JPS59109835A - Converter for engineering work - Google Patents

Converter for engineering work

Info

Publication number
JPS59109835A
JPS59109835A JP21918082A JP21918082A JPS59109835A JP S59109835 A JPS59109835 A JP S59109835A JP 21918082 A JP21918082 A JP 21918082A JP 21918082 A JP21918082 A JP 21918082A JP S59109835 A JPS59109835 A JP S59109835A
Authority
JP
Japan
Prior art keywords
optical fiber
converter
light
diaphragm
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21918082A
Other languages
Japanese (ja)
Inventor
Yoshiro Nojiri
野尻 芳郎
Nobuyuki Kurosawa
黒沢 信行
Koichi Yabe
興一 矢部
Keiichiro Mochizuki
望月 恵一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Original Assignee
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA DENGIYOU KK, Kyowa Electronic Instruments Co Ltd filed Critical KYOWA DENGIYOU KK
Priority to JP21918082A priority Critical patent/JPS59109835A/en
Publication of JPS59109835A publication Critical patent/JPS59109835A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0076Transmitting or indicating the displacement of flexible diaphragms using photoelectric means
    • G01L9/0077Transmitting or indicating the displacement of flexible diaphragms using photoelectric means for measuring reflected light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To attain a converter for engineering works which can detect the changed state of an object to be measured stably without the electric influence of noise, floating capacity, thunder, etc., by transmitting and receiving signals between a detecting part, which detects the deformation of a distortion causing body, and a measurer through an optical cable. CONSTITUTION:A primary diaphragm 8 which deforms in accordance with the distortion causing body and a secondary diaphragm 21 are allowed to face each other through a gap 9, and the reflected light, which is changed by the deformation of the secondary diaphragm 21 corresponding to the deformation of the diaphragm 8, from the diaphragm 21 of the irradiating light passing through an optical fiber bundle 14 from a light projector 18 is received by a photoelectric converter 19 through an optical fiber bundle 15. An electric signal corresponding to the distortion of the distortion causing body is outputted from the converter 19. By this constituting using optical fibers, the converter for engineering works is attained which can detect the changed state of the object to be measured stably without the electric influence of noise, floating capacity, the damage of thunder, etc.

Description

【発明の詳細な説明】 築物や地中等の被測定対象に設置してそれらの変状を電
気量に変換して測定する土木用変換器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a civil engineering converter that is installed on objects to be measured, such as buildings and underground, and converts deformations thereof into electrical quantities and measures them.

ここで、土木用変換器とは、例えば傾斜計、土圧計、摩
擦力計、変位計、荷重計、鉄筋針、水圧計等、岩盤、土
、コンクリート等の被測定対象の変状(または挙動)を
観測するものをいう。
Here, civil engineering transducers are, for example, inclinometers, earth pressure meters, friction force meters, displacement meters, load meters, reinforcing steel needles, water pressure gauges, etc., and the deformation (or behavior) of objects to be measured such as rock, soil, and concrete. ) is observed.

従来、このような目的に用いられていた変換器としてカ
ールソン式土木用変換器があるが、その一例としてカー
ルソン式土圧計の構成につき、第1図を参照しつつ説明
する。
Conventionally, there is a Carlson type civil engineering converter as a converter used for such a purpose, and as an example, the configuration of a Carlson type soil pressure gauge will be explained with reference to FIG.

