JPS59109855A - Manufacture of wide-range air fuel ratio sensor - Google Patents

Manufacture of wide-range air fuel ratio sensor

Info

Publication number
JPS59109855A
JPS59109855A JP57220510A JP22051082A JPS59109855A JP S59109855 A JPS59109855 A JP S59109855A JP 57220510 A JP57220510 A JP 57220510A JP 22051082 A JP22051082 A JP 22051082A JP S59109855 A JPS59109855 A JP S59109855A
Authority
JP
Japan
Prior art keywords
powder
fuel ratio
metal oxide
paste
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57220510A
Other languages
Japanese (ja)
Inventor
Megumi Fukushima
福島 恵
Kazuya Komatsu
一也 小松
Katsuhiro Yokomizo
横溝 克広
Shunzo Mase
俊三 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
NGK Insulators Ltd
Original Assignee
Mazda Motor Corp
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, NGK Insulators Ltd filed Critical Mazda Motor Corp
Priority to JP57220510A priority Critical patent/JPS59109855A/en
Publication of JPS59109855A publication Critical patent/JPS59109855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain a sensor superior in sensibility and responsiveness by painting the paste obtained by mixing the powder of a metallic oxide oxidizing HC to CO and the powder of a porous electrode forming material having semicatalytic ability and a binder on the gas side to be measured of a solid electrolyte and sintering said paste. CONSTITUTION:The paste-state material obtained by mixing and kneading the powder consisting of 10-40wt% SnO2, In2O3, etc. capable of oxidizing HC to CO and the balance a porous electrode material such as powder of Mg, Pt and the binder of the quantity equivalent to 0.5-2 times volume ratio per the total quantity of powder is painted on the measuring gas side 6 of a solid electrolyte cylinder 1, and paste made solely of electrode material is painted on the inner surface of the cylinder. Next the cylinder is calcined at the m.p. or less of the electrode material and the metallic oxide and at a temperature capable of sintering the electrode material to obtain the sensor. Thus the metallic oxide 4 is allowed to oxist in the vicinity of a 3-phase point of the porous electrode 3, the electrolyte 1 and a gas to be measured, and the sensor of low variation in sensibility is obtained.

Description

【発明の詳細な説明】 本発明は理論空燃比の前後にわたる広い領域でエンジン
の排気ガス中の酸素濃度を検出して空燃比を検出する広
域空燃比センサーの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a wide-range air-fuel ratio sensor that detects the air-fuel ratio by detecting the oxygen concentration in engine exhaust gas over a wide range before and after the stoichiometric air-fuel ratio.

周知のように、例えば自動車に搭載されるエンジンにお
いて、排気ガス中の酸素濃度を検出することによって間
接的に空燃比(A/F )を検出する技術思想が公仰と
なっている。排気ガス中の酸素a度を検出する検出素子
としては理論空燃比に対応する酸素濃度を境界にして起
電力がステップ状に変化するいわゆるλセンサーが仰ら
れており、このような酸素濃度検出素子によれば空燃比
が理論空燃比よりも大きいか小さいかが判別されうる。
As is well known, the technical concept of indirectly detecting the air-fuel ratio (A/F) by detecting the oxygen concentration in exhaust gas in engines installed in automobiles, for example, has become public knowledge. A so-called λ sensor, in which the electromotive force changes stepwise with the oxygen concentration corresponding to the stoichiometric air-fuel ratio as the boundary, is said to be used as a detection element for detecting the oxygen concentration in exhaust gas. According to the method, it can be determined whether the air-fuel ratio is larger or smaller than the stoichiometric air-fuel ratio.

他方、自動車等にあっては、例えば加速時、高負荷運転
時等、高出力が求められる場合には空燃比をある程度理
論空燃比よシ燃料の濃いいわゆるリッチに設定し、高速
定常走行時等においては燃費向上のために空燃比をある
程度理論空燃比よシ燃料の薄いいわゆるIJ−ンに設定
してエンジンを運転することが望まれるが、上述のよう
に理論空燃比に対する大小のみを判別する酸素濃度検出
素子は当然理論空燃比を外れた空燃比を正確に検出する
ことはできず、したがってこのように空燃比を任意の値
に設定する制御には使用され得ない。
On the other hand, in automobiles, etc., when high output is required, such as during acceleration or high-load operation, the air-fuel ratio is set to a certain degree of stoichiometric air-fuel ratio, so-called rich, where the fuel is richer, such as during high-speed steady driving. In order to improve fuel efficiency, it is desirable to operate the engine with the air-fuel ratio set to a certain degree compared to the stoichiometric air-fuel ratio, so-called IJ-ton, where the fuel is thinner. Naturally, the oxygen concentration detection element cannot accurately detect an air-fuel ratio that deviates from the stoichiometric air-fuel ratio, and therefore cannot be used for such control to set the air-fuel ratio to an arbitrary value.

そこで例えば特開昭57−76450号、同51−72
491号、同53−3407.7号公報に示されるよう
に、理論空燃死時以外の酸素濃度を検出可能にした酸素
濃度検出素子が提案されて因る。、しかしこれら従来の
ものは、前述しだλセンサ−、すなわち固体電解質の両
面に多孔質電極を形成してなる酸素濃度検出素子におい
て、被測定ガス側の多孔質電極の外側に保護層を設けて
該電極へのガスの拡散を律速するーわゆるアンベロメト
リ゛ツクセンザーであシ、マた後者は多孔質電極を被毒
させることによって感度を鈍らせ、全体の起電力特性を
漸減させてリニアな起電力特性を得るようにしだもので
あシ、リーン領域においては上記λセンサーと同様、リ
ニアな起電力特性は得られない。しかもこのリニアな起
電力特性の幅は例えば100〜200mV程度と小さく
、したがってこれ争の検出素子は検出感度が不十分で実
用には不適なものとなっていた。
For example, JP-A-57-76450 and JP-A-51-72
As shown in Japanese Patent Application No. 491 and No. 53-3407.7, an oxygen concentration detecting element that is capable of detecting oxygen concentrations other than stoichiometric air combustion has been proposed. However, in these conventional λ sensors, which are oxygen concentration detection elements formed by forming porous electrodes on both sides of a solid electrolyte, a protective layer is provided on the outside of the porous electrode on the side of the gas to be measured. The latter is a so-called amberometric sensor that controls the rate of gas diffusion to the electrode, while the latter poisons the porous electrode to dull its sensitivity, gradually decreasing the overall electromotive force characteristic and making it linear. Although it is designed to obtain electromotive force characteristics, linear electromotive force characteristics cannot be obtained in the lean region as with the above-mentioned λ sensor. Moreover, the width of this linear electromotive force characteristic is small, for example, about 100 to 200 mV, and therefore the detection elements in question have insufficient detection sensitivity and are unsuitable for practical use.

