JPS59109470A - Moving device in pipe - Google Patents

Moving device in pipe

Info

Publication number
JPS59109470A
JPS59109470A JP57220719A JP22071982A JPS59109470A JP S59109470 A JPS59109470 A JP S59109470A JP 57220719 A JP57220719 A JP 57220719A JP 22071982 A JP22071982 A JP 22071982A JP S59109470 A JPS59109470 A JP S59109470A
Authority
JP
Japan
Prior art keywords
pipe
arms
drive wheel
pair
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57220719A
Other languages
Japanese (ja)
Other versions
JPS6334075B2 (en
Inventor
Tokuji Okada
徳次 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57220719A priority Critical patent/JPS59109470A/en
Publication of JPS59109470A publication Critical patent/JPS59109470A/en
Publication of JPS6334075B2 publication Critical patent/JPS6334075B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/005Investigating fluid-tightness of structures using pigs or moles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Electric Cable Installation (AREA)

Abstract

PURPOSE:To allow a device to be freely moved inside a pipe with various changes by providing a clip force generating mechanism energizing a pair of arms in a direction narrowing the clip angle. CONSTITUTION:Both arms 1, 2 can not held opening against the energizing force (f) generated by a clip force generating mechanism 7 corresponding to the inner diameter of a pipe, thus wheels 4, 5 are pressed to one surface section 8b of a pipe inner wall face, on the other hand a drive wheel 6 is pressed to the other surface section 8a opposite in the diameter direction by the reaction force, thereby this device can be eventually erected and stabilized in the pipe 8. At this time, the direction X-X connecting the centers of the wheels 4, 5 generally coincides with the pipe axis direction of that portion. When the drive wheel 6 is rotated with a suitable rotation drive source such as a step motor under this condition, the whole device can be moved in the pipe axis direction.

Description

【発明の詳細な説明】 本発明は、各種パイプ等の管状物の管内移動装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for moving tubular objects such as various pipes within a pipe.

パイプ内の亀裂、損傷、摩耗、異物の付着、材質の劣化
などの晶検査や、パイプ接合箇所の状況把握、あるいは
また、パイプ内へのケーブル敷設、パイプ内での資材輸
送等の作業を人手に依らずロボット化することは、将来
に向けての大きな希望である。殊に、人手による作業空
間の採れないパイプ内とが、原子炉関係で人による作業
が危険であるようなパイプ内作業では、単に作業の合理
化、省力化には留まらない必須の要請となる。
Manually perform inspections for cracks, damage, wear, adhesion of foreign substances, deterioration of materials, etc. inside pipes, grasp the condition of pipe joints, and also perform tasks such as laying cables inside pipes and transporting materials inside pipes. Converting robots to robots without relying on them is a great hope for the future. In particular, when working inside pipes where there is no space for manual work, or when working inside pipes related to nuclear reactors where manual work is dangerous, this is an essential requirement that goes beyond simply streamlining the work and saving labor.

そのためには先づ、ロボット自体をパイプ内で自由に移
動させることのできる移動装置を開発しなければならな
い。また、こうした移動装置は、パイプの姿勢や内部の
起伏に係らず動作し、パイプ内径の許容性にも富んだも
のであって欲しい。
To do this, we must first develop a moving device that allows the robot itself to move freely within the pipe. Further, it is desired that such a moving device operates regardless of the posture of the pipe and the undulations inside the pipe, and has good tolerance for the pipe inner diameter.

これに反して、従来は、単に重力を利用した移動装置が
考えられていたにすぎず、このような装置では、水平で
ないパイプや曲折したパイプ、さらには管径が一定して
ぃないパイプの内部を移動することは不可能であった9
、本発明は、このような実情に鑑み、姿勢、形状、管径
が多様に変化したパ′イグに対してもその内部を自由に
移動できる装置を提供するととを目的としてなされたも
ので、装置そのものが非常にシンプルで、かつ、機構的
に管内の起伏状況に柔軟に追従する能力を持つように図
っている。
On the other hand, in the past, only moving devices using gravity were considered, and such devices can move pipes that are not horizontal, bent pipes, and even pipes with uneven pipe diameters. It was impossible to move inside9
In view of these circumstances, the present invention has been made with the object of providing a device that can freely move inside pipes whose postures, shapes, and pipe diameters have variously changed. The device itself is extremely simple and mechanically designed to have the ability to flexibly follow the ups and downs inside the pipe.