第1図は、そのカールソン式土圧計の・政略断面図であ
り、外部測定器(図示せず)と接続されたケープル1が
鋼製円筒2に挿入され、前記ケーブル1の中に通された
リード線3が端子板4を介して鋼製枠5.5′に固着さ
れたターミナル6および6′に接続されている。鋼製枠
5の一方は、後述の二次ダイヤフラム中央部に一端が固
着され、他方の鋼製枠5′は、鋼製円筒2の固定部に固
着されており、両鋼製棒5゜5′は互いに平行に且つ近
傍して配設されている。両鋼製棒5および5′に設けら
れたそれぞれ2つのターミナル6.6および6’ 、 
6’間に交叉するように受感部を構成する抵抗線7,7
′が張架されている。土圧が一次ダイヤフラム8にかか
ったとき、間隙9の中に密閉封入された水銀を介して前
記−次ダイヤフラム8よりも受圧面積の小さい二次ダイ
ヤフラム10に土圧が伝達される。すると、二次ダイヤ
フラムlOは、−次ダイヤフラム8よりも太きく変位し
、その変位は二次ダイヤフラム10に連結された鋼製枠
5の変位となり、固定された@@軸棒5′との間に相対
的なずれが生ずる。この相対的なずれによって、両ター
ミナル6−6′間に張架された抵抗線7,7′が伸縮さ
れ、抵抗線7 + 7’の抵抗が変化するので、その抵
抗変化を外部測定器により検出し、土圧を測定する。尚
、前記鋼製円筒2の内部空間11には、長期間の測定に
伴なう抵抗線7,7′のさびの発生を防止すべく経年変
化の少ない不揮発性の油を若干の空気を存して封入しで
ある。
FIG. 1 is a schematic cross-sectional view of the Carlson type earth pressure gauge, in which a cable 1 connected to an external measuring device (not shown) is inserted into a steel cylinder 2 and passed through the cable 1. A lead wire 3 is connected via a terminal plate 4 to terminals 6 and 6' fixed to a steel frame 5.5'. One end of the steel frame 5 is fixed to the center of a secondary diaphragm, which will be described later, and the other steel frame 5' is fixed to a fixed part of the steel cylinder 2, and both steel bars 5°5 ' are arranged parallel to each other and close to each other. two terminals 6.6 and 6' on both steel bars 5 and 5', respectively;
Resistance wires 7, 7 forming the sensing part so as to intersect between 6'
' is hung. When earth pressure is applied to the primary diaphragm 8, the earth pressure is transmitted to the secondary diaphragm 10, which has a smaller pressure receiving area than the secondary diaphragm 8, via the mercury sealed in the gap 9. Then, the secondary diaphragm lO is displaced more than the -order diaphragm 8, and this displacement becomes the displacement of the steel frame 5 connected to the secondary diaphragm 10, and the distance between it and the fixed @@ shaft rod 5'. A relative shift occurs between the two. Due to this relative shift, the resistance wires 7 and 7' stretched between both terminals 6 and 6' are expanded and contracted, and the resistance of the resistance wires 7 + 7' changes, so the resistance change can be measured using an external measuring device. Detect and measure earth pressure. In order to prevent the resistance wires 7 and 7' from rusting due to long-term measurements, a small amount of air is added to the inner space 11 of the steel cylinder 2 with non-volatile oil that does not change easily over time. It is enclosed.

次に、受感部にひずみゲージを用いた場合の従来の土圧
計について、その概略断面図をもって示す第2図を参照
して説明する。尚、第1図示の実施例のものと同一の部
材(または部分)には同一の符号を付しその説明を省略
する。この従来例の場合、第1図の鋼製枠5,5′およ
び抵抗線7,7′を用いる代りにひずみゲージ12を二
次ダイヤフラム10の内面側に接着している。従って、
−次ダイヤフラム8にかかった土圧は、間隙9内の水銀
を介して二次ダイヤフラム10に変位を増幅されて伝達
され、二次ダイヤフラム10上に接着されたひずみゲー
ジ12の抵抗を変化せしめるので、該ひずみゲージ12
でホイートストンブリッジを構成しそのホイートストン
ブリッジで土圧に対応した一気信号に変換される。
Next, a conventional earth pressure gauge using a strain gauge as a sensing part will be described with reference to FIG. 2, which shows a schematic cross-sectional view thereof. Incidentally, the same members (or portions) as in the embodiment shown in the first figure are given the same reference numerals, and their explanations will be omitted. In this conventional example, a strain gauge 12 is bonded to the inner surface of the secondary diaphragm 10 instead of using the steel frames 5, 5' and resistance wires 7, 7' shown in FIG. Therefore,
- The earth pressure applied to the secondary diaphragm 8 is transmitted through the mercury in the gap 9 to the secondary diaphragm 10 with amplified displacement, changing the resistance of the strain gauge 12 bonded on the secondary diaphragm 10. , the strain gauge 12
This constitutes a Wheatstone bridge, where it is converted into a signal corresponding to the earth pressure.

