JPS59110994A - Controller for fluid flow in duct - Google Patents

Controller for fluid flow in duct

Info

Publication number
JPS59110994A
JPS59110994A JP21814482A JP21814482A JPS59110994A JP S59110994 A JPS59110994 A JP S59110994A JP 21814482 A JP21814482 A JP 21814482A JP 21814482 A JP21814482 A JP 21814482A JP S59110994 A JPS59110994 A JP S59110994A
Authority
JP
Japan
Prior art keywords
pipe
main pipe
flow
liquid
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21814482A
Other languages
Japanese (ja)
Other versions
JPS6253205B2 (en
Inventor
亀ケ谷 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21814482A priority Critical patent/JPS59110994A/en
Publication of JPS59110994A publication Critical patent/JPS59110994A/en
Publication of JPS6253205B2 publication Critical patent/JPS6253205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pipe Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、管路における流体流の制御装置に関するもの
であって、管路における液体流の流量制御ばかりでなく
、液体流中の粉粒体の分割抽出、分離抽出等の制御をも
可能にしたことを特徴とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid flow control device in a pipe, which is capable of not only controlling the flow rate of a liquid flow in a pipe, but also dividing and extracting powder and granules in a liquid flow. The feature is that it also makes it possible to control the following.

例えば管路を流れる流体の流量は、その管路に絞りその
他の流量抵抗を与えるものを設けたシ、ポンプの能力を
可変とすることによシ、適宜制御することができる。し
かるに、とのような管路を流れる流体が粉粒体を含む場
合に、その粉粒体の一部を分割抽出したり、比重による
分離抽出を行う場合には、そのだめの手段を管路に付設
する必要がある。
For example, the flow rate of fluid flowing through a conduit can be appropriately controlled by providing the conduit with a restrictor or other device that provides flow resistance, or by making the capacity of a pump variable. However, when the fluid flowing through a pipe contains powder or granules, if a part of the powder or granules is to be extracted separately or separated and extracted based on specific gravity, the means for collecting the powder is the pipe. It is necessary to attach it to

本発明は、適切な条件の゛設定により、上記管路中の液
体流の流量の大巾な制御ばかりでなく、粉粒体の任意割
合による分割抽出や比重による分離抽出など、広範囲の
流体流の制御を行うことができる構成が極めて簡単な制
御装置を提供しようとするものである。
By setting appropriate conditions, the present invention not only allows wide-ranging control of the flow rate of the liquid flow in the above-mentioned pipes, but also allows for a wide range of fluid flow, such as divided extraction according to an arbitrary ratio of powder and granules, and separation extraction according to specific gravity. The present invention aims to provide a control device with an extremely simple configuration that can control the following.

このような流体流の制御装置は、例えば土木、基礎工事
において、泥水を循環させながら地盤の掘削を行う泥水
工法の掘削泥水中より土砂を分離する場合、河川やダム
等の堆積物を除去する場合、鉱業において細粒の石炭、
金属鉱物の比重分離を行う場合、化学工業においてパイ
プライン中からの不純物の除去、流れの分割、他の物質
の添加、真比重液体の分離等を行う場合に、また都市と
み等の廃棄物処理を行う場合の高比重物の除去等に、有
効に利用することができる。
Such fluid flow control devices are used to remove sediments from rivers, dams, etc., for example, in civil engineering and foundation construction, when separating earth and sand from excavation mud using muddy water construction methods, in which ground is excavated while circulating muddy water. In the case of fine-grained coal in the mining industry,
When carrying out specific gravity separation of metal minerals, removing impurities from pipelines in the chemical industry, dividing the flow, adding other substances, separating true specific gravity liquids, etc., and waste treatment in urban areas, etc. It can be effectively used for removing high specific gravity substances when carrying out.

而して、本発明の流体流制御装置は、制御すべき液体を
流す主管と循環液流を流す副管とを、両者の軸線が平行
し且つ両者の液体が同じ方向に流れるように接合させ、
その接合部において両管の間に連通孔を穿設して両管の
液体の接触部を形成し、この液体の接触部において主管
側から副管側へ重力まだは遠心力が作用するものとして
構成したことを特徴とするものである。
Accordingly, the fluid flow control device of the present invention connects a main pipe through which a liquid to be controlled flows and a sub pipe through which a circulating liquid flow flows so that their axes are parallel and both liquids flow in the same direction. ,
At the junction, a communication hole is bored between the two pipes to form a liquid contact area between the two pipes, and at this liquid contact area, gravity and centrifugal force act from the main pipe side to the sub pipe side. It is characterized by the following structure.