以下、図面を用いて本発明を各実施例に即し、詳しく説
明する。
Hereinafter, the present invention will be explained in detail based on each embodiment using the drawings.

第′1図は、本発明の基本的実施例の構成を示していて
、等長の一対の腕l、コがあり、その一端は共通の回転
支点3Aに枢着されて挾み機構を成している。また、こ
の実施例では、回転支点3Aには駆動輪6も軸着されて
いる。すなわち、駆動軸乙の回転軸6Aは一対の腕の共
通回転支点3Aと同軸となっている。
Figure '1 shows the configuration of a basic embodiment of the present invention, which has a pair of arms l and c of equal length, one end of which is pivoted to a common rotational fulcrum 3A to form a clamping mechanism. are doing. Further, in this embodiment, a drive wheel 6 is also pivotally attached to the rotation fulcrum 3A. That is, the rotation axis 6A of the drive shaft B is coaxial with the common rotation fulcrum 3A of the pair of arms.

一対の腕の各自由端〜3B、3Cには、夫々、全方向移
動可能な追従輪としての全方向性乃至自在性の車輪り、
夕が設けられ、両腕/、:lの長さの途中には、挾み力
発生機構7が備えられている。
Each free end of the pair of arms ~3B, 3C has an omnidirectional or flexible wheel as a follower wheel movable in all directions, respectively.
A clamping force generating mechanism 7 is provided in the middle of the length of both arms.

両腕/、2の成す挟角θυは、回転支点3Aを中心にし
ての両腕の開き具合に応じて可変であるが、通常は、光
射の挾み力発生機構7の発生する挾み力f、fにより、
できるだけ小さくなるように付勢されている。即ち、第
1図中に仮想線で示すように、両車輪グ、jが許せる限
り接近して、両腕/、2が挟角θτの二等分線lに極力
沿うように力っている。予じめ述べておくと、このよう
に、両腕/、2が最′も閉じている時の車輪≠、jの接
地面乃至踏面と、駆動輪6の接地面乃至踏面との距離膿
αxが本移動装置を適用できる最大パイプ内径となる。
The included angle θυ formed by both arms / and 2 is variable depending on the degree of opening of both arms around the rotational fulcrum 3A, but normally, the included angle θυ formed by the light beam pinching force generating mechanism 7 is Due to the forces f and f,
It is biased to be as small as possible. That is, as shown by the imaginary lines in Figure 1, both wheels G and J are brought as close together as possible, and both arms are forced as much as possible to lie along the bisector l of the included angle θτ. . To state in advance, in this way, when both arms /, 2 are fully closed, the distance between the ground contact surface or tread surface of the wheel ≠, j and the ground contact surface or tread surface of the drive wheel 6 is αx is the maximum pipe inner diameter to which this moving device can be applied.

最小パイプ内径は、原理的には両腕/、2の挟角θVを
大きく開いて略々180°にまで展開すれば1、極めて
小径な所まで許容できるが、実際上は挾み力発生機構7
やその他具体的構成の小型化の程度如何によって定まる
設計的事項となる。俳し、原理上、極めて大きな径許容
性を持つことに疑い々い。
In principle, the minimum inner diameter of the pipe can be determined by widening the included angle θV between both arms and 2 to approximately 180°, 1, and even extremely small diameters can be tolerated, but in practice, the clamping force generation mechanism 7
and other design matters determined by the degree of miniaturization of the specific configuration. However, it is doubtful that it has extremely large diameter tolerance in principle.