しかしながら、上記第1図および第2図に示す従来の土
圧計は、いずれも検出部に抵抗線、ひずみゲージ等の電
気的素子を使用し、更に検出部と計測器とを結ぶために
電気ケーブルを使用してシ〕°′るので、湿気や外力に
より上記抵抗線や電気ケーブル等が絶縁不良、断線等を
生じ易いという欠点があった。特に土木変換器特有の問
題として、上記電気的素子等が屋外に配置される場合が
殆んどであるため、落雷による破壊を受は易く、また土
木用変換器は主に地中やコンクリ−1〜中に埋設される
ため、万一変換器やケーブルが故障しても交換すること
ができないという大きな問題があった。また、土木用変
換器は、一般に計測器から離れた場所に設置されその間
を長い電気ケーブル(1−に及ぶことがある)を使用す
るので、その電気ケーブルの内部抵抗の影響および浮遊
容量による影響なと避けることができない難点があった
However, the conventional earth pressure gauges shown in Figures 1 and 2 above both use electrical elements such as resistance wires and strain gauges in the detection part, and also use electric cables to connect the detection part and the measuring instrument. However, since the wires are used for heating, there is a drawback that the resistance wires, electric cables, etc. are susceptible to poor insulation, disconnection, etc. due to moisture or external force. In particular, a problem unique to civil engineering converters is that most of the electrical elements mentioned above are placed outdoors, so they are easily damaged by lightning strikes, and civil engineering converters are mainly located underground or in concrete. Since the converter or cable is buried inside the converter, there is a major problem in that even if the converter or cable breaks down, it cannot be replaced. In addition, since civil engineering converters are generally installed at a location far from the measuring instrument and use long electrical cables (sometimes as long as 1-2) between them, the effects of internal resistance and stray capacitance of the electrical cables There was an unavoidable difficulty.

本発明は従来の土木変換器における上記問題を解決すべ
くなされたもので、その目的とするところは、簡単な構
成で、故障が極めて少なく、特に少なくとも変換部およ
び信号伝送ケーブルにおいては、絶縁低下、ノイズの影
響、浮遊容量の影響、雷の被害などの電気的影響を受け
ることが全くなく、長期に亘り安定して被測定対象の変
状を検出し得る土木用変換器を提供することにある。
The present invention was made in order to solve the above-mentioned problems in conventional civil engineering converters, and its purpose is to have a simple configuration, extremely few failures, and to reduce the insulation loss in at least the converter and signal transmission cable. To provide a civil engineering transducer that is completely free from electrical influences such as noise, stray capacitance, and lightning damage, and can stably detect deformations in objects to be measured over a long period of time. be.

すなわち、本発明は上記目的を達成するため、複数の光
ファイバからなる光フアイバケーブルと、この光フアイ
バケーブルの一端面側に対置された投光器および光電変
換器と、前記光フアイバケーブルの他端面と対置されそ
の他端面と対向する面が反射面とされ且つ前記被測定対
象の変状に応じて変形する起歪体とからなり、前記投光
器で前記光フアイバケーブルを介して前記起歪体の反射
面に光を投射し、該起歪体の反射面からの反射光を前記
光フアイバケーブルを介して前記光電変換器で電気量に
変換することにより前記被測定対象の変状を検出するよ
うに構成したことを特徴としている。
That is, in order to achieve the above object, the present invention includes an optical fiber cable consisting of a plurality of optical fibers, a projector and a photoelectric converter placed opposite to one end surface of the optical fiber cable, and the other end surface of the optical fiber cable. It is composed of a strain-generating body whose surface facing the other end surface is a reflective surface and which deforms according to the deformation of the object to be measured, and the reflective surface of the strain-generating body is used in the projector via the optical fiber cable. The deformation of the object to be measured is detected by projecting light onto the object and converting the reflected light from the reflective surface of the strain-generating body into an electrical quantity by the photoelectric converter via the optical fiber cable. It is characterized by what it did.

以下、本発明の実施例を図面を用いて詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は、本発明を土圧計に適用した場合における一実
施例の構成を模式的に示す断面図である。尚、第3図に
おいて、第1図および第2図に示す部材と同一の部材に
は同一符号を付しその説明を省略する。
FIG. 3 is a sectional view schematically showing the configuration of an embodiment in which the present invention is applied to an earth pressure gauge. In FIG. 3, the same members as those shown in FIGS. 1 and 2 are designated by the same reference numerals, and their explanations will be omitted.

