The high vacuum region 6 is connected to a high vacuum system through a vacuum exhaust pipe 7 and maintained at a high vacuum of about 10-5 to 10-6 Torr. An endless introduction belt 8 is provided to transfer the sample. 9 is a driving gear, and 1o and ii are gears.

導入ベルト8の往路の末端近くには温度遮へい板12を
介して赤外線ランプ16が配置されて電源装置14に接
続され、さらに前方にはマトリックス導入管15が設け
られている。また導入ベルト8の帰路にはゴム製のメク
レーパ16が当接しその下端にはコック17を介して廃
試料留18が開口している。
An infrared lamp 16 is arranged near the end of the outgoing path of the introduction belt 8 and connected to a power supply device 14 via a temperature shielding plate 12, and a matrix introduction pipe 15 is provided further forward. Further, a rubber mecraper 16 is in contact with the return path of the introduction belt 8, and a waste sample reservoir 18 is opened at its lower end via a cock 17.

イオン源2はF A B (Fast Atom Bo
mbardmentイオン源であシ、内部は10−6〜
10−7Torr の高真空に維持され、導入ベルト8
のイオン化部19に中性粒子ビーム20を照射するよう
にFAB用ガン21を備え、またイオン化部19に対向
してイオンビーム22の方向に順次第1電極26、第2
電極24、接地電極25、デフレクタ−26およびトー
タルイオンモニター27を備えている。
The ion source 2 is F A B (Fast Atom Bo
mbardment ion source, internal is 10-6 ~
The introduction belt 8 is maintained at a high vacuum of 10-7 Torr.
A FAB gun 21 is provided to irradiate the ionization section 19 with a neutral particle beam 20, and a first electrode 26, a second electrode 26 and a second
It includes an electrode 24, a ground electrode 25, a deflector 26, and a total ion monitor 27.

Aけりはラー電圧供給部を示す。The mark A indicates the error voltage supply section.

以上の構成において、冷却管6内に液体窒素等の冷媒を
通して冷却するとともに、LCカラム1からHP T、
 ’Cの場合100 ky/crlの圧力で流出する液
体試料を、試料流出管4から試料導入管5に導入すると
、液体試料中の溶媒は凍結し、微細な氷状結晶となる。
In the above configuration, a refrigerant such as liquid nitrogen is passed through the cooling pipe 6 for cooling, and the HP T,
In the case of 'C, when a liquid sample flowing out at a pressure of 100 ky/crl is introduced from the sample outflow tube 4 to the sample introduction tube 5, the solvent in the liquid sample freezes and becomes fine ice crystals.

試料導入管5の拡大する開口部から高真空領域6内の導
入ベルト8上に連続的に押出された凍結試料は導入ベル
ト8により朱印B方向に移動する間に、高真空下に凍結
乾燥される。
The frozen sample that is continuously pushed out from the expanding opening of the sample introduction tube 5 onto the introduction belt 8 in the high vacuum area 6 is freeze-dried under high vacuum while being moved by the introduction belt 8 in the direction of red stamp B. Ru.

導入ベルト8上の試料は完全に乾燥される前に、電源装
置14によって光量を可変とされた赤外線ランプ16等
の熱源により氷解して所定の濃縮溶液となシ、マトリッ
クス導入管15からグリセリン等のマ) 11ツクスを
添加されてイオン源2に導入され、イオン化部19に至
る。イオン化部19ではA部にリスラー電圧が供給され
、導入ベルト8上の試料をターゲ゛ットとしてF A、
 B用ガン21から中性粒子ビーム20が照射されて、
イオン化が行われ、イオンビーム22が得られる。イオ
ン化されなかった試料およびグリセリンは導入ベルト8
の帰路においてスクレー・ξ16により掻きとられ、コ
ック17を介して廃試料留18にドレーンとして回収さ
れる。廃試料留18はコック17を介して交換可能とさ
れている。
Before the sample on the introduction belt 8 is completely dried, it is thawed by a heat source such as an infrared lamp 16 whose light intensity is variable by the power supply 14 to form a predetermined concentrated solution. 11x is added and introduced into the ion source 2 and reaches the ionization section 19. In the ionization section 19, Rissler voltage is supplied to section A, and the sample on the introduction belt 8 is targeted to FA,
A neutral particle beam 20 is irradiated from the B gun 21,
Ionization is performed and an ion beam 22 is obtained. The non-ionized sample and glycerin are transferred to the introduction belt 8.
On the return trip, it is scraped off by a scraper ξ16 and collected as a drain into a waste sample reservoir 18 via a cock 17. The waste sample reservoir 18 can be replaced via a cock 17.