本装置は、第2図示のように、上述の最大許容内径Dm
ay;以下の内径のパイプr中に入れて用いる。すると
、両腕/、、2ff、そのパイプの内径に応じて挾み力
発生機構7の発生する付勢力fに抗して開かざるを得す
、従って、当該付勢力乃至挾み力fにより、車輪≠、j
はパイプ内壁面の一面部rbに押し付けられ、一方、そ
の反力で、駆動輪乙は直径方向で対向する他面部Iaに
押し付けられるため、結局、本装置はパイプr内で起立
し、安定することができる。このとき、車輪弘と夕の中
心を結ぶ方向X−Xは、その部分の管軸方向と一般に一
致する。第3図は、挾み機構が起立した状態を管軸方向
Xから見た様子を示す。この状態で駆動輪6をステップ
モータ等の適当な回転駆動源によって回転させれば、装
置全体を管軸方向に移動できる。駆動輪の回転方向を逆
にすれば、移動方向も正反対にhる。
As shown in the second diagram, this device has the above-mentioned maximum allowable inner diameter Dm
ay: Used by placing it in a pipe r with the following inner diameter. Then, both arms /, 2ff are forced to open against the biasing force f generated by the clamping force generating mechanism 7 according to the inner diameter of the pipe, and therefore, due to the biasing force or clamping force f, wheel ≠, j
is pressed against one surface part rb of the inner wall surface of the pipe, and on the other hand, the driving wheel B is pressed against the other surface part Ia facing in the diametrical direction due to the reaction force, so that the device eventually stands up in the pipe r and becomes stable. be able to. At this time, the direction XX connecting the center of Wheel Hiro and Yu generally coincides with the tube axis direction of that part. FIG. 3 shows the state in which the clamping mechanism is erected, viewed from the tube axis direction X. In this state, if the drive wheel 6 is rotated by a suitable rotary drive source such as a step motor, the entire device can be moved in the tube axis direction. If the direction of rotation of the drive wheels is reversed, the direction of movement will also be exactly opposite.

こうした基本的実施例に加えて、更にステアリング裂傷
を用いて駆動輪乙の進行方向を制御すれば、本装置全体
を管軸方向に限らず管内任意方向に移動させることがで
きる。その場合、両腕の回転支点3Aと同軸に駆動輪回
転l1illI6Aを配することは実際の構成上、難し
く々る場合が考えられる。
In addition to these basic embodiments, if the direction of movement of the drive wheel B is further controlled using the steering tear, the entire device can be moved not only in the axial direction of the tube but also in any direction within the tube. In that case, it may be difficult to arrange the drive wheel rotation I1IllI6A coaxially with the rotation fulcrum 3A of both arms due to the actual configuration.

然し、駆動輪乙の回転軸gAが、両腕挟角の二等分線l
上にあれば、支点3Aから外方に離れていても、やはり
管内での安定起立姿勢を保つことができる。逆に言って
、第1図示実施例は、二等分線l上の駆動輪軸&Aが腕
/、−の共通回転支点3Aと一致した特殊の場合である
と言える。
However, the rotation axis gA of the driving wheel B is the bisector of the included angle of both arms l.
If it is above, even if it is away from the fulcrum 3A to the outside, it is still possible to maintain a stable standing posture within the tube. Conversely, it can be said that the first illustrated embodiment is a special case in which the drive wheel axis &A on the bisector l coincides with the common rotational fulcrum 3A of the arms /, -.

このような点に鑑みた実施例が第4図に示しである。第
一実施例中の構成子と対応する構成子には、第1図中と
同一の符号を付しているが、この実施例では、先づ、共
通支点//で結合された二つの等長のリンク腕P 、 
10が加えられていて、各リンク腕の他端は、腕/、2
の共通回転支点3Aから等距離点となる当該各腕/1.
2の部分/、2./3に枢着され、点3A、//、/コ
、/3を結合点とする四つ棒リンク機構が形成されてい
る。
An embodiment taking this point into consideration is shown in FIG. 4. Components corresponding to those in the first embodiment are given the same reference numerals as in FIG. Long link arm P,
10 is added, and the other end of each link arm is arm/,2
Each arm/1. which is an equidistant point from the common rotational fulcrum 3A.
Part 2/, 2. A four-bar linkage mechanism is formed, which is pivoted at /3 and whose connection points are points 3A, //, /3, and /3.