同図において、]3は信号伝送ケーブルとしての光フア
イバケーブルで、複数の光ファイバ(繊維)を集束して
なり、一端側は少なくとも投光用光ファイバ束14と受
光用光ファイバ束15とに分岐され、他端側は鋼製円筒
2に挿通され且つ本体剛体部16に固定部材17により
固定されている。この光フアイバケーブル13の一端側
の投光用光ファイバ束】4の端面には、LED(発光ダ
イオード)、タングステンランプ等の投光器18が直接
または集光レンズ、絞り(図示省略)などを介して対置
(対向配置)されており、また受光用光ファイバ束15
の端面には、フォト)−ランジスタQclS((m化カ
ドミウム)COD(電荷転送素子)等の光電変換器19
が直接または集光レンズ、絞り、フィルタ(図示省略)
などを介して対置されている。一方、光フアイバケーブ
ル13の他端面には、メッキ等により鏡面仕上げされた
反射面20を備えた起歪体としての二次ダイヤフラム2
1が対置されている。二次ダイヤフラム21の内部空間
22には、光フアイバケーブル13の他端面(投受光面
)23および二次ダイヤフラム21の反射面20が曇っ
たり酸化するのを防止すべく蟹素ガス等の不活性ガスが
充填密封されている。
In the figure, ] 3 is an optical fiber cable as a signal transmission cable, which is made by converging a plurality of optical fibers (fibers), and one end is connected to at least an optical fiber bundle 14 for transmitting light and an optical fiber bundle 15 for receiving light. It is branched, and the other end is inserted into the steel cylinder 2 and fixed to the main body rigid part 16 by a fixing member 17. A light projector 18 such as an LED (light emitting diode) or tungsten lamp is attached to the end face of the light projecting optical fiber bundle 4 at one end of the optical fiber cable 13, either directly or via a condenser lens, a diaphragm (not shown), etc. The optical fiber bundle 15 for receiving light is placed oppositely (opposed to each other).
A photoelectric converter 19 such as a photo)-transistor QclS ((cadmium oxide) COD (charge transfer device) is mounted on the end face of the
Direct or condensing lens, aperture, filter (not shown)
It is opposed through etc. On the other hand, on the other end surface of the optical fiber cable 13, a secondary diaphragm 2 as a strain body is provided with a reflective surface 20 that is mirror-finished by plating or the like.
1 is placed opposite. The internal space 22 of the secondary diaphragm 21 is filled with inert gas such as crab gas to prevent the other end surface (light emitting/receiving surface) 23 of the optical fiber cable 13 and the reflective surface 20 of the secondary diaphragm 21 from becoming cloudy or oxidizing. Filled with gas and sealed.

次に、上記構成よりなる実施例の動作につき第3図〜第
6図を参照しつつ説明する。ここに第4図は、−次ダイ
ヤフラムに土圧がかかつていない状態、第5図はその一
部ダイヤフラムに土庄がかかっている状態をそれぞれ説
明するための図であり、第6図は、二次ダイヤフラムの
たわみ量と光量の減衰比(投光量に対する受光量の割合
)の関係を示す特性図である。
Next, the operation of the embodiment having the above configuration will be explained with reference to FIGS. 3 to 6. Here, Fig. 4 is a diagram to explain a state in which no earth pressure is applied to the negative diaphragm, Fig. 5 is a diagram to explain a state in which a part of the diaphragm is affected by soil pressure, and Fig. 6 is a diagram to explain a state in which earth pressure is applied to a part of the diaphragm. FIG. 3 is a characteristic diagram showing the relationship between the amount of deflection of the secondary diaphragm and the attenuation ratio of the amount of light (ratio of the amount of received light to the amount of emitted light).