第2図は他の実施例を示す一部の垂直断面図で、T、 
C−B I/CIインターフェースに適用した例を示し
、第1図と同一符号は四−寸たは相当部分を示す。この
実施例では基本的には第1図と同様の構成となっている
が、イオン源2はEI(電子衝撃イオン化)およびCI
(化学的イオン化)共用で、導入ベルト8上の凍結試料
は高真空領域6内で完全に凍結乾燥されるようになって
いる。28はレーザー光源で、イオン化部19上の試料
にレーザー光29を照射するように配置されており、。
FIG. 2 is a partial vertical cross-sectional view showing another embodiment;
An example of application to a C-B I/CI interface is shown, and the same reference numerals as in FIG. 1 indicate four dimensions or equivalent parts. This embodiment basically has the same configuration as that in FIG. 1, but the ion source 2 uses EI (electron impact ionization) and CI
(Chemical ionization) The frozen sample on the introduction belt 8 is completely freeze-dried in the high vacuum area 6. Reference numeral 28 denotes a laser light source, which is arranged so as to irradiate the sample on the ionization section 19 with laser light 29.

気化した試料と反応するように反応ガス供給源30から
反応ガスが供給できるようになっている。
A reactive gas can be supplied from a reactive gas supply source 30 to react with the vaporized sample.

また導入ベルト8のイオン化部19に近接して、フィラ
メント61およびエレクトロントラップ32が対向して
配置され、エレクトロンビーム66を照射できるように
なっている。導入ベルト8の帰路にはクリーンアップヒ
ータ34が設けられて、電源装置35に接続している。
Further, a filament 61 and an electron trap 32 are disposed facing each other in the vicinity of the ionization section 19 of the introduction belt 8, so that an electron beam 66 can be irradiated thereon. A clean-up heater 34 is provided on the return path of the introduction belt 8 and is connected to a power supply device 35.

上記の構成において、基本的な操作は第1図と同様に行
われるが、導入ベルト8上の凍結試料は高真空領域乙に
おいて完全に凍結乾燥され、粉末状となってイオン源2
に導入され、イオン化部19に至る。イオン化部19で
は導入ベルト8上の粉末試料に対して、レーザー光源2
8からレーザー光29が照射され、局所的に瞬間加熱さ
れて試料が気化する。
In the above configuration, the basic operation is performed in the same manner as shown in FIG.
and reaches the ionization section 19. In the ionization section 19, a laser light source 2 is applied to the powder sample on the introduction belt 8.
A laser beam 29 is irradiated from 8, and the sample is locally instantaneously heated and vaporized.

EIモードの場合は、反応ガス供給源3oがらの反応ガ
スの、供給は行われず、フィラメント61からエレクト
ロンビーム66が気化した試料に照射されてイオン化さ
れ、イオンビーム22が(Iられる。またCIモードで
は反応ガス供給源60から反応ガスがイオン化部19に
供給されるとともに、エレクトロンビーム66によって
イオン化され、気化した試料はその反応ガスイオンとの
反応によりイオン化され、イオンビーム22が得られる
。イオン化されなかった試料は導入ベルト8の帰路にお
いて、クリーンアップヒータ64により蒸発して除去さ
れる。
In the case of the EI mode, the reactant gas is not supplied from the reactant gas supply source 3o, and the vaporized sample is irradiated with the electron beam 66 from the filament 61 and ionized, and the ion beam 22 is (I). Then, a reactive gas is supplied from the reactive gas supply source 60 to the ionization unit 19, and is ionized by the electron beam 66, and the vaporized sample is ionized by reaction with the reactive gas ions to obtain the ion beam 22. The remaining sample is evaporated and removed by the cleanup heater 64 on the return path of the introduction belt 8.