本発明者らは、上記のような欠点を解消して空燃比を連
続的に測定しうる広域空燃比センサーを得るべく研究を
重ねた結果、固体電解質の表面に半触媒性能を有する多
孔質電極を形成し、かつ該電極と固体電解質と被測定ガ
スとで構成される3相点近傍に、HCを酸化してCOを
生成する金属酸化物を存在せしめた広域空燃比センサー
を提供するに至った。
The inventors of the present invention have conducted extensive research in order to solve the above-mentioned drawbacks and to obtain a wide-range air-fuel ratio sensor that can continuously measure the air-fuel ratio. We have now provided a wide-range air-fuel ratio sensor in which a metal oxide that oxidizes HC to generate CO is present near a three-phase point consisting of the electrode, solid electrolyte, and gas to be measured. Ta.

ここで上記「半触媒性能」について説明する。第1図は
Williarn J、 Fleming著rPhys
icalPrinciples Governing 
Non1deal Behaviorof the Z
irconia Oxygen 5ensor J  
(J。
Here, the above-mentioned "semi-catalytic performance" will be explained. Figure 1 is rPhys by William J. Fleming.
icalPrinciplesGoverning
Non1deal Behavior of the Z
irconia Oxygen 5ensor J
(J.

Electrochemjcal 5ociety、 
Vol、 124. No、 1゜January 1
977、 pp、2i  28 )に示された、電極触
媒活性による3相点の02.Co分圧変化を示すグラフ
である。前記「半触媒性能」とはこの第1図において、
活性がr Poor Jであるとされる「2」程度もし
くはそれ以下の活性を示す性能をいうものとする(その
作用は後述する)。このような半触媒性能は例えばAg
Electrochemjcal 5ociety,
Vol, 124. No, 1゜January 1
977, pp, 2i 28 ) of the three-phase point due to electrocatalytic activity. It is a graph showing Co partial pressure change. The above-mentioned "semi-catalytic performance" refers to the following in Fig. 1:
It refers to the performance showing an activity of about "2" or less, which is said to have an activity of r Poor J (the effect will be described later). Such semi-catalytic performance is, for example, Ag
.

Au等が示すが、一般に高活性であるとされ従来のステ
ップ状の特性を示すλセンサーに使用されるPtでも、
材料、焼成条件によりこのような性質を付与しうる。
Au, etc., but Pt, which is generally considered to be highly active and is used in conventional λ sensors that exhibit step-like characteristics,
Such properties can be imparted depending on the material and firing conditions.

上記「3相点」とは第4図に破線円で示すように、固体
電解質1と、この表面に形成される多孔質電極3、およ
び被測定ガス6の3者が互いに隣り合う点のことである
The above-mentioned "three-phase point" refers to the point where the solid electrolyte 1, the porous electrode 3 formed on the surface of the solid electrolyte 1, and the gas to be measured 6 are adjacent to each other, as shown by the broken line circle in FIG. It is.

ここで以上説明した構造を第2〜第4図を用いて模式的
に説明する。第2図に示すように固体電解質lは、゛従
来のλセンサー等と同様、大気5と被測定ガス6とを隔
絶する例えば管状の形状に形成され、この固体電解質1
の大気5側および被測定ガス6側の両表面に多孔質電極
2,3がそれぞれ形成される。そして被測定ガス6側の
表面にはさらに金属酸化物4の層が形成される。第3図
は第2図の拡大図であり、第4図はさらにこの第3図を
拡大したものであるが、これら第3.第4図に示される
ように上記金属酸化物4は前述した3相点の近傍に存在
するように層成される1゜以下、上記のような構成によ
り、空燃比(A/F )に対してリニアな起電力特性が
得られるメカニズムについて詳述する。一般に知られて
いるように理論センサーの起電力Vは、Nernst式 %式%)) で与えられる。ここでRは気体定数、Tは給体温度、F
はファラデ一定数+ Po2(air)は大気中の酸素
分圧+ Po2(exh)は被測定ガス中の酸素分圧で
ある。この式から導かれる値をプロットすれば第5A図
に示すような起電力特性曲線が得られる。しかし実際の
センサーは、このNernst式では説明できない起電
力特性を示すものが多く、これらを説明するだめ、前述
のWi L l i am J、 Fl emi ng
はFlemingの等価回路、母チルを提案している。
The structure described above will now be schematically explained using FIGS. 2 to 4. As shown in FIG. 2, the solid electrolyte 1 is formed into, for example, a tubular shape that isolates the atmosphere 5 and the gas to be measured 6, similar to the conventional λ sensor.
Porous electrodes 2 and 3 are formed on both surfaces of the atmosphere 5 side and the gas to be measured 6 side, respectively. A layer of metal oxide 4 is further formed on the surface on the side of gas to be measured 6. Fig. 3 is an enlarged view of Fig. 2, and Fig. 4 is an enlarged view of Fig. 3. As shown in FIG. 4, the metal oxide 4 is layered so as to exist near the three-phase points mentioned above. The mechanism by which linear electromotive force characteristics are obtained will be explained in detail. As is generally known, the theoretical electromotive force V of the sensor is given by the Nernst formula. Here, R is the gas constant, T is the feed temperature, F
is Faraday's constant + Po2 (air) is the partial pressure of oxygen in the atmosphere + Po2 (exh) is the partial pressure of oxygen in the gas to be measured. By plotting the values derived from this equation, an electromotive force characteristic curve as shown in FIG. 5A can be obtained. However, many actual sensors exhibit electromotive force characteristics that cannot be explained by the Nernst equation, and it is difficult to explain them using the above-mentioned Wi L i am J, Fl emin g.
proposed Fleming's equivalent circuit, Mother Chill.

