JPS59109244A - Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture - Google Patents

Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture

Info

Publication number
JPS59109244A
JPS59109244A JP57217018A JP21701882A JPS59109244A JP S59109244 A JPS59109244 A JP S59109244A JP 57217018 A JP57217018 A JP 57217018A JP 21701882 A JP21701882 A JP 21701882A JP S59109244 A JPS59109244 A JP S59109244A
Authority
JP
Japan
Prior art keywords
alloy
catalyst
composite
elements
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57217018A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Inoue
井上 博愛
Takeshi Masumoto
健 増本
Hiroshi Komiyama
宏 小宮山
Akinori Yokoyama
明典 横山
Hisamichi Kimura
久道 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57217018A priority Critical patent/JPS59109244A/en
Publication of JPS59109244A publication Critical patent/JPS59109244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To obtain a catalyst having high activity by incorporating alloys of composite oxides, composite carbides or the like consisting of Fe, Ni, Co, Pt, Pd, Ru, Rh, Os, Ir, Th, Sc, Y, La, Se, Pr, Nd or the like. CONSTITUTION:Alloys incorporating one kind of transition elements which belong to the VIII group such as Fe, Co, Ni, Ru; one kind of elements which belong to the IIIA such as Sc, Y, La, Ce; the IVA group elements such as Ti, Zr, Hf; the VA group elements such as V, Nb, Ta; the IIIB group elements such as Al, Ga; one kind of Si, Ge are allowed to react catalytically with a reactive gas (one kind of gas among O2, CO, NO, NO2, N2O) at 100 deg.C temp. Thus, the reaction gas is dissociated into C, O, N which are combined with the elements of III, IV, V groups to be plural systematic composite oxides, composite carbides, and composite nitrides.

Description

【発明の詳細な説明】 本発明は、Co水素化反応用触媒に関し、特に本発明は
COよシ炭化水素およびまたはアルコ′□−ル合成に用
いる水素化反応用触媒に関するもの1である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for a Co hydrogenation reaction, and more particularly, the present invention relates to a catalyst for a hydrogenation reaction used in the synthesis of CO and/or hydrocarbons and/or alcohols.

本発明者らは、特願昭、+7−92/θ6号により還元
反応用合金触媒とその製造方法を提案した。上記提案は
週期律表Vl族の金属とIVA族の元素を□“含有して
なる非晶質合金を還元性あるいは中性雰囲気中において
、との合金の結晶化転移温度を下廻らぬ温度に保持して
結晶化させてなる還元反応用合金触媒とその製造方法に
関し、水素化触媒として水素吸収能および熱的安定性の
面から工業的゛゛利用期待され、例えばNi63Zr3
7非晶質合金触媒を用いてGOを水素還元して炭化水素
を合成することができる。
The present inventors proposed an alloy catalyst for a reduction reaction and a method for producing the same in Japanese Patent Application No. 7-92/θ6. The above proposal proposes that an amorphous alloy containing a metal in group VI and an element in group IVA be heated to a temperature not below the crystallization transition temperature of the alloy in a reducing or neutral atmosphere. Regarding the alloy catalyst for reduction reaction which is retained and crystallized, and its production method, it is expected to be used industrially as a hydrogenation catalyst from the viewpoint of hydrogen absorption ability and thermal stability. For example, Ni63Zr3
7 Hydrocarbons can be synthesized by hydrogen reduction of GO using an amorphous alloy catalyst.

本発明者らは、上記出願の発明に引続きさらにCo水素
化反応用触媒につき研究を進めた結果、パ本発明の極め
て活性の高いCo水素化反応用触媒に想到して本発明を
完成した。
Following the invention of the above-mentioned application, the present inventors further conducted research on catalysts for Co hydrogenation reaction, and as a result, they came up with the very highly active catalyst for Co hydrogenation reaction of the present invention and completed the present invention.

本発明の触媒は、Fs 、 Ni I Go * Pt
 y P(l eRu r Rh r Os F Ir
のかかから選ばれる何れか少なくとも/iとTh、So
、Y、La、Ss*Pry’。
The catalyst of the present invention comprises Fs, NiIGo*Pt
y P(l eRu r Rh r Os F Ir
At least one selected from /i, Th, So
, Y, La, Ss*Pry'.

Ndv  Ij  r  Sm  +  Er  + 
Ga  l  Tb  l D y  +  Ho  
r Tu + 1Yb  +  Lu  r  Ac 
 +  Tt  +  Zr  +  Hf、V  t
  Nb  r  Ta  *AJ + Ga r 8
1. Geのなかから選ばれる何れか少なくとも7種と
からなる合金の複合酸化物、複合炭化物を複合窒化物の
なかから選ばれる何れか少なくとも7種を含有し、残部
主として前記合金。
Ndv Ij r Sm + Er +
Gal Tb l D y + Ho
r Tu + 1Yb + Lu r Ac
+ Tt + Zr + Hf, V t
Nbr Ta *AJ + Ga r 8
1. A composite oxide, a composite carbide, or an alloy consisting of at least seven types selected from Ge, and at least seven types selected from composite nitrides, with the remainder being mainly the above-mentioned alloy.