第6図はさら−に他の実施例を示す一部の垂直断面図で
あり、LC/C/噴霧式Cフィンターフエース用した例
を示している。この実施例では基本的には第1図および
第2図と同様の構成となっているが、第1図の温度遮へ
い板12の位置に温度および真空遮へい板66が設けら
れている。才た導入ベルト8はイオン源2の開口部67
まで伸び、その先端部に100μm程度の開口を有する
噴霧ガスノズル68が開口し、濃縮試料をイオン源2ノ
イオン化室69に噴霧するようになっている。
FIG. 6 is a vertical sectional view of a part of still another embodiment, and shows an example using an LC/C/spray type C fin interface. This embodiment basically has the same construction as in FIGS. 1 and 2, but a temperature and vacuum shield plate 66 is provided at the location of the temperature shield plate 12 in FIG. 1. The long introduction belt 8 is connected to the opening 67 of the ion source 2.
A spray gas nozzle 68 having an opening of about 100 μm opens at its tip, and sprays the concentrated sample into the ionization chamber 69 of the ion source 2.

以上の構成において、基本的な操作は第1図および第2
図と同様に行われるが、凍結試料は完全に凍結乾燥され
る前に、赤外線ランプ16により氷解′して濃縮試料と
なり、噴霧ガスノズル68から噴出するHeガス等の噴
霧ガスにより、イオン化室69内に噴霧されて気化し、
フィラメント31から照射されるエレクトロンビーム6
3によってイオン化され、イオンビーム22が得うれる
In the above configuration, basic operations are as shown in Figures 1 and 2.
The process is carried out in the same manner as shown in the figure, but before the frozen sample is completely freeze-dried, it is thawed using an infrared lamp 16 to become a concentrated sample, and a spray gas such as He gas is ejected from a spray gas nozzle 68 into an ionization chamber 69. is sprayed and vaporized,
Electron beam 6 irradiated from filament 31
3, and an ion beam 22 can be obtained.

なお、上記説明において、液体試料を凍結させる手段と
しては冷却管乙に限らず他の冷却手段によってもよく、
また移送手段も導入ベルト8以外のものであってもよい
。この場合1o−5〜1o−6Torrの真空下で11
nlの水を気化させるのに1゜〜20 min程度必要
なため、このタイムラグを短くできるものが好捷しい。
In addition, in the above explanation, the means for freezing the liquid sample is not limited to the cooling pipe B, but other cooling means may also be used.
Further, the transfer means may also be other than the introduction belt 8. In this case, under a vacuum of 1o-5 to 1o-6 Torr,
Since it takes about 1° to 20 min to vaporize nl of water, something that can shorten this time lag is preferable.

さらに液体試料もHI)]、Cに限らず一般のLCカラ
ムの流出液でもよく、またイオン源も大気圧イオン源(
API)その他のイオン源であってもよい。
In addition, the liquid sample is not limited to HI), it may be the effluent of a general LC column, and the ion source may be an atmospheric pressure ion source (
API) Other ion sources may be used.