本発明の酸素濃度検出素子の挙動も、多くのパラメータ
を持つこのFlemingの等価回路モデルによシ説明
される。
The behavior of the oxygen concentration detection element of the present invention is also explained by this Fleming equivalent circuit model having many parameters.

ここでFlemingの等価回路モデルの簡単な説明を
行なう。該等価回路モテルは、3相点における吸着点毎
に固有の起電力が発生しているということに基づくもの
であり、それによれば起電力Vは v−foo−voo+(1−foo)Vo2  で表わ
される。
Here, a brief explanation of Fleming's equivalent circuit model will be given. The equivalent circuit model is based on the fact that a unique electromotive force is generated at each attraction point at the three-phase point, and according to this, the electromotive force V is v-foo-voo+(1-foo)Vo2. expressed.

ここでf。0は3相点にCOが吸着している割合で foo=KcoPco/(1+Kco’Pco+Ko2
’Po2)(I(oo + KO2は各々Co 、 0
2の吸着定数)vooは3相点OCO示吸着している所
で発生する起電力で 1/2  。
Here f. 0 is the rate at which CO is adsorbed at the three-phase point, foo=KcoPco/(1+Kco'Pco+Ko2
'Po2) (I(oo + KO2 are respectively Co and 0
2 adsorption constant) voo is the electromotive force generated at the three-phase point OCO and is 1/2.

vco−Vco−1−(RT/2F)An[P02(a
zr)P(20(anode)/Pco2(anode
):) +■o2は3相点の02が吸着している所で発
生する起電力で ■o2−voo2+(RT/4F)tnCPo2(a1
rVPo2(anOde)〕である。なおV′co、V
;2は各電気化学セルにおける標準ポテンシャルであり
、Pco(anode)。
vco-Vco-1-(RT/2F)An[P02(a
zr)P(20(anode)/Pco2(anode)
):) +■o2 is the electromotive force generated where the three-phase point 02 is attracted, and ■o2-voo2+(RT/4F)tnCPo2(a1
rVPo2(anOde)]. Note that V'co, V
;2 is the standard potential in each electrochemical cell, Pco (anode).

pc02(anode)+ Po2’(anode)は
それぞれ被測定ガス側電極3相点におけるCo 、CO
2,02分圧である。上記式は3相点での次の2つの反
応により求められるものである。
pc02 (anode) + Po2' (anode) are Co and CO at the three-phase point of the electrode on the gas side to be measured, respectively.
2.02 partial pressure. The above formula is determined by the following two reactions at three-phase points.

02 + 4e  g 2()2− Co +Od CO2+ 2e 実際のセンサーの起電力特性と理論センサーの起電力特
性のずれは主に、陰極の触媒性能が不十分であることに
よる。つtI)3相点での02.Co分圧の差によシ起
電力特性が大きく変化するのである。前記第1図に示さ
れるように、リーン領域では02分圧は触媒活性によら
ずほぼ一定であり、大きく変化するのは00分圧である
。すなわちリーン領域の起電力は王にCOが支配してい
る。Flerningの式によればリーン領域で00分
圧を上げてやれば、起電力が上がることになる。
02 + 4e g 2()2- Co +Od CO2+ 2e The difference between the electromotive force characteristics of the actual sensor and the electromotive force characteristics of the theoretical sensor is mainly due to the insufficient catalytic performance of the cathode. tI) 02. at the 3-phase point. The electromotive force characteristics vary greatly depending on the difference in Co partial pressure. As shown in FIG. 1, in the lean region, the 02 partial pressure is almost constant regardless of the catalyst activity, and it is the 00 partial pressure that changes significantly. In other words, the electromotive force in the lean region is dominated by CO. According to Ferning's equation, if the 00 partial pressure is increased in the lean region, the electromotive force will increase.

以上の事をふまえ9、リニアな起電力特性が得られるメ
カニズムを説明する。1ず前記金属酸化物は被611]
定ガス(排気ガス)中のHCを酸化しく自己は還元され
)COを生成する酸化触媒として作用する。例えばこの
金属酸化物が51102の場合、 aS no 2 +bHC(g)→c SnO+ dc
o(g)+ eco 2 (g)+ fH20(g)+
・・・・・・ の反応が起こり、さらに還元されたSnOは被測定ガス
中の02によI) 5nOzに戻る。っ捷り、いわゆる
Redox作用により5nOzは定常的にCO生成、0
2吸収を行なう。
Based on the above, the mechanism by which linear electromotive force characteristics can be obtained will be explained. 1. The metal oxide is coated with 611]
It acts as an oxidation catalyst that oxidizes HC in constant gas (exhaust gas) and generates CO (which is itself reduced). For example, if this metal oxide is 51102, aS no 2 +bHC(g)→c SnO+ dc
o(g)+ eco 2 (g)+ fH20(g)+
The following reaction occurs, and the further reduced SnO returns to 5nOz due to 02 in the gas to be measured. Due to the so-called Redox effect, 5nOz constantly generates CO and 0
2. Perform absorption.

以上の作用によ902分圧が低下し、またHCよシ生成
されたdOが3相点近傍の00分圧を上昇させるので、
リーン領域における起電力が第5B図に示すように上昇
して、該リーン領域においてリニアな起電力特性が得ら
れる。
Due to the above action, the 902 partial pressure decreases, and dO generated by HC increases the 00 partial pressure near the three-phase point.
The electromotive force in the lean region increases as shown in FIG. 5B, and linear electromotive force characteristics are obtained in the lean region.

そして上記多孔質電極として半触媒性能を有するものを
使用しているため、リッチ領域における起電力が第5B
図に示すように下降し、上述したり一ン領域からこのリ
ッチ領域にまで亘ってリニアな起電力特性が得られるこ
とと々る。
Since the porous electrode used has semi-catalytic performance, the electromotive force in the rich region is 5B.
As shown in the figure, the electromotive force decreases, and a linear electromotive force characteristic can be obtained from the above-mentioned 1-in region to this rich region.