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図に示す第1実施例は、直管型の流体流
制御装置を示すもので、制御すべき液体を一定流量で流
す主管1と、ポンプ3等によって循環液流を流す副管2
とを、両者の対向側面(二開ロ部4,5を設けて、この
開口部4,5間に仕切板6を介在させて両軸線が平行し
且つ両者の液体が同じ方向に流れるように接合させてい
る。この接合部において、上記仕切板6には両管1,2
の液体の接・触部を形成する1個または複数個の連通孔
7を穿設しているが、この連通孔の形状及び大きさけ、
液体流の制御の目的に応じて選定されるべきであシ、必
要に応じて各種形状及び大きさを有する連通孔を穿設し
た多数の仕切板を用意し、それらを液体流の性状等に応
じて使い分けることができる。
The first embodiment shown in FIGS. 1 and 2 shows a straight pipe type fluid flow control device, which includes a main pipe 1 through which the liquid to be controlled flows at a constant flow rate, and a pump 3 etc. to flow the circulating liquid flow. Sub pipe 2
and the opposing sides of both (two openings 4 and 5 are provided, and a partition plate 6 is interposed between these openings 4 and 5 so that both axes are parallel and the liquids of both flow in the same direction. At this joint, both pipes 1 and 2 are connected to the partition plate 6.
One or more communication holes 7 are formed to form a contact area for the liquid, but the shape and size of the communication holes,
The selection should be made according to the purpose of controlling the liquid flow, and if necessary, prepare a large number of partition plates with communicating holes of various shapes and sizes, and divide them according to the properties of the liquid flow. You can use them accordingly.

而して、上記主管1及び副管2は、液体の接触部におい
て主管1を上方に、副管2を下方に配置し、従って主管
側から副管側へ重力が作用するものとして構成している
The main pipe 1 and the sub-pipe 2 are arranged such that the main pipe 1 is arranged above and the sub-pipe 2 is arranged below at the liquid contact part, so that gravity acts from the main pipe side to the sub-pipe side. There is.

このような構成を有する流体流制御装置においては、主
管lに水その他の液体を一定流量で流しながら副管2に
ポンプ3によって水その他の循環液流を流し、両管1,
2の接触部において両液体を接触させると、上記循環液
流の□流量に応じて主管1における流出側流量を無段階
的に増減させることができる。この場合に主管1及び副
管2の液体が同一でなければ、主管1中の液体の一部を
副管2内に分割抽出し、あるいは副管2の液体を主管1
の液体に添加することになり、また主管l中に2以上の
液体の混合液が流れている場合には、その比重の大きい
方が副管内に分離抽出されることになる。
In a fluid flow control device having such a configuration, while water or other liquid is allowed to flow through the main pipe 1 at a constant flow rate, water or other circulating liquid is caused to flow through the sub pipe 2 by the pump 3, and both pipes 1,
When both liquids are brought into contact at the contact portion 2, the flow rate on the outflow side in the main pipe 1 can be increased or decreased steplessly in accordance with the □ flow rate of the circulating liquid flow. In this case, if the liquid in the main pipe 1 and the sub pipe 2 are not the same, a part of the liquid in the main pipe 1 is divided into the sub pipe 2, or the liquid in the sub pipe 2 is transferred to the main pipe 2.
If a mixture of two or more liquids is flowing in the main pipe 1, the one with higher specific gravity will be separated and extracted into the sub pipe.

さらに、主管1に粉粒体を含むスラリーが流れている場
合には、副管2に循環液流を流すことによシ主管1の流
出側の液体流量を制御できると同時に、その粉粒体の一
部を副管2に分割抽出したシ、比重による粉粒体の分離
を行うことができる。
Furthermore, when a slurry containing powder or granules is flowing through the main pipe 1, the flow rate of the liquid on the outflow side of the main pipe 1 can be controlled by flowing the circulating liquid flow through the sub pipe 2, and at the same time, the powder or granules can be controlled. By dividing and extracting a part of the powder into the sub-tube 2, it is possible to separate the powder and granules based on their specific gravity.