前記合金を構成する元素、前記合金を構成する元素の化
合物の少なくとも7種よシなることを特徴とするCo水
素化反応用触媒である。
The catalyst for Co hydrogenation reaction is characterized by comprising at least seven types of elements constituting the alloy and compounds of the elements constituting the alloy.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の触媒はVl族に属する遷移元素(Fθ。The catalyst of the present invention is a transition element (Fθ) belonging to the Vl group.

Go * Ni 、 Ru r Rh 、 Pa 、 
Os + Ir r Pt )の力かから選ばれるいず
れか少なくとも7種と、IIIA族(So 、 Y 、
 La 、 Ge + Pr + N(1+ Sm 、
 Eu +Ga 、 Tb 、 Dy t Ho + 
Er + Tm + Yb * Lu 、 Ao *’
Th 、 Pa p U ) + IV A 族(Ti
 、Zr * Hf ) r VA族(V p Nb 
t Ta ) + mB族(Al t ea ) + 
IV B族(s1* Cre)のなかから選ばれるいず
れか少なくとも1種との合金を反応性ガス(O2+ C
O。
Go * Ni, Ru r Rh, Pa,
Os + Ir r Pt) or at least 7 types selected from the powers of Group IIIA (So, Y,
La, Ge + Pr + N (1+ Sm,
Eu + Ga, Tb, Dy t Ho +
Er + Tm + Yb * Lu, Ao *'
Th , Pap U ) + IV A group (Ti
, Zr * Hf ) r VA group (V p Nb
t Ta ) + mB group (Al t ea ) +
IV An alloy with at least one selected from Group B (s1*Cre) is heated with a reactive gas (O2+C
O.

No+ NO2* N20のなかから選ばれるいずれか
少′□なくとも1種)を用いて、低くとも100°Cに
おい1て接触反応させて得られる触媒であり、上記接触
反応において、上記反応性ガスは遷移元素により解離さ
れてC,O,Nとなり、このように解離されたC、O,
NはJ[、IV、V族の元素と化合して多元′系の複合
酸化物、複合炭化物、複合窒化物となり、また一部は一
元系の酸化物、炭化物、窒化物等も生成する。このよう
に上記複合化合物が生成する過程において内部応力が発
生し、この応力の作用により条件によっては多孔質複合
化合物となる。′ところで工業触媒はそれぞれ目的とす
る製品を効率よく製造するためにそれぞれ最適元素を含
有した触媒がはy確定しており、例えば炭化水素の水蒸
気改質用にはニッケル糸触媒が、フィッシャー・ドロッ
プシュ合成用には鉄系触媒が、またメ°゛タノール合成
用にはZn −Cr −Cu j元系触媒が用いられて
いるようにそれぞれの生成物の製造に対しては触媒を主
として構成する最適元素の選択が研究努力によりは譬確
定され、したがって触媒の特性もはソ飽和値に近付いて
いると考えられてパ。
It is a catalyst obtained by carrying out a catalytic reaction at at least 100°C using at least one selected from the group consisting of No+NO2*N20, and in the catalytic reaction, the reactive gas is dissociated by transition elements to become C, O, N, and thus dissociated C, O,
N combines with elements of groups J[, IV, and V to form multi-component composite oxides, composite carbides, and composite nitrides, and some also produce mono-component oxides, carbides, nitrides, and the like. In this way, internal stress is generated in the process of forming the above-mentioned composite compound, and depending on the conditions, the composite compound becomes porous due to the action of this stress. 'By the way, industrial catalysts have been determined to contain the optimum elements in order to efficiently produce the desired product.For example, nickel thread catalysts are used for steam reforming of hydrocarbons, and Fischer drop catalysts are For example, iron-based catalysts are used for the synthesis of alcohol, and Zn-Cr-Cuj catalysts are used for the synthesis of methanol. The selection of optimal elements has been determined by research efforts, and the properties of the catalyst are therefore considered to be approaching the saturation value.

いた。there was.

このような触媒の技術的状況のなかで従来最も普遍的に
利用されてきた多孔質アルミナナシリカ系担体に代替し
て触媒活性元素に対して化学的修飾能を有する担体を用
いることによって触媒特性゛。
In this technical situation of catalysts, the catalytic properties can be improved by using a carrier that has the ability to chemically modify catalytically active elements instead of the porous alumina-silica carrier that has been most commonly used in the past.゛.