そして、このリンク機構中の結合点//の中心部には、
支点3に回転中心をもつM< ur %o支持桿/1.
tの一端が長大とビン等の公知適宜ガスライド機構を介
して結合されている。
At the center of the connection point // in this link mechanism,
M< ur %o support rod with rotation center at fulcrum 3/1.
One end of the t is connected to the long end via a known suitable gas slide mechanism such as a bottle.

従って、この支持桿/1%は、両腕l、コの開き角度乃
至挟角θυの変化に係らず、該挟角θυを三等分する線
l上に常に維持される。そのため、この支持桿の他端に
備えられた駆動輪乙の中心乙Aも、挟角二等分線l上、
殊にその外方延長線l′上に常に維持され、三角形6A
3B3Cの二等辺形状が保障される。
Therefore, this support rod/1% is always maintained on the line l that divides the included angle θυ into thirds, regardless of changes in the opening angle or included angle θυ of both arms l and C. Therefore, the center A of the driving wheel B provided at the other end of this support rod is also on the included angle bisector l,
In particular, it always remains on its outward extension l' and the triangle 6A
The isosceles shape of 3B3C is guaranteed.

そこで、支持棹/pK駆動輪乙のステアリング装置/j
を設け、駆動輪の回転軸方向が挾み機構の挾み運動面と
一定の角度で交わるように制御すれば、装置全体を螺緑
状に回転させながら移動させることができる。また、駆
動輪の回転軸が挾み機構の挾み運動面内に含まれるよう
にすれば、装置は一般に、管の横断面内を繰返し移動す
る。駆動輪の回転軸が挾み機構の挾み運動面と直角に交
わる場合には、第1図示の構成による移動装置と同一の
運動をすることは言うまでもない。
Therefore, the steering device of the support rod/pK driving wheel O/j
If the rotational axis direction of the driving wheel is controlled to intersect with the clamping motion surface of the clamping mechanism at a constant angle, the entire device can be moved while rotating in a spiral pattern. Additionally, if the axis of rotation of the drive wheel is included within the plane of the clamping movement of the clamping mechanism, the device will generally move repeatedly within the cross-section of the tube. It goes without saying that when the rotation axis of the drive wheel intersects at right angles to the clamping movement plane of the clamping mechanism, the movement is the same as that of the moving device having the configuration shown in the first figure.

第5図は、管内径が走行中に大幅に変動する場合に対し
ても管内を安定に移動できるようにした実施例を示して
いる。同図(α)は第1図示の、同図(b)は第4図示
の各実施例に対して、夫々、改変を施した場合を示して
いて、挾み機構の腕l7.2に、互いに等長という条件
の下にその実効長を意図的に変えることのできる伸長装
置/lを組み入れている。
FIG. 5 shows an embodiment in which stable movement within the pipe is possible even when the inner diameter of the pipe fluctuates significantly during travel. The same figure (α) shows the cases in which modifications are made to the embodiments shown in the first figure, and the same figure (b) shows the cases in which the respective embodiments shown in the fourth figure are modified, and the arm 17.2 of the clamping mechanism is It incorporates a stretching device/l whose effective length can be intentionally changed under the condition that the lengths are equal to each other.

従って、大径の管に対しては、或いは管の大径部分にお
いては、腕/、λを伸ばして実質的に第1図示の最大許
容径Dmaxを大きくするようにし、逆に小径の管乃至
管の小径部分に関しては腕/、2を適当に縮めて、挟角
θτを余りに大きくはし々いよ、うに、適当な範囲内に
留めることができる。
Therefore, for large-diameter pipes or in large-diameter portions of the pipe, the arm /,λ is extended to substantially increase the maximum allowable diameter Dmax shown in the first diagram, and conversely, for small-diameter pipes or in large-diameter portions of the pipe, As for the small diameter portion of the tube, by appropriately shortening the arms 1 and 2, the included angle θτ can be kept within an appropriate range, rather than being too large.