先ず、土圧計の一部ダイヤフラム8に土圧がかかつてい
ない場合は、−次ダイヤフラム8および二次ダイヤフラ
ム21のいずれも変形せず両ダイヤフラム8.21は平
板状を呈している。従って、投光器18より発せられた
ビームは、投光用光ファイバ束14の一犀、′1面から
入射し、光フアイバケーブル13のうちの投光用光フア
イバ内で反射を繰り返し他端面23に伝送され二次ダイ
ヤフラム21の反射面20を照射する。鋳面仕上げされ
た反射面20は、この場合平板状を呈しているので、そ
こに照射された光は、はぼ18o°反転されて再び光フ
アイバケーブル13の他端面(投受光面)に入射し受光
用光フアイバ内面で同様に反射を繰り返し受光用光ファ
イバ束15の一端面から射出し、光電変換器19に入射
し、例えば光電変換素子としてのadsの抵抗値を変化
せしめる。ここで、光電変換器19への受光量と投光器
180投光量との比(減衰比)をAとすると、土圧がか
かつていないときこのへの値は最大値を示す。
First, when earth pressure is not built up in the partial diaphragm 8 of the earth pressure gauge, neither the secondary diaphragm 8 nor the secondary diaphragm 21 is deformed, and both diaphragms 8 and 21 have a flat plate shape. Therefore, the beam emitted from the light projector 18 enters the light projecting optical fiber bundle 14 from the first surface, and is repeatedly reflected within the light projecting optical fiber of the optical fiber cable 13 until it reaches the other end surface 23. The light is transmitted and illuminates the reflective surface 20 of the secondary diaphragm 21. Since the cast-finished reflective surface 20 has a flat plate shape in this case, the light irradiated thereon is reversed by approximately 18 degrees and enters the other end surface (light emitting/receiving surface) of the optical fiber cable 13 again. The light is then repeatedly reflected on the inner surface of the light-receiving optical fiber, exits from one end face of the light-receiving optical fiber bundle 15, and enters the photoelectric converter 19, changing the resistance value of ads as a photoelectric conversion element, for example. Here, if the ratio (attenuation ratio) between the amount of light received by the photoelectric converter 19 and the amount of light projected by the light projector 180 is A, the value to this value indicates the maximum value when the earth pressure is not high.

次に、−次ダイヤフラム8に土圧がかかり、その−次ダ
イヤフラム8が僅かにたわむと、第5図に示すようにそ
の圧力が間隙9に密閉封入された水銀を伝達媒体として
二次ダイヤフラム21を大きくたわませる。この二次ダ
イヤフラム21の受圧面積は、−次ダイヤフラム8の受
圧面積より小さいので、該土圧による変位は、二次ダイ
ヤフラム21に増幅されて伝達する。このとき、二次ダ
イヤフラム21は、その反射回加を光フアイバケーブル
13に向けて膨出するように液形するので、上述したよ
うに投光器18から発射され光フアイバケーブル13を
介しその他端面23から射出した光ビームの一部は、反
射面20によって光フアイバケーブルI3の内方に射入
せず、側方に洩れてしまう。この洩れ量は、二次ダイヤ
フラム21の変形量に対応する。換言すれば、二次ダイ
ヤフラム21のたわみ量は、受光用光ファイバ束14の
射出面における受光量、つまり光電変換器19の受光量
、ひいては光電変換器19から得られる電気量に反比例
する。
Next, when earth pressure is applied to the secondary diaphragm 8 and the secondary diaphragm 8 slightly deflects, the pressure is transferred to the secondary diaphragm 21 using mercury sealed in the gap 9 as a transmission medium, as shown in FIG. causes a large deflection. Since the pressure receiving area of the secondary diaphragm 21 is smaller than the pressure receiving area of the -order diaphragm 8, the displacement due to the earth pressure is amplified and transmitted to the secondary diaphragm 21. At this time, the secondary diaphragm 21 liquid forms so that the reflected rotation bulges out toward the optical fiber cable 13, so that it is emitted from the projector 18 via the optical fiber cable 13 and from the other end surface 23. A part of the emitted light beam does not enter the inside of the optical fiber cable I3 due to the reflective surface 20, but leaks to the side. This amount of leakage corresponds to the amount of deformation of the secondary diaphragm 21. In other words, the amount of deflection of the secondary diaphragm 21 is inversely proportional to the amount of light received at the exit surface of the light-receiving optical fiber bundle 14, that is, the amount of light received by the photoelectric converter 19, and ultimately the amount of electricity obtained from the photoelectric converter 19.