ところで、リーン領域でのHC濃度はたかだか千〜数百
ppm程度に過ぎない、っしたがって上記金属酸化物の
作用により生成するCOO量も極くわずかである。しか
しこのCOが3相点近傍で発生すれば、多孔質電極によ
って酸化されることなく3相点へ到達する。例えばとの
COの濃度が→→→0.001%としても、酸化される
ことなく3相点へ到達すれば60分圧変化は前記第1図
に示す「4」から「2」程度になる。したがってこのよ
うに金属酸化物による効果を十分に発揮させるために、
該金属酸化物を3相点近傍に存在させることが必要とな
る。
By the way, the HC concentration in the lean region is only about 1,000 to several hundred ppm at most, and therefore the amount of COO produced by the action of the metal oxide is also extremely small. However, if this CO is generated near the three-phase point, it will reach the three-phase point without being oxidized by the porous electrode. For example, even if the concentration of CO is →→→0.001%, if it reaches the three-phase point without being oxidized, the partial pressure change will be about 60% from "4" to "2" as shown in Figure 1 above. . Therefore, in order to fully demonstrate the effects of metal oxides,
It is necessary that the metal oxide be present near the three-phase point.

上記金属酸化物ばHCを酸化してCOを生成するように
作用しなければならないから、この金属酸化物としては
’I HCを酸化する酸化能力が小さいものは不適であ
る。各種金属酸化物のHC酸化能力(CO生成能力)は
、例えば清山哲部著「金属酸化物とその触媒作用」(1
979年、講談社)の表4.101種々の金属酸化物上
でのプロピレン酸化反応J(P2S5)等を目安として
判断されうるが、例えば多孔質電極としてptを主要成
分とするもの(ptペースト等)を使用する場合には、
5nOz 、 I]1203 + NiO、CO3O4
およびCuOが十分なHC酸化能力を示す。したがって
この場合には、これらの金属酸化物のうちの1種あるい
は向種かを使用すればよい。゛なおHCが酸化されてC
Oが生成される傾向は、多孔質電極の触媒活性と上記金
属酸゛化物のHC酸化能力との総合的なバランスによっ
て決定されるので、多孔質電極を」二記ptよりも触媒
活性が低い物質、例えばAg、Au等を主要成分とする
ものから形成する場合には、前述した金属酸化物よりも
HC酸化能力が低いものも使用できる。例えば多孔質電
極をAgペーストヲら形成した場合には、Zllo 、
 MnO2を使用して夷、リーン領域においてリニアな
起電力特性が得られる。
Since the above-mentioned metal oxide must act to oxidize HC to produce CO, a metal oxide having a low oxidizing ability to oxidize IHC is not suitable. The HC oxidation ability (CO generation ability) of various metal oxides can be found, for example, in “Metal oxides and their catalytic action” (1) by Tetsube Kiyoyama.
This can be determined using Table 4.101 Propylene oxidation reaction J on various metal oxides (P2S5) of 1979, Kodansha), but for example, porous electrodes containing PT as a main component (PT paste, etc.) can be used as a guide. ), when using
5nOz, I]1203 + NiO, CO3O4
and CuO exhibits sufficient HC oxidation ability. Therefore, in this case, one or a similar metal oxide may be used.゛It should be noted that HC is oxidized to C
The tendency for O to be produced is determined by the overall balance between the catalytic activity of the porous electrode and the HC oxidation ability of the metal oxide. In the case of forming the material from a material containing Ag, Au, etc. as a main component, a material having lower HC oxidation ability than the metal oxides mentioned above can also be used. For example, when a porous electrode is formed from Ag paste, Zllo,
By using MnO2, linear electromotive force characteristics can be obtained in the lean region.

以上のような空燃比センサーを実用に適したものとする
には、3相点近傍での金属酸化物(HCを酸化してCO
を生成するもの)の存在率が各センサーによって丑ちま
ちにならないようにすることが必要である。すなわちこ
の3相点近傍における金属酸化物の存在により、リーン
領域における起電力上昇が得られるのであるから、この
金属酸化物の存在率が各センサー間で捷ち丑ちであると
各素子の起電力特性がバラつき、キヤリプレーンヨン作
業が煩雑を極める。
In order to make the above air-fuel ratio sensor suitable for practical use, it is necessary to oxidize metal oxides (HC and CO
It is necessary to ensure that the existence rate of (that which generates) does not vary depending on each sensor. In other words, the presence of metal oxides near this three-phase point increases the electromotive force in the lean region, so if the presence rate of metal oxides varies between each sensor, the electromotive force of each element will increase. The power characteristics vary, making the job of moving the plane extremely complicated.

本発明は上記の点に鑑みてなされたものであり、上述の
新しい広域空燃比センサーを、前記金属酸化物が各セン
サー間で均一な存在率で3相点近傍に存在するように形
成しうる製造法を提供することを目的とする。
The present invention has been made in view of the above points, and the above-mentioned new wide-range air-fuel ratio sensor can be formed such that the metal oxide is present near the three-phase point at a uniform abundance rate among each sensor. The purpose is to provide a manufacturing method.

本発明の広域空燃比センサーの製造法は、HCを酸化し
てCOを生成する金属酸化物の粉末10〜40重量係、
残部が電極材料粉末からなる粉体と、この粉体の総量に
対して容積比0.5〜2倍の量のバインダーとを混合し
てなるペースト状材を前記固体電解質の表面に塗布した
後、該ペースト状材を前記電極材料および金属酸化物の
融点以下でかつ電極材料の焼結が可能な温度で焼成する
ことを特徴とするものである(該方法を分かりやすく第
6図に示す)。
The method for manufacturing a wide range air-fuel ratio sensor of the present invention includes a metal oxide powder of 10 to 40% by weight that oxidizes HC to produce CO;
After applying a paste-like material made by mixing a powder whose remainder is electrode material powder and a binder in a volume ratio of 0.5 to 2 times the total amount of this powder on the surface of the solid electrolyte. , the paste-like material is fired at a temperature below the melting points of the electrode material and metal oxide and at which the electrode material can be sintered (this method is clearly shown in FIG. 6). .

上記ペースト状材内では、電極材料粉末と金属酸化物粉
末は各々均一に分散し、これら両粉末はペースト状材の
どの部分においても一定の割合で混在するようになる。
In the paste-like material, the electrode material powder and the metal oxide powder are each uniformly dispersed, and these two powders are mixed at a constant ratio in any part of the paste-like material.