第6図及び第4図に示す第2実施例は、スパイラル型の
制御装置を示すもので、制御すべき液体を一定流量で流
す主管11と、図示しないポンプ等によって循環液流を
流す副管12とを備え、これらの両管を主管11を内側
として接合したうえでスパイラル状に巻回し、このスパ
イラル管の適所において主管11と副管12との間に適
数の連通孔17を穿設している。このスパイラル型の流
体流制御装置) は、主管11及び副管12に同じ方向に液体を流して連
通孔17を設けた接触部において両液体を接触させるが
、両管がスパイラル状で主管を内側に配設しているので
、主管側から副管側へ遠心力が作用することになる。従
って、スパイラル管を適宜傾斜させて用いることもでき
る。なお、図中18はスパイラル管の内側固定板である
The second embodiment shown in FIGS. 6 and 4 shows a spiral type control device, which includes a main pipe 11 through which the liquid to be controlled flows at a constant flow rate, and an auxiliary pipe through which a circulating liquid flow is caused by a pump (not shown) or the like. 12, these two pipes are joined with the main pipe 11 inside and then wound in a spiral shape, and an appropriate number of communication holes 17 are bored between the main pipe 11 and the sub pipe 12 at appropriate places on this spiral pipe. are doing. In this spiral type fluid flow control device, liquid is caused to flow in the same direction through the main pipe 11 and the sub pipe 12, and the two liquids are brought into contact at a contact portion provided with a communication hole 17. Since the pipe is located in the main pipe side, centrifugal force acts from the main pipe side to the sub pipe side. Therefore, the spiral tube can also be used with an appropriate inclination. In addition, 18 in the figure is an inner fixing plate of the spiral tube.

このような構成を有する流体流制御装置においては、主
管11に液体を一定流量で流すと共に副管12に循環液
流を流すと、スパイラル状の両管を流れる液体に遠心力
が作用し、この遠心力は流速によって制御できるため、
特に粉粒体の比重分離に有効であって、そO分離精度を
高めることができる。この場合、分離精度を支配する因
子としては、粉粒体の供給量、管内流量(流速)、装置
の傾斜角度、連通孔の位置、大きさ、形状などかあシ、
これらをも適切に設定するのが望ましい。
In a fluid flow control device having such a configuration, when a liquid flows at a constant flow rate through the main pipe 11 and a circulating liquid flow flows through the sub pipe 12, centrifugal force acts on the liquid flowing through both spiral pipes. Since centrifugal force can be controlled by flow velocity,
It is particularly effective for specific gravity separation of powder and granular materials, and can improve the accuracy of O2 separation. In this case, the factors that govern the separation accuracy include the amount of powder supplied, the flow rate in the pipe (flow velocity), the inclination angle of the device, the position, size, and shape of the communication hole, etc.
It is desirable to set these appropriately as well.

なお、この第2実施例の場合も第1実施例の場合と同様
に広範囲の流体流の制御を行うことができるのは勿論で
ある。
Note that, of course, in the case of the second embodiment, fluid flow can be controlled over a wide range as in the case of the first embodiment.

以下に上記装置による実験例について説明する。Experimental examples using the above apparatus will be explained below.

実施例 第1図及び第2図に示す直管型の装置において、長さ1
20Qmm 、直径20 mWφの水平主管中を流量2
゜’/mLnで流通する水に対し、循環滝川副管中を同
方向に流れる循環水流を% 15 ’/m1fLから4
5 ’/minまで5 ’1man置きに流量を変化さ
せて接触させた。
Embodiment In the straight pipe type device shown in Figs. 1 and 2, the length 1
Flow rate 2 in the horizontal main pipe with a diameter of 20Qmm and a diameter of 20mWφ
For the water flowing at ゜'/mLn, the circulating water flow flowing in the same direction in the circulation Takigawa subpipe is %15'/m1fL to 4
The contact was made by changing the flow rate every 1 man 5' up to 5'/min.

両管における流体の接触部を形成する連通孔は、巾10
mm、長さ10,20,30,50,70.100mm
の異なつた6種類とし、それぞれについて水平主管の流
出側流量を測定した。
The communication hole that forms the fluid contact area in both pipes has a width of 10
mm, length 10, 20, 30, 50, 70.100mm
The flow rate on the outflow side of the horizontal main pipe was measured for each of six different types.

その結果、水平主管中に流す水の流量を一定としても、
循環水流の流量を増加させることによって主管の流出側
流量が増加し、また主管と副管にせることかでき、この
範囲で所期の流出側流量を得るための制御が可能である
ことを確認できた。
As a result, even if the flow rate of water flowing into the horizontal main pipe is constant,
By increasing the flow rate of the circulating water flow, the flow rate on the outflow side of the main pipe can be increased, and it can also be applied to the main pipe and the sub pipe, and it has been confirmed that control to obtain the desired flow rate on the outflow side is possible within this range. did it.