土圧とダイヤフラムのたわみとは比例することが知られ
ているので、投光器と受光量との比Aを測定することに
より土庄を知ることができる。その上圧と減衰比Aとの
関係をグラフに表わしたのが第6図であり、両者は、正
確に反比例している。
Since it is known that the earth pressure and the deflection of the diaphragm are proportional, the soil pressure can be determined by measuring the ratio A between the projector and the amount of light received. FIG. 6 is a graph showing the relationship between the upper pressure and the damping ratio A, and the two are exactly inversely proportional.

定すればよいが、極力偏りのない均等分布とすることが
望ましい。また、二次ダイヤフラム21内の反射面20
を除く壁面には乱反射、フレアなどによる測定誤差を除
去するためつや消し塗装等反射防止処理を施すことが望
ましい。
However, it is desirable to have an even distribution with as little bias as possible. In addition, the reflective surface 20 in the secondary diaphragm 21
It is desirable to apply anti-reflection treatment, such as matte coating, to walls other than those in the room to eliminate measurement errors due to diffused reflection, flare, etc.

また、上述した実施例においては、投光用光ファイバと
受光用光ファイバとを分けて用いたが、同一の光ファイ
バで投・受光を行わせることもできる。
Furthermore, in the above-described embodiments, the light emitting optical fiber and the light receiving optical fiber are used separately, but the same optical fiber may be used for light emitting and receiving.

すなわち、光フアイバケーブル13の一端面側にハーフ
ミラ−(またはハーフプリズム)を斜在せしめ、その背
後に光ファイバ13へ光ビームを投射するための投光器
18を配置し、更に上記ハーフミラ−の側方に光電変換
器19を配置し、光ファイバ13の他端面は、上記実施
例と同様、二次ダイヤフラム21と対置せしめた構成と
する。このように構成すれば、投光器18より発せられ
たビームは、ハーフミラ−1元ファイバケーブル13を
介して二次ダイヤフラム21に当り、反射面20で反射
された光ビームは再び光フアイバケーブル13内を逆進
し、ハーフミラ−で反射されて光電変換器19に射入す
る。従って、このようにした場合は、ハーフミラ−等の
ビームスプリッタを必要とするが、光フアイバケーブル
を2系統に分岐する必要がないので、光フアイバケーブ
ルとしてば安価に製作できる。
That is, a half mirror (or half prism) is disposed obliquely on one end surface side of the optical fiber cable 13, a light projector 18 for projecting a light beam to the optical fiber 13 is arranged behind it, and a light projector 18 is disposed on the side of the half mirror. A photoelectric converter 19 is disposed at , and the other end surface of the optical fiber 13 is configured to be opposed to the secondary diaphragm 21 as in the above embodiment. With this configuration, the beam emitted from the projector 18 hits the secondary diaphragm 21 via the half-mirror-single fiber cable 13, and the light beam reflected by the reflective surface 20 travels inside the optical fiber cable 13 again. The light travels backward, is reflected by a half mirror, and enters the photoelectric converter 19. Therefore, in this case, a beam splitter such as a half mirror is required, but since there is no need to branch the optical fiber cable into two systems, the optical fiber cable can be manufactured at low cost.

また、本発明の変換器は、上記土圧計に限らず、ダイヤ
フラム等の板のたわみを利用して物理的変化量を電気量
に変換して検出できるので、傾斜計、変位計、5購擦力
計、荷重計、鉄筋計、水圧計、等地中やコンクリート構
築物中に埋設または設置する土木用変換器として頗る好
適なるものである。
In addition, the converter of the present invention is not limited to the above-mentioned earth pressure meter, but can detect physical changes by converting them into electrical quantities by using the deflection of a plate such as a diaphragm. It is highly suitable as a civil engineering transducer to be buried or installed underground or in concrete structures, such as force meters, load meters, reinforcing bar gauges, water pressure gauges, etc.