しだがってこのペースト状材゛を多数の固体電解質に塗
布、焼成して多数の広域空燃比センサーを形成すれば、
すべてのセンサーにおいて電極材料と金属酸化物の混在
組織は同じものとなり、3相点における金属酸化物の存
在率も同等となる。
Therefore, if this paste-like material is applied to a large number of solid electrolytes and fired to form a large number of wide-range air-fuel ratio sensors,
In all sensors, the mixed structure of the electrode material and the metal oxide is the same, and the abundance of the metal oxide at the three-phase points is also the same.

以下、前記各数値条件の限定理由について説明する。The reason for limiting each of the above numerical conditions will be explained below.

起電力特性を十分にリニアなものとするためには、3相
点における金属酸化物の存在率を十分に高めることが必
要である。そしてこの金属酸化物の存在率を高めるには
、ペースト状材を形成する粉体内での金属酸化物粉末の
混合比を高めればよい。しかし一方、この金属酸化物粉
末の混合比を高めて電極材料粉末の混合比を下げると、
今度は焼成された組織(多孔質電極となるもの)の導電
性が低下して電極として作用しなくなる。すなわち上記
粉体における金属酸化物粉末の混合比下限はセンサーの
起電力特性のリニア化の点から規制され、その上限は多
孔質電極の導電性の点から規制される。この金属酸化物
粉末の混合比を変えた種々の広域空燃比センサーを作製
し、それらの性能をテストした結果、金属酸化物粉末の
混合比は、リニアな起電力特性を得るためには10係(
重量比)以上、多孔質電極の導電性を十分に維持するた
めには40%(同)以下にする必要がある(特に好まし
くは15〜30係)ことが判明した。
In order to make the electromotive force characteristics sufficiently linear, it is necessary to sufficiently increase the abundance of metal oxides at the three-phase points. In order to increase the abundance of this metal oxide, it is sufficient to increase the mixing ratio of the metal oxide powder in the powder forming the paste-like material. However, on the other hand, if the mixing ratio of this metal oxide powder is increased and the mixing ratio of electrode material powder is lowered,
This time, the conductivity of the fired structure (which becomes the porous electrode) decreases and it no longer functions as an electrode. That is, the lower limit of the mixing ratio of the metal oxide powder in the powder is regulated from the viewpoint of linearization of the electromotive force characteristics of the sensor, and the upper limit is regulated from the viewpoint of the electrical conductivity of the porous electrode. As a result of fabricating various wide-range air-fuel ratio sensors with different mixing ratios of metal oxide powder and testing their performance, we found that the mixing ratio of metal oxide powder must be adjusted by a factor of 10 to obtain linear electromotive force characteristics. (
It has been found that in order to sufficiently maintain the conductivity of the porous electrode, the weight ratio needs to be 40% or less (particularly preferably 15 to 30%).

次に粉体とバインダーの比率について説明する。以下の
表は、本発明において電極材料として好丑しく使用され
る材料と、HCを酸化してCOを生成する金属酸化物と
して好ましく使用される材料の比重を示すものである0
、このように電極材料は金属酸化物に比べてはるかに比
重が太きい。したがって粉体を多量のバインダーに混合
すると、−クースト状材を固体電解質に塗布した後、固
体電解質の上表面においては比重の大きい電極材料粉末
が下(固体電解質表面側)に沈降するとともに比重の小
さい金属酸化物粉末が表面に浮き上がって金属酸化物を
3相点に担持することが困難になる等、両者の比重の差
によってペースト状材の均質性が阻害されるようになる
Next, the ratio of powder to binder will be explained. The table below shows the specific gravity of the materials preferably used as electrode materials and the metal oxides that oxidize HC to produce CO in the present invention.
In this way, the electrode material has a much higher specific gravity than metal oxides. Therefore, when the powder is mixed with a large amount of binder, - after applying the coust-like material to the solid electrolyte, the electrode material powder with a high specific gravity will settle down (toward the solid electrolyte surface side) on the upper surface of the solid electrolyte, and the specific gravity will decrease. The homogeneity of the paste-like material is hindered by the difference in specific gravity, such as small metal oxide powder floating to the surface and making it difficult to support the metal oxide at the three-phase point.

またバインダーは、ペースト秋材焼成時に焼失し、その
焼失部分が気孔となるが、この気孔が3相点近傍におい
て多数発生すると、該3相点における金属酸化物の密度
が低下し、リニアな起電力特性が得られなくなる。
In addition, the binder is burnt off during the firing of the paste wood, and the burnt out portion becomes pores, but if a large number of pores occur near the three-phase point, the density of the metal oxide at the three-phase point decreases, causing a linear occurrence. Power characteristics cannot be obtained.

上記2つの不具合は、粉体総量に対して容積比で2倍を
超えるバインダーを使用したときに、センサーの実用に
支障をきたす程度に顕著化する。したがってバインダー
の量は上記の面からは少ないほど好ましいが、余りにバ
インダーの量を減らすと、今度はペースト状材の塗布性
が悪くなるので、実用的には粉体総量に対して容積比で
0.5倍以上のバインダーを加える必要がある。
The above two problems become noticeable to the extent that they impede the practical use of the sensor when the binder is used in a volume ratio of more than twice the total amount of powder. Therefore, from the above point of view, it is preferable that the amount of binder be as small as possible, but if the amount of binder is reduced too much, the applicability of the paste material will deteriorate, so in practical terms, the volume ratio to the total amount of powder should be 0. .5 times more binder must be added.

次にペースト状材の焼成温度について説明する。ペース
ト状材を焼成して多孔質電極を形成するには当然、電極
材料の焼結が可能な高温で該ペースト状材を焼成する必
要がある。
Next, the firing temperature of the paste material will be explained. In order to form a porous electrode by firing a paste-like material, it is naturally necessary to fire the paste-like material at a high temperature that allows sintering of the electrode material.