実施例 粒度14〜48メツシユ、比重1.3〜1.5の石炭と
、同粒度で比重1.6〜2.2の選炭廃石を、石炭80
%、廃石加%の重量割合で混合した粉粒体試料を用い、
固体重量が水に対し10%のスラリーを調整し、前記と
同じ実験条件下で主管を通過させ、副管への粉粒体の分
割流入割合及び比重による固体の分離状況について測定
した。
Example: Coal having a particle size of 14 to 48 mesh and a specific gravity of 1.3 to 1.5, and cleaned waste rock of the same particle size and specific gravity of 1.6 to 2.2,
Using a powder sample mixed at a weight ratio of % and waste stone addition%,
A slurry having a solid weight of 10% based on water was prepared and passed through the main pipe under the same experimental conditions as described above, and the divided inflow ratio of the powder into the sub pipe and the state of separation of the solids based on specific gravity were measured.

その結果、主管を通過して流出側で得られる水量を流入
側とほぼ同じとすることを前提とした場合、前記条件下
では、循環水流の流量及び両管における水流の接触部面
積を適宜選択決定することにより、主管の流出側の粉粒
体重量を95%〜70%の範囲で任意に決定できること
が認められた。
As a result, assuming that the amount of water that passes through the main pipe and is obtained on the outflow side is approximately the same as that on the inflow side, under the above conditions, the flow rate of the circulating water flow and the area of contact between the water flows in both pipes are selected appropriately. It was recognized that by determining the powder weight on the outflow side of the main pipe, it was possible to arbitrarily determine the weight of the powder particles in the range of 95% to 70%.

この場合、循環水流の流量を増大するに従って主管の流
出側に導かれる粉粒体重量が増加し、ます 割流入させ得ることは勿論である。
In this case, as the flow rate of the circulating water stream increases, the weight of the powder particles guided to the outflow side of the main pipe increases, and it goes without saying that the particles can be allowed to flow in even more.

また、水平主管を通過してその流出側で得られる粉粒体
重量が帥%(循環水流側に20%)となるように循環水
流の流量と接触部面積を選択した数種類の異なる条件下
においては、上記流量が32ケール、接触部長さが5Q
 inの場合に、循環水側の固体重量(20%)のうち
、廃石が12%(石炭8%)となって、最もよい分離結
果が得られた。これは、主管内を通過する廃石の60%
に相当するものである。
In addition, under several different conditions, the flow rate of the circulating water flow and the contact area were selected so that the weight of the powder particles passed through the horizontal main pipe and obtained on the outflow side was 3% (20% on the circulating water flow side). The above flow rate is 32 kale and the contact length is 5Q.
In the case of in, waste rock accounted for 12% (coal 8%) of the solid weight (20%) on the circulating water side, and the best separation result was obtained. This is 60% of the waste rock that passes through the main pipe.
This corresponds to

実施例 第3図及び第4図に示すスパイラル型の装置を、直径2
0 mmφの主管及び副管を接合し、その主管を内側と
して主管の内側直径250mm、巻き間隔5Q 771
7)Lでスパイラル状に15回巻くことによシ構成し、
このスパイラル管の1巻ごとに主管と副管の間に各1個
所の直径3 mmφの連通孔を設けて流体の接触部を形
成した。
Embodiment The spiral type device shown in FIGS. 3 and 4 was
A main pipe and a sub pipe of 0 mmφ are joined, and the inner diameter of the main pipe is 250 mm with the main pipe inside, and the winding interval is 5Q 771
7) Construct by winding 15 times in a spiral shape with L,
For each turn of this spiral tube, one communication hole with a diameter of 3 mm was provided between the main tube and the sub tube to form a fluid contact portion.

実験例2で用いたlO%濃度のスラリー試料を実験例2
と同じ条件で主管に流し、副管には循環水流を通過させ
ることによシ、基本的には実験例1及び2の場合と同様
な傾向を示す結果が得られたが、装置を45°傾斜させ
て行った実数結果では、最も良い場合に全体廃石量の9
0%を回収することができた。
The slurry sample with lO% concentration used in Experimental Example 2 was
By flowing water into the main pipe under the same conditions as above and passing circulating water through the sub pipe, results showing basically the same tendency as in Experimental Examples 1 and 2 were obtained, but the equipment was rotated at 45°. In the real number results obtained by tilting, in the best case, 9 of the total amount of waste rock is
0% could be recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の構成図、第2図はその要
部分解斜視図、第6図は本発明の第2実施例の平面図、
第4図はその一部破断正面図である。 1.11−−・主管、   2.12@・・副管、7、
エフ・0連通孔。 第 1 腸
FIG. 1 is a configuration diagram of a first embodiment of the present invention, FIG. 2 is an exploded perspective view of the main parts thereof, and FIG. 6 is a plan view of a second embodiment of the present invention.
FIG. 4 is a partially cutaway front view thereof. 1.11--Main pipe, 2.12@...Sub-pipe, 7,
F.0 communication hole. first intestine