以上詳述したように本発明によれば、起歪体の変形を検
出する検出部およびその検出部からの検出信号を離隔さ
れた場所に設置された計測器に伝送するケーブルとして
電気的素子を用いていないから、検出部の吸湿による絶
縁不良、雷による破壊、ケーブルの浮遊容量の影響等を
受ける虞れはなく、従って、長期に亘り安定した仮測定
対象の変状を検出でき、特に検出部の故障は殆んど生じ
ないから、一旦地中やコンクリ−1−等の被損り定対象
に設置し午後は。交換不能で必るような変眼器として好
適で、また投光器および光電変換器は地上部の観測室内
等に置かれるのか通例であるため、万一これらか故障し
ても容易に修理、交換でき保守管理が容易な土木用変換
器を提供することができる。
As detailed above, according to the present invention, an electric element is used as a detection section for detecting deformation of a strain-generating body and a cable for transmitting a detection signal from the detection section to a measuring instrument installed at a remote location. Since it is not used, there is no risk of poor insulation due to moisture absorption in the detection section, damage caused by lightning, or the effects of stray capacitance of the cable, etc. Therefore, deformation of the temporary measurement target can be detected stably over a long period of time. Since there are almost no failures of the parts, I installed it underground or in concrete, etc., and spent the afternoon on it. It is suitable as an eye changer that cannot be replaced, and since the floodlight and photoelectric converter are usually placed in an observation room above the ground, they can be easily repaired or replaced even if one of them breaks down. A civil engineering converter that is easy to maintain and manage can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のカールソン式土圧計の概略断面図、第2
図は、従来のひずみゲージ式土圧計の概略断面図、第3
図は本発明を土圧計に適用した場合における一実施例の
構成を模式的に示す断面図、第4図および第5図は本発
明の詳細な説明するだめの断面図で、第4図は土圧がか
かっていない状態、第5図は土圧がかかつている状態を
それぞれ示し、第6図は二次ダイヤフラムのたわみ量と
そのたわみによって変化する光量の減衰比との関係を示
す特性図である。 2・・・・・・鋼製円筒、  8・・・・・・−次ダイ
ヤフラム、9・・・・・間隙、 13・・・・・・光フ
アイバケーブル、14・・・・・・投光用光ファイバ束
、 15・・・・・・受光用光ファイバ束、 16・・
・・・・本体剛体部、 18・・・・・・投光器、19
・・・・・光電変換器、 20・・・・・・反射面、2
1・・・・・・二次ダイヤフラム。 第7図 第  2  因 第3図 第  4   図 第5図 第  G   図 土圧
Figure 1 is a schematic cross-sectional view of a conventional Carlson soil pressure gauge, Figure 2
The figure is a schematic cross-sectional view of a conventional strain gauge type soil pressure meter.
The figure is a cross-sectional view schematically showing the configuration of an embodiment when the present invention is applied to a soil pressure gauge, and Figures 4 and 5 are cross-sectional views for explaining the present invention in detail. Figure 5 shows the state where no earth pressure is applied, and Figure 5 shows the state where earth pressure is applied. Figure 6 is a characteristic diagram showing the relationship between the amount of deflection of the secondary diaphragm and the attenuation ratio of the amount of light that changes depending on the deflection. It is. 2...Steel cylinder, 8...Next diaphragm, 9...Gap, 13...Optical fiber cable, 14...Light emission Optical fiber bundle for use, 15... Optical fiber bundle for light reception, 16...
・・・・Main body rigid body part, 18...・・・Floodlight, 19
...Photoelectric converter, 20...Reflection surface, 2
1...Secondary diaphragm. Figure 7 Figure 2 Cause Figure 3 Figure 4 Figure 5 Figure G Earth pressure

Claims (3)