ペースト状材を焼成して空燃比センサーの電極を形成す
ることは、舛えば特開昭52−46889号公報に示さ
れるように従来から行なわれているが、従来は電極の付
着強度を高めることを目的として、電極材料を融かしう
る高温で焼成を行なっていた。しかしこのような高温で
焼成を行なうと、電極と金属酸化物の触媒活性、特に金
属酸化物のHC酸化能力が著しく低下する。これは極微
粒子の金属酸化物材料の溶融あるいはシシタリングによ
り、その比表面積が減少し、活性点が失われるためであ
る。既に述べたように、本発明の方法によって製造され
る広域空燃比センサーは、金属酸化物のHC酸化能力に
よって起電力特性のリニア化を得るものであシ、またと
のHC酸化能力は電極の触媒活性と金属酸化物の触媒活
性の総合的なバランスによって決定されるので、これら
電極と金属酸化物の触媒活性は絶対に変化させてはなら
ない。したがって本発明の方法においては、従来性なわ
れていた方法とは異なシ、焼成温度を電極材料と金属酸
化物の融点以上に設定してはならないのである。
Forming the electrodes of air-fuel ratio sensors by firing a paste-like material has been done for a long time, as shown in Japanese Patent Application Laid-Open No. 52-46889. For this purpose, firing was performed at a high temperature that would melt the electrode material. However, when calcining is performed at such a high temperature, the catalytic activity of the electrode and the metal oxide, especially the HC oxidation ability of the metal oxide, is significantly reduced. This is because the specific surface area of the ultrafine metal oxide material decreases due to melting or shishitaring, and active sites are lost. As already mentioned, the wide range air-fuel ratio sensor manufactured by the method of the present invention obtains linearization of the electromotive force characteristics by the HC oxidation ability of the metal oxide, and the HC oxidation ability is determined by the HC oxidation ability of the electrode. Since it is determined by the overall balance between the catalytic activity and the catalytic activity of the metal oxide, the catalytic activity of these electrodes and metal oxides must never be changed. Therefore, in the method of the present invention, unlike conventional methods, the firing temperature must not be set higher than the melting point of the electrode material and the metal oxide.

具体的には、電極材料としてpt(融点1773℃)を
使用する場合には900〜1100℃。
Specifically, when PT (melting point: 1773°C) is used as the electrode material, the temperature is 900 to 1100°C.

Ag(融点960℃)を使用する場合には550〜80
0℃程度に焼成温度を設定することが好ましい。
550 to 80 when using Ag (melting point 960°C)
It is preferable to set the firing temperature to about 0°C.

なお金属酸化物粉末を、電極材料粉末より粒子径が小さ
くなるように調製すると、金属酸化物を3相点に担持さ
せる上で有利である。
Note that preparing the metal oxide powder so that the particle size is smaller than that of the electrode material powder is advantageous in supporting the metal oxide at the three-phase point.

(前記第3図において仮りに4を電極、3を金属酸化物
と想定してみれば、大きな粒子径の金属酸化物が各電極
の3相点に担持され難いことが明確であろう。)また金
属酸化物粉末の粒子径を小さく設定すれば、金属酸化物
の比表面積が大きくなってHC酸化能力が向上する、と
いう効果も得られる。
(If we assume in FIG. 3 that 4 is an electrode and 3 is a metal oxide, it will be clear that metal oxides with large particle diameters are difficult to be supported at the three-phase points of each electrode.) Further, by setting the particle size of the metal oxide powder to be small, the specific surface area of the metal oxide increases and the HC oxidation ability is improved.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

〔第1実施例〕 電極材料としてのAg粉末とバインダーとが混練されて
なるAgペーストと、HC酸化能力を有する金属酸化物
であるSnO2の粉末とを重量比7:3の割合で混合、
十分に混練し、該ペースト状材を固体電解質管の外表面
(測定側表面)に約20μの厚さに塗布する。固体電解
質管の内表面(大気側表面)には上記Agペーストをそ
のまま塗布する。次にこの固体電解質管を650℃の温
度で1時間焼成し、外表面には3相点にSnO2を担持
したAg電極、内表面にはAg電電極焼焼結れた、本発
明の第1実施例の製造法による広域空燃比センサーNo
、1を得た。
[First Example] Ag paste made by kneading Ag powder as an electrode material and a binder and SnO2 powder, which is a metal oxide having HC oxidation ability, were mixed at a weight ratio of 7:3,
Thoroughly knead and apply the paste material to a thickness of about 20 μm on the outer surface (measurement side surface) of the solid electrolyte tube. The above Ag paste is applied as is to the inner surface (atmospheric side surface) of the solid electrolyte tube. Next, this solid electrolyte tube was fired at a temperature of 650°C for 1 hour, and an Ag electrode carrying SnO2 at the three-phase point was sintered on the outer surface, and an Ag electrode was sintered on the inner surface. Wide range air-fuel ratio sensor No. according to the manufacturing method of the example
, got 1.

このNo、1センサーをレシプロエンジンの排気系に装
着してテストを行なった。センサー付近の排気ガス温度
を550℃に保った状態で空燃比A/Fを11〜18に
変化させて起電力を測定したところ、第7図に示すよう
なリニアな起電力特性が得られた。
This No. 1 sensor was attached to the exhaust system of a reciprocating engine and tested. When we measured the electromotive force by changing the air-fuel ratio A/F from 11 to 18 while maintaining the exhaust gas temperature near the sensor at 550℃, we obtained linear electromotive force characteristics as shown in Figure 7. .

〔第2実施例〕 電極材料としてのpt粉末とバインダーとが混練されて
なるptペーストと、HC酸化能力を有する金属酸化物
であるIn20aの粉末とを重量比4:1の割合で混合
、十分に混練し、該ペースト状材を固体電解質管の外表
面(測定側表面)に約15μの厚さに塗布する。固体電
解質管の内表面(大気側表面)には上記ptペーストを
そのまま塗布する。次にこの固体電解質管を800℃の
温度で1時間焼成し、外表面には3相点に■n203を
担持したpt電極、内表面にはpt電極が焼結された、
本発明の第2実施例の製造法による広域空燃比センサー
No、2を得た。
[Second Example] A PT paste made by kneading PT powder as an electrode material and a binder, and In20a powder, which is a metal oxide having HC oxidation ability, were mixed at a weight ratio of 4:1, and the mixture was sufficiently mixed. The paste material is applied to the outer surface (measurement side surface) of the solid electrolyte tube to a thickness of about 15 μm. The above PT paste is applied as is to the inner surface (atmosphere side surface) of the solid electrolyte tube. Next, this solid electrolyte tube was fired at a temperature of 800°C for 1 hour, and a PT electrode carrying n203 at the three-phase point was sintered on the outer surface, and a PT electrode was sintered on the inner surface.
Wide-range air-fuel ratio sensor No. 2 was obtained by the manufacturing method of the second embodiment of the present invention.