Claims (1)

【特許請求の範囲】[Claims] 1、 制御すべき液体を流す主管と循環液流を流す副管
とを、両者の軸線が平行し且つ両者の液体が同じ方向に
流れるように接合させ、その接合部において両管の間に
連通孔を穿設して両管の液体の接触部を形成し、この液
体の接触部において主管側から副管側へ重力または遠心
力が作用するものとして構成したことを特徴とする管路
における流体流の制御装置。
1. Connect the main pipe that flows the liquid to be controlled and the sub pipe that flows the circulating liquid flow so that their axes are parallel and both liquids flow in the same direction, and create communication between the two pipes at the joint. A fluid in a conduit characterized in that a hole is formed to form a liquid contacting part of both pipes, and gravity or centrifugal force acts from the main pipe side to the sub-pipe side at this liquid contacting part. flow control device.
JP21814482A 1982-12-13 1982-12-13 Controller for fluid flow in duct Granted JPS59110994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21814482A JPS59110994A (en) 1982-12-13 1982-12-13 Controller for fluid flow in duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21814482A JPS59110994A (en) 1982-12-13 1982-12-13 Controller for fluid flow in duct

Publications (2)

Publication Number Publication Date
JPS59110994A true JPS59110994A (en) 1984-06-27
JPS6253205B2 JPS6253205B2 (en) 1987-11-09

Family

ID=16715327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21814482A Granted JPS59110994A (en) 1982-12-13 1982-12-13 Controller for fluid flow in duct

Country Status (1)

Country Link
JP (1) JPS59110994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069481A (en) * 2008-09-19 2010-04-02 Palo Alto Research Center Inc Water treatment system and water treatment method
JP2010284647A (en) * 2009-06-12 2010-12-24 Palo Alto Research Center Inc Water treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203633B2 (en) 2019-02-22 2023-01-13 三菱重工マリンマシナリ株式会社 Control device, ship equipped with the same and control method of ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069481A (en) * 2008-09-19 2010-04-02 Palo Alto Research Center Inc Water treatment system and water treatment method
JP2010284647A (en) * 2009-06-12 2010-12-24 Palo Alto Research Center Inc Water treatment system

Also Published As

Publication number Publication date
JPS6253205B2 (en) 1987-11-09

Similar Documents

Publication Publication Date Title
Turian et al. Flow of slurries in pipelines
Blight et al. The master profile for hydraulic fill tailings beaches.
CN110066097A (en) A kind of riverway sludge dehydrating and curing treatment process
JPS59110994A (en) Controller for fluid flow in duct
US3817383A (en) Apparatus for removing particulate matter
US3250394A (en) Flotation apparatus
DE69818317D1 (en) METHOD AND DEVICE FOR SEPARATING GOLD PARTICLES
CN209679671U (en) A kind of screening plant recycled suitable for discarded slurry
CN206601317U (en) It is a kind of to simulate the experimental provision that deposition influences on different single sand body anisotropism
CN207959417U (en) A kind of road rain water processing system
Van Deventer, JSJ*, Burger, AJ** & Cloete Intensification of flotation with an air-sparged hydrocyclone
JPH0746322Y2 (en) Turbid water treatment tank
Baker et al. Hold-up volume and mean residence time measurements in the air-sparged hydrocyclone
CN208471639U (en) A kind of pipeline stirring-type sewage purifying and treating device
JPH08117643A (en) Symmetrical two-barrel liquid cyclone
CN208770920U (en) A kind of water conservancy construction water resource filter device
CN212454544U (en) Tunnel comprehensive unfavorable geological construction device
CORBETT et al. Coal mining effect on Busseron Creek watershed, Sullivan County, Indiana
JPS6052859B2 (en) Solid-liquid contact method
JPH0120974Y2 (en)
Hannoura et al. Air-water flow in coarse granular media
RU2111313C1 (en) Method increasing concentration of pulp during hydraulic deposition of soil
RU2245740C1 (en) Method of heavy metals deposits ore dressing
SU1740541A1 (en) Drainage
SU727739A1 (en) Method of earth-filling of structures in water streams