【特許請求の範囲】[Claims] (1)構築物や地中等の被測定対象に設置してそれらの
変状を電気量に変換して測定するだめの土木用変換器に
おいて、複数の光ファイバからなる光フアイバケーブル
と、この光フアイバケーブルの一端面側に対置された投
光器および光電変換器と、前記光フアイバケーブルの他
端面と対置されその他端面と対向する面が反射面とされ
且つ前記被測定対象の変状に応じて変形する起歪体とか
らなり、前記投光器で前記ファイバケーブルを介して前
記起歪体の反射面に光を投射し、該起歪体の反射面から
の反射光を前記ファイバケーブルを介して前記光電変候
器で電気量に変換することにより前記被測定対象の変状
を検出するように構成したことを特徴とする土木用変換
器。
(1) In a civil engineering converter that is installed on an object to be measured such as a structure or underground and converts the deformation into an electrical quantity and measures it, an optical fiber cable consisting of a plurality of optical fibers and a A projector and a photoelectric converter are placed opposite to one end surface of the cable, and a surface that is placed opposite to the other end surface of the optical fiber cable and faces the other end surface is a reflective surface and deforms according to the deformation of the object to be measured. The light projector projects light onto the reflective surface of the strain body through the fiber cable, and the reflected light from the reflection surface of the strain body is transmitted through the fiber cable to the photoelectric transformer. 1. A converter for civil engineering, characterized in that the deformation of the object to be measured is detected by converting the deformation into an electrical quantity using a heat exchanger.
(2)前記光フアイバケーブルは、複数の光ファイバか
らなる光ファイバ束の一端側が少なくとも投光列されて
一つに集束されている特許請求の範囲第1項記載の土木
用変換器。
(2) The civil engineering converter according to claim 1, wherein the optical fiber cable has at least one end side of an optical fiber bundle made up of a plurality of optical fibers arranged in a light projection array and converged into one.
(3)前記起歪体は、薄膜円板状のダイヤフラムよりな
る特許請求の範囲第1項記載の土木用変換器。
(3) The civil engineering transducer according to claim 1, wherein the strain body is a thin film disc-shaped diaphragm.
JP21918082A 1982-12-16 1982-12-16 Converter for engineering work Pending JPS59109835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21918082A JPS59109835A (en) 1982-12-16 1982-12-16 Converter for engineering work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21918082A JPS59109835A (en) 1982-12-16 1982-12-16 Converter for engineering work

Publications (1)

Publication Number Publication Date
JPS59109835A true JPS59109835A (en) 1984-06-25

Family

ID=16731447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21918082A Pending JPS59109835A (en) 1982-12-16 1982-12-16 Converter for engineering work

Country Status (1)

Country Link
JP (1) JPS59109835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124577A (en) * 2018-01-16 2019-07-25 株式会社青電舎 Sensor and method for measuring turning force

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136925A (en) * 1979-04-13 1980-10-25 Nec Corp Pressure detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136925A (en) * 1979-04-13 1980-10-25 Nec Corp Pressure detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124577A (en) * 2018-01-16 2019-07-25 株式会社青電舎 Sensor and method for measuring turning force

Similar Documents

Publication Publication Date Title
KR900005779B1 (en) High temperature high voltage transducer
EP0184721B1 (en) Pressure measuring system
CN207763660U (en) It is a kind of to use laser measurement bridge deformation device
CN108020167A (en) A kind of stationary slope level device based on fiber grating
CN105387968A (en) Optical fiber cladding surface Bragg grating temperature self-compensating pressure sensor
CN113203704B (en) Transformer monitoring and sensing integrated optical fiber sensor and use method
CN102374913A (en) Universal pressure sensing device based on optical fiber microbending loss
RU2567176C2 (en) Differential optic fibre pressure difference sensor
JPS59109835A (en) Converter for engineering work
US4976157A (en) Fiber optic flow sensor
CN209978838U (en) High-precision laser reflection type inclination measuring device
JP2007033075A (en) Optical water level gauge
JPH0345322B2 (en)
JP3373188B2 (en) Displacement measurement system using optical fiber
JP2006242608A (en) Optical water gauge
JP2003329417A (en) Distortion measuring sensor, and distortion measuring system using the sensor
KR101698835B1 (en) Displacement measurement system using optical fiber
CN109341910B (en) Force transducer and system for measuring impact force between tube bundle and vibration-proof strip
CN203551181U (en) Intensity compensation device of differential pressure transducer
JPH068724B2 (en) Optical detector
CN201885836U (en) General pressure sensing device based on optical fiber microbending loss
JPS60146112A (en) Light reflection type detector
CN114034355B (en) Liquid level sensor and liquid level sensing system
KR102137255B1 (en) Optical Fiber Sensor for Submersion and Leakage Detection and Sensing System Using Thereof
US11035964B1 (en) Method and apparatus for radiation detection based on time-of-flight within optical fibers