第5図(C)は、上述した伸長装置/乙を第4図示実施
例の駆動輪支持棹/グに組み入れたもので、これでも実
質的に主腕l2.2の実効長を等しく伸長させたのと同
効な結果を得ることができる。
Fig. 5(C) shows the above-mentioned extension device/B incorporated into the drive wheel support rod/g of the fourth illustrated embodiment, which also allows the effective length of the main arm l2.2 to be substantially equally extended. You can get the same results as with

上記した各実施例において、各機構部乃至装置の具体的
構成は既存の技術で設計的に得られる。例えば挾み力発
生装置7は引っ張りバネであって良いし、全方向性車輪
は既存の自在キャスタ構成で、また駆動輪乙の駆動源は
通常の電気モータ等で得ることができる。また、ステア
リング装置/jや伸長装置/乙を電動構成とすることも
極めて容易にでき、伸長装置の自動フィードバック制御
も既存の回路技術で十分に可能である。尚、各輪は図示
のような年輪構成でなく、ギャタピラ輪等であっても良
い1、 以上のように、本発明によれば、各杜管内作業用のロボ
ットのN足〃として、数少い部品で概ね平面的に構成で
き、管の姿勢、形状、内径、屈曲等にも良く対応できる
移動装置が提供でき、その効果大なるものがある。
In each of the embodiments described above, the specific configuration of each mechanical part or device can be designed using existing technology. For example, the clamping force generator 7 may be a tension spring, the omnidirectional wheel may be an existing swivel caster configuration, and the drive source for the drive wheel B may be an ordinary electric motor or the like. Further, it is extremely easy to make the steering device /j and the extension device /B electric, and automatic feedback control of the extension device is also fully possible using existing circuit technology. It should be noted that each ring may not have an annual ring structure as shown in the figure, but may be a gutter ring, etc. 1. As described above, according to the present invention, as the N legs of a robot for work inside each forest pipe, a It is possible to provide a moving device that can be configured in a generally planar manner using small parts and that can respond well to the posture, shape, inner diameter, bending, etc. of the tube, and has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的実施例の概略構成図、礒2図及
び第5図は、泥1図示実施例の使F−目状態の説明図、
第4図及び第5図は、夫々、本発明の他の実施例の概略
構成図、である。 図中、/、2は腕、3Aは共通回転支点、3B。 3Cは車輪の回転中心、≠、jは全方向性車輪、bは駆
動輪、7は挾み力発生機構、Kは管、?。 10はリンク腕、//、/λ、/3は四つ棒リンクの結
合点、/弘は駆動輪支持桿、/jはステアリング装置、
/6は伸長装置、である。 指定代理人  工業技術院
Fig. 1 is a schematic configuration diagram of a basic embodiment of the present invention, Figs. 2 and 5 are explanatory diagrams of the F-th state of the embodiment shown in Fig. 1,
4 and 5 are schematic configuration diagrams of other embodiments of the present invention, respectively. In the figure, /, 2 is an arm, 3A is a common rotational fulcrum, and 3B. 3C is the center of rotation of the wheel, ≠, j is the omnidirectional wheel, b is the drive wheel, 7 is the clamping force generation mechanism, K is the pipe, ? . 10 is the link arm, //, /λ, /3 is the connection point of the four-bar link, /Hiro is the drive wheel support rod, /j is the steering device,
/6 is an expansion device. Designated agent Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】 一端を共通の回転支点に結合し、他端に夫々、全方向性
車輪を設けた一対の腕と、 該一対の腕の上記一端側において、該一対の腕のなす挟
角の二等分線上に回転軸を置いた駆動輪と、 上記一対の腕に対して、上記挟角を狭める方向に付勢力
を与える挾み力発生機構と、から成ることを特徴とする
管内移動装置。
[Scope of Claims] A pair of arms having one end connected to a common rotational fulcrum and each having an omnidirectional wheel at the other end, and a sandwich formed between the pair of arms at the one end side of the pair of arms. A pipe comprising: a drive wheel with a rotating shaft placed on the bisector of an angle; and a clamping force generating mechanism that applies a biasing force to the pair of arms in a direction that narrows the included angle. Mobile device.
JP57220719A 1982-12-16 1982-12-16 Moving device in pipe Granted JPS59109470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220719A JPS59109470A (en) 1982-12-16 1982-12-16 Moving device in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220719A JPS59109470A (en) 1982-12-16 1982-12-16 Moving device in pipe