このNo、2センサーの起電力特性を、第1実施例にお
けるテストと同じテストで測定したところ、第8図に示
すような結果が得られた。
When the electromotive force characteristics of this No. 2 sensor were measured in the same test as in the first embodiment, the results shown in FIG. 8 were obtained.

〔他の製造法との比較〕[Comparison with other manufacturing methods]

本発明の製造法に、よる広域空燃比センサーの個体間性
能差を他の製造法によるセンサーの個体間性能差と比較
するため、前記No、1センサ一50本を形成し、一方
、従来法によるものとして、固体電解質に予めAgペー
ストを塗布した後焼成して電極を形成し、これを5nO
z粒子とバインダー及び粘度調製液からなる浴液中に浸
漬した後焼成する方法によってAg : SnO2がほ
ぼ7:3のセンサーを50本形成し、前述のようなテス
トによって各々の起電力を測定した。
In order to compare the inter-individual performance differences of wide range air-fuel ratio sensors made by the manufacturing method of the present invention with those of sensors made by other manufacturing methods, 50 of the above-mentioned No. 1 sensors were formed; According to the method, an electrode was formed by coating a solid electrolyte with Ag paste in advance and then firing it, and this was coated with 5nO
Fifty sensors with a ratio of Ag:SnO2 of approximately 7:3 were formed by immersing them in a bath solution consisting of Z particles, a binder, and a viscosity adjusting liquid and then firing them, and the electromotive force of each sensor was measured by the test described above. .

各センサ一群における個体間の起電力特性バラツキを、
各空燃比A/Fでの起電力の第9図に示すような結果が
得られた。この第9図に明瞭に示されるように、本発明
の製造法による広域空燃比センサーにあっては個体間の
起電力性能差が低く抑えられている。すなわち本発明の
製造法によれば、一定性能のセンサーを多量に製造でき
ることが判明された。
The variation in electromotive force characteristics among individuals in each sensor group is
The results shown in FIG. 9 of the electromotive force at each air-fuel ratio A/F were obtained. As clearly shown in FIG. 9, in the wide range air-fuel ratio sensor manufactured by the manufacturing method of the present invention, the difference in electromotive force performance between individual sensors is suppressed to a low level. That is, it has been found that according to the manufacturing method of the present invention, sensors with constant performance can be manufactured in large quantities.

以上詳細に説明した通シ本発明によれば、十分にリニア
な起電力特性を有し、しかも個体間の性能差が少なくて
実用に適した広域空燃比センサーが得られる。
According to the present invention as described in detail above, a wide range air-fuel ratio sensor can be obtained which has sufficiently linear electromotive force characteristics and has little difference in performance between individual sensors and is suitable for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空燃比センサーにおける空燃比と3相点の02
.Co分圧との関係を電極触媒活性毎に示すグラフ、 第2図は本発明の方法によシ製造される広域空燃比セン
サーの構造を示す概略断面図、第3図は第2図の拡大図
、 第4図は第3図の拡大図、 第5A図は理論センサーにおける空燃比と起電力との関
係を被測定ガスの温度毎に示すグラフ、 第5B図は本発明の方法により製造される広域空燃比セ
ンサーにおける起電力特性をλセンサーの特性と比較し
て示す説明図、第6図は本発明の広域空燃比センサーの
製造法を概略的に示す説明図、 第7図は本発明の第1実施例によシ製造された広域空燃
比センサーの、空燃比に対する起電力特性を示すグラフ
、 第8図は本発明の第2実施例により製造された広域空燃
比センサーの、空燃比に対する起電力特性を示すグラフ
、 第9図は本発明の製造法による広域空燃比センサーと、
他の製造法による広域空燃比センサーとの、各個体間性
能差を比較して示すグラフである。 1・・・固体電解質 2・・・大気側多孔質電極3・・
・測定側多孔質電極 4・・・金属 酸 化物6・・・
被測定ガス 第1図 ウジ火祭比 (工里i命つミ幻t)lt147ヒO遣1
)第2図 、図 第3図 第4図 第5B図 1.0□ 第7図 A/F 第8図 A/F 第9図 A/F FIB和58年2月248 特許庁長官 殿 2、発明の名称 広域空燃1とセンサーの製造法 3、?11i正をする者 事(!l−との関係      特許出願人4、代理人 東京都港区六本木5丁目2番1号 な   し 6、補止により増加する発明の数   な  し7、補
止の対象     明nJ四の[発明の詳細な説明:の
(1ηB、補正の内容 1)明醐j四M7頁第3〜4行 手続ネ重圧書(方式) %式% 1、事件の表示 特願昭57〜220510号 2、発明の名称 広域空燃比センサーの製造法 3、補正をする者 事件との関係     特許出願人 4、代理人 東京都港区六本木5丁目2番1月 5、補正命令の日付 昭和58年3月9日(発送日 昭和58年3月29日)
(1)明剣円第1b貝をゑ1ワのシリと片し台λ◇。 酸化物粉末の混合比は、リニアな起電力特性を得るため
には10係(M量比)以上、多孔質電極の導電性を十分
に維持するためには40チ(同)以下にする必要がある
(特に好捷しくは15〜30%)ことが判明した。 次に粉体とバインダーの比率について説明する。以下の
表は、本発明において電極材料として好ましく使用さ九
る材料と、HCをIn化してCOを生成する金属酸化物
として好−ましく1史用される材料の比重を示すもので
ある。
Figure 1 shows the air-fuel ratio at the air-fuel ratio sensor and the three-phase point 02.
.. A graph showing the relationship with Co partial pressure for each electrode catalyst activity. Figure 2 is a schematic cross-sectional view showing the structure of a wide range air-fuel ratio sensor manufactured by the method of the present invention. Figure 3 is an enlarged view of Figure 2. Figure 4 is an enlarged view of Figure 3, Figure 5A is a graph showing the relationship between the air-fuel ratio and the electromotive force in the theoretical sensor for each temperature of the gas to be measured, and Figure 5B is a graph showing the relationship between the air-fuel ratio and the electromotive force in the theoretical sensor. FIG. 6 is an explanatory diagram schematically showing the manufacturing method of the wide-range air-fuel ratio sensor of the present invention, and FIG. FIG. 8 is a graph showing the electromotive force characteristics with respect to the air-fuel ratio of the wide-range air-fuel ratio sensor manufactured according to the first embodiment of the present invention. FIG. 9 is a graph showing the electromotive force characteristics for the wide range air-fuel ratio sensor manufactured by the manufacturing method of the present invention,
It is a graph showing a comparison between individual performance differences with wide-range air-fuel ratio sensors manufactured by other manufacturing methods. 1... Solid electrolyte 2... Atmospheric side porous electrode 3...
・Measurement side porous electrode 4...Metal oxide 6...
Gas to be measured Diagram 1
) Fig. 2, Fig. 3 Fig. 4 Fig. 5B Fig. 1.0□ Fig. 7 A/F Fig. 8 A/F Fig. 9 A/F FIB Japanese February 1958 248 Commissioner of the Patent Office Mr. 2, Name of the invention Wide area air fuel 1 and sensor manufacturing method 3. 11iRelationship with the person making the amendment (!l- Patent applicant 4, agent 5-2-1 Roppongi, Minato-ku, Tokyo None 6. Number of inventions increased by amendment None 7. Amendment Subject Akira nJ4 [Detailed description of the invention: (1ηB, Contents of amendment 1) Meigoj4M page 3rd to 4th lines of procedural emphasis (method) % formula % 1, case indication patent application Sho No. 57-220510 2, Name of the invention: Method for manufacturing a wide range air-fuel ratio sensor 3, Person making the amendment Relationship to the case Patent applicant 4, Agent, 5-2 Roppongi, Minato-ku, Tokyo, January 5, Date of amendment order March 9, 1981 (Shipping date: March 29, 1988)
(1) Take the 1b shell of the Meiken circle and remove it from the 1st wa. The mixing ratio of the oxide powder needs to be at least a factor of 10 (M amount ratio) to obtain linear electromotive force characteristics, and less than a factor of 40 (M amount ratio) to maintain sufficient conductivity of the porous electrode. (particularly preferably 15 to 30%). Next, the ratio of powder to binder will be explained. The table below shows the specific gravity of materials preferably used as electrode materials in the present invention and materials preferably used as metal oxides for converting HC into In to produce CO.