以上のとおυ、この発明によれば、インターフェースの
高真空を利用して液体試料を凍結乾燥し、濃縮された状
態でイオン源に導入するように構成したので、試料の全
部を測定に供し、感度を飛躍的に上昇させることができ
るとともに、試料中の熱不安定物質の熱による分解はな
く、寸だ高真空中で濃縮するため、質料分析装置との接
続が容易になるなどの効果が得られる。
According to the present invention, the liquid sample is freeze-dried using the high vacuum of the interface and introduced into the ion source in a concentrated state, so that the entire sample can be subjected to measurement. In addition to dramatically increasing sensitivity, the thermally unstable substances in the sample are not decomposed by heat and are concentrated in a very high vacuum, making it easier to connect to material analysis equipment. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による液体試料濃縮導入装
置を示す垂直断面図、第2図および第3図はそれぞれ別
の実施例を示す一部の垂直断面図である。 各図中、同一符号は同一または和尚部分を示し、1はL
Cカラム、2はイオン源、6は高真空領域、4は試料流
出管、5は試料導入管、6は冷却管、7は真空排気管、
8は導入ベルト、13は赤外線ランプ、16はスクレー
ノξ、18は廃試料留、21はF A、 B用ガン、2
8はレーザー光源、60は反応ガス供給源、61はフィ
ラメント、62はエレクトロントラップ、34はクリー
ンアップヒ−1’、38は噴霧ガスノズルでアル。
FIG. 1 is a vertical sectional view showing a liquid sample concentration and introduction device according to one embodiment of the present invention, and FIGS. 2 and 3 are partial vertical sectional views showing other embodiments. In each figure, the same reference numerals indicate the same or monk parts, and 1 is L.
C column, 2 is an ion source, 6 is a high vacuum region, 4 is a sample outflow tube, 5 is a sample introduction tube, 6 is a cooling tube, 7 is a vacuum exhaust tube,
8 is an introduction belt, 13 is an infrared lamp, 16 is a screener ξ, 18 is a waste sample reservoir, 21 is a gun for FA and B, 2
8 is a laser light source, 60 is a reactive gas supply source, 61 is a filament, 62 is an electron trap, 34 is a clean-up heater 1', and 38 is a spray gas nozzle.

Claims (5)

【特許請求の範囲】[Claims] (1)液体クロマトグラフから流出する液体試料を濃縮
しイオン源に導入する装置において、前記液体試料を凍
結させる手段と、凍結された試料を高真空中で移送して
凍結乾燥を行い、濃縮された試料を前記イオン源に導入
する手段とを備えたことを特徴とする液体試料濃縮導入
装置。
(1) An apparatus for concentrating a liquid sample flowing out of a liquid chromatograph and introducing it into an ion source, which includes a means for freezing the liquid sample, and a means for transferring the frozen sample in a high vacuum to perform freeze-drying and concentrate the sample. A device for concentrating and introducing a liquid sample, comprising means for introducing the sample into the ion source.
(2)凍結乾燥を行う手段は高真空領域に設けられた導
入ベルトである特許請求の範囲第1項記載の液体試料濃
縮導入装置。
(2) The liquid sample concentration/introduction device according to claim 1, wherein the means for freeze-drying is an introduction belt provided in a high vacuum region.
(3)凍結乾燥を行う手段は末端近くに氷解手段を有す
る特許請求の範囲第1項または第2項記載の液体試料濃
縮導入装置。
(3) The liquid sample concentration/introduction device according to claim 1 or 2, wherein the freeze-drying means includes ice-thawing means near the end.
(4)液体クロマトグラフは高速液体クロマトグラフで
ある特許請求の範囲第1項ないし第6項のいずれかに記
載の液体試料濃縮導入装置。
(4) The liquid sample concentration/introduction device according to any one of claims 1 to 6, wherein the liquid chromatograph is a high-performance liquid chromatograph.
(5)イオン源はFAB、EI、CI、噴霧式または大
気圧イオン源である特許請求の範囲第1項ないし第4項
のいずれかに記載の液体試料濃縮導入装置。
(5) The liquid sample concentration and introduction device according to any one of claims 1 to 4, wherein the ion source is FAB, EI, CI, spray type, or atmospheric pressure ion source.
JP57221600A 1982-12-17 1982-12-17 Apparatus for concentrating and introducing liquid specimen Pending JPS59111052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221600A JPS59111052A (en) 1982-12-17 1982-12-17 Apparatus for concentrating and introducing liquid specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221600A JPS59111052A (en) 1982-12-17 1982-12-17 Apparatus for concentrating and introducing liquid specimen