Publications (2)

Publication Number Publication Date
JPS59109470A true JPS59109470A (en) 1984-06-25
JPS6334075B2 JPS6334075B2 (en) 1988-07-07

Family

ID=16755438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220719A Granted JPS59109470A (en) 1982-12-16 1982-12-16 Moving device in pipe

Country Status (1)

Country Link
JP (1) JPS59109470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081800A (en) * 1988-10-25 1992-01-21 Heinrich Schlick Gmbh Vehicular device designed to operate in enclosed canals
JP2008229824A (en) * 2007-03-23 2008-10-02 Toshiba Corp Device and method for work in piping
EP2752252A1 (en) * 2013-01-04 2014-07-09 Gaus Co., Ltd. Pipe cleaning robot
CN110296329A (en) * 2019-06-27 2019-10-01 北京史河科技有限公司 A kind of running gear
WO2019216033A1 (en) * 2018-05-07 2019-11-14 株式会社湘南合成樹脂製作所 Pipe robot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081800A (en) * 1988-10-25 1992-01-21 Heinrich Schlick Gmbh Vehicular device designed to operate in enclosed canals
JP2008229824A (en) * 2007-03-23 2008-10-02 Toshiba Corp Device and method for work in piping
EP2752252A1 (en) * 2013-01-04 2014-07-09 Gaus Co., Ltd. Pipe cleaning robot
CN103909080A (en) * 2013-01-04 2014-07-09 Gaus株式会社 Pipe cleaning robot
WO2019216033A1 (en) * 2018-05-07 2019-11-14 株式会社湘南合成樹脂製作所 Pipe robot
KR20210008342A (en) * 2018-05-07 2021-01-21 가부시키가이샤 쇼난 고세이쥬시 세이사쿠쇼 In-house robot
JPWO2019216033A1 (en) * 2018-05-07 2021-07-01 株式会社湘南合成樹脂製作所 Robot in the jurisdiction
US11821566B2 (en) 2018-05-07 2023-11-21 Shonan Gosei-Jushi Seisakusho K.K. Pipe robot
CN110296329A (en) * 2019-06-27 2019-10-01 北京史河科技有限公司 A kind of running gear

Also Published As

Publication number Publication date
JPS6334075B2 (en) 1988-07-07

Similar Documents

Publication Publication Date Title
CA1210421A (en) Split-ball type wrist and manipulator assembly for robot
US3703968A (en) Linear linkage manipulator arm
EP0202206B1 (en) Robot
Choi et al. Robotic system with active steering capability for internal inspection of urban gas pipelines
US5314293A (en) Direct drive robotic system
Kakogawa et al. Design of a multilink-articulated wheeled inspection robot for winding pipelines: AIRo-II
JPS60255381A (en) Manipulator device
JP2015027714A (en) Robot
JPH01146683A (en) Multi-joint robot part
GB2305407A (en) Surface traversing vehicle supported on bristles
CN1706602A (en) Umbilical member managing system for industrial robot
ATE306369T1 (en) INDUSTRIAL ROBOTS ACCORDING TO THE DELTA CONCEPT WITH A ROTATING TELESCOPIC
JPS59109470A (en) Moving device in pipe
US4949586A (en) Actuator swing arm mechanism
US3520496A (en) Serpentuator
FR3110550B1 (en) Device for deploying and pointing equipment carried by a spacecraft
JPS61168487A (en) Mechanical wrist mechanism
Choi et al. Development of articulated robot for inspection of underground pipelines
JPS59109456A (en) Shifter in pipe
JPH05220689A (en) Cable guide device for industrial robot
JPS62166985A (en) Manipulator
JPS59115190A (en) Industrial robot
JPH038310B2 (en)
US20190029905A1 (en) Arm mechanism
JPH03213280A (en) Industrial robot