Claims (1)

【特許請求の範囲】[Claims] 固体電解質の表面に半触媒性能を有する多孔質電極が形
成され、かつ該電極と固体電解質と被測定ガスとで構成
される3相点近傍に、HCを酸化してCOを生成する金
属酸化物が存在せしめられてなる広域空燃比センサーの
製造法であって、前記金属酸化物の粉末10〜40重量
係、残部が電極材料粉末からなる粉体と、この粉体の総
量に対して容積比0.5〜2倍の量のバインダーとを混
合してなるペースト状材を前記固体電解質の表面に塗布
した後、該ペースト状利を前記電極材料および金属酸化
物の融点を下回りかつ電極材料の焼結が可能な温度で焼
成゛することを特徴とする広域空燃比センサーの製造法
A porous electrode having semi-catalytic performance is formed on the surface of the solid electrolyte, and a metal oxide that oxidizes HC to generate CO is located near the three-phase point consisting of the electrode, the solid electrolyte, and the gas to be measured. A method for producing a wide range air-fuel ratio sensor comprising: a powder consisting of 10 to 40 parts by weight of the metal oxide powder, the remainder being electrode material powder, and a volume ratio relative to the total amount of the powder; After applying a paste material mixed with 0.5 to 2 times the amount of binder to the surface of the solid electrolyte, the paste material is heated to a temperature below the melting point of the electrode material and metal oxide and of the electrode material. A method for manufacturing a wide range air-fuel ratio sensor characterized by firing at a temperature that allows sintering.
JP57220510A 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor Pending JPS59109855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220510A JPS59109855A (en) 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220510A JPS59109855A (en) 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor

Publications (1)

Publication Number Publication Date
JPS59109855A true JPS59109855A (en) 1984-06-25

Family

ID=16752151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220510A Pending JPS59109855A (en) 1982-12-16 1982-12-16 Manufacture of wide-range air fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPS59109855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184457A (en) * 1988-01-18 1989-07-24 Ngk Insulators Ltd Oxygen sensor element
JPH01185440A (en) * 1988-01-20 1989-07-25 Ngk Insulators Ltd Oxygen sensor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184457A (en) * 1988-01-18 1989-07-24 Ngk Insulators Ltd Oxygen sensor element
JPH01185440A (en) * 1988-01-20 1989-07-25 Ngk Insulators Ltd Oxygen sensor element

Similar Documents

Publication Publication Date Title
US4720335A (en) Wide range air fuel ratio sensor
US6303011B1 (en) Gas sensor
JPS63266352A (en) Electrode structure of oxygen sensor
JPH01184457A (en) Oxygen sensor element
JPS5873857A (en) Manufacture of measuring machine mainly measuring oxygen concentration in waste gas of internal combustion engine
JPS6029066B2 (en) Air-fuel ratio control signal generator
JPH10267893A (en) Gas sensor
JP2012504237A (en) Nitrogen oxide gas sensor
JP2001318075A (en) NOx GAS DETECTOR
Li et al. A novel mixed-potential type NH3 sensor based on Ag nanoparticles decorated AgNbO3 sensing electrode synthesized by demixing method
JP4456839B2 (en) NOx detection cell, manufacturing method thereof, and NOx detection apparatus including the cell
JPH09288086A (en) Nitrogen oxide measuring apparatus
US20020185376A1 (en) Mixed potential hydrocarbon sensor with low sensitivity to methane and CO
CN111505084B (en) Sensing element and preparation method thereof
JP2018049011A (en) Nitrogen oxide sensor and its manufacturing method
JP2012504236A (en) Nitrogen oxide gas sensor
JPS59109855A (en) Manufacture of wide-range air fuel ratio sensor
JP3643709B2 (en) Gas concentration measuring device and gas concentration measuring method
JP2012177622A (en) Gas sensor and utilization of the same
KR0167358B1 (en) Electrochemical Measurement Probes
JPS61195338A (en) Air fuel ratio sensor
JPH0244244A (en) Manufacture of electrochemical cell
JP2000121604A (en) Gas sensor
CN111505082A (en) Novel tubular sensing element and preparation method thereof
JPS59109853A (en) Manufacture of wide range air fuel ratio sensor