Publications (1)

Publication Number Publication Date
JPS59111052A true JPS59111052A (en) 1984-06-27

Family

ID=16769295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221600A Pending JPS59111052A (en) 1982-12-17 1982-12-17 Apparatus for concentrating and introducing liquid specimen

Country Status (1)

Country Link
JP (1) JPS59111052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395348A (en) * 1986-10-11 1988-04-26 Takao Tsuda Direct connection of liquid chromatograph and mass spectrometer
JPS63152845A (en) * 1986-09-08 1988-06-25 セプラーゲン コーポレーション Interface for liquid chromatography/mass spectrometer
CN114544533A (en) * 2022-02-23 2022-05-27 江苏中电创新环境科技有限公司 Quantitative detection method for low-concentration urea in ultrapure water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152845A (en) * 1986-09-08 1988-06-25 セプラーゲン コーポレーション Interface for liquid chromatography/mass spectrometer
JPS6395348A (en) * 1986-10-11 1988-04-26 Takao Tsuda Direct connection of liquid chromatograph and mass spectrometer
CN114544533A (en) * 2022-02-23 2022-05-27 江苏中电创新环境科技有限公司 Quantitative detection method for low-concentration urea in ultrapure water

Similar Documents

Publication Publication Date Title
DE3913763C2 (en) mass spectrometry
US9412574B2 (en) Parallel elemental and molecular mass spectrometry analysis with laser ablation sampling
US7525105B2 (en) Laser desorption—electrospray ion (ESI) source for mass spectrometers
US4999493A (en) Electrospray ionization interface and method for mass spectrometry
US6175112B1 (en) On-line liquid sample deposition interface for matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectroscopy
CN102221576B (en) The method and apparatus of a kind of generation, analysis ion
Murray et al. Aerosol matrix-assisted laser desorption ionization mass spectrometry
Park et al. Infrared laser ablation sample transfer for on‐line liquid chromatography electrospray ionization mass spectrometry
DE3941533A1 (en) INTERFACE FOR PAIRING LIQUID CHROMATOGRAPHY WITH SOLID OR GAS PHASE DETECTORS
US20140026638A1 (en) Optically heated analyte desorber for gas chromatography analysis
US6674070B2 (en) On-line and off-line deposition of liquid samples for matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectroscopy
JPH1164283A (en) Atmospheric pressure laser ionization mass analyzer and method
JPS59111052A (en) Apparatus for concentrating and introducing liquid specimen
JP2827010B2 (en) Method and apparatus for introducing effluent to mass spectrometers and other gas or particle detectors
CA1162331A (en) Ion vapor source for mass spectrometry of liquids
JP2000162188A (en) Mass spectrometry and device for analyzing sample in solution
Raynor et al. Electrospray micro liquid chromatography–Fourier transform infrared micro spectrometry
JP2002502543A (en) Online liquid sample deposition interface for matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry
JPH02196947A (en) Electrothermal atomization method and apparatus for sample for spectrophotometer analysis
DE102015122102A1 (en) Two-dimensional separation and imaging technique for rapid analysis of biological samples
JP6470852B2 (en) Ionizer
JPH0194243A (en) Method and apparatus for thermoelectric atomization of sample
JPS60237354A (en) Thermal spray ion source and method of improving efficiency thereof
JP2006059809A (en) Ion source having adjustable ion source pressure for connecting esi-, fi-, fd-, lifdi- and maldi-elements and hybrid means between ionization techniques for mass spectrometry and/or electron paramagnetic resonance spectroscopy
Holstein et al. Time-of-flight mass spectrometric detection of mono-and di-substituted benzenes at parts per million concentrations by way of liquid microjet injection and laser ionisation