を向上させようとする試みが注目されている。例  ゛
えはパラジウム触媒に対しZrO2+ TiO2t Y
2O3t()@203等を担体として使用した場合大き
な効果があるととが知られるに至った。この効果はいわ
ゆる5M5I (Strong Metal 5upp
ort Interaction ) ”’効果と呼ば
れている。
Attempts to improve this are attracting attention. Example: ZrO2+ TiO2t Y for palladium catalyst
It has come to be known that there is a great effect when 2O3t()@203 or the like is used as a carrier. This effect is called 5M5I (Strong Metal 5upp
ort Interaction ) ``'' effect.

本発明の触媒中に含有されている複合酸化物。Composite oxide contained in the catalyst of the present invention.

複合炭化物およびまたは複合窒化物は、従来知られた例
えば上記vm族元素のPaに対して作用する担体として
の効果と比較してより直接的な相互作゛□用(Int、
oraotion )を発揮するものと推測され、従っ
てより大きな効果が発揮される。事実1.Catal・
?/ l /4? (/9g/>によれば、Pa −T
t02第02による活性増大効果はPa  810,2
に対して約30倍であるのに対し、本発明の触媒の1つ
であるPa ”’・−Zr −0複合酸化物は前記Pa
 −Slagに対して13000倍という驚異的活性増
大効果を有することを本発明者らは新規に知見した。
Composite carbides and/or composite nitrides have a more direct interaction effect (Int,
Oration), and therefore, a greater effect is exerted. Fact 1. Catal・
? / l /4? (According to /9g/>, Pa −T
The activity increasing effect due to t02 No. 02 is Pa 810,2
On the other hand, one of the catalysts of the present invention, the Pa ''・-Zr -0 composite oxide, has a
The present inventors have newly discovered that it has an amazing activity-increasing effect of 13,000 times over -Slag.

次に本発明を実験データについて詳しく説明する。Next, the present invention will be explained in detail using experimental data.

Pa 35Zr 65からなるアモルファス合金を回転
ディスク方法により作製した。どの方法は回転金員製デ
ィスクの冷却面上に上記成分組成の溶融金属を噴射させ
て溶体のアモルファス構造をそのままの状態で凝固させ
る方法である。このアモルファパス合金はリボン状であ
って10− :101kn厚さ#/〜コ胃巾、約コm長
さであった。このリボンを管型反応器に装入した。リボ
ンの表面積は0./rn2/1(BET+ ph781
80rption  )  であった。 Co(99,
9jt%)とH2(99,9%)をさらに純粋化せずに
用い゛た。反応容器出口のガス成分組成はガスクロマト
グラフにより測定され、触媒構造と組成はX線回折スペ
クトルにより分析された。
An amorphous alloy consisting of Pa 35 Zr 65 was prepared by a rotating disk method. In this method, molten metal having the above-mentioned composition is injected onto the cooling surface of a rotating metal disk to solidify the amorphous structure of the solution as it is. This amorphous pass alloy was in the form of a ribbon and had a thickness of 10 cm and a length of approximately cm. This ribbon was charged into a tubular reactor. The surface area of the ribbon is 0. /rn2/1 (BET+ ph781
80rption). Co(99,
9jt%) and H2 (99.9%) were used without further purification. The gas component composition at the outlet of the reaction vessel was measured using a gas chromatograph, and the catalyst structure and composition were analyzed using an X-ray diffraction spectrum.

第1図は、実験開始からの経過時間とGO転換によって
代表される触媒活性の変化との関係を示パ′す図である
。COとH2の比率はl:すであシ、 ゛lCClCC
触媒時間に流したガス量(5paaavelocity
 +同図中にはSVと表示する)は/、/X/S(hr
−1)であった。この触媒の活性は一本調子に増加し、
60〜70時間後に定常値に到達し、そ□の値は最初の
活性よシ約コ桁大きい。この遷移期間中主生成物である
OH,の選択性はデλ%からt6%に低下した。エタン
C2H6およびプロパンC3l(8はメタン以外の主な
生成物であった。Co2はガスクロマトグラフでは検出
されず、H2Oが唯一の含″□゛酸素生成物であった。
FIG. 1 is a diagram showing the relationship between the elapsed time from the start of the experiment and the change in catalyst activity represented by GO conversion. The ratio of CO and H2 is l:sudashi, ゛lCClCC
The amount of gas flowed during the catalyst time (5 paa velocity
+Indicated as SV in the figure) is /, /X/S (hr
-1). The activity of this catalyst increases steadily,
A steady-state value is reached after 60 to 70 hours, and the value is about an order of magnitude larger than the initial activity. During this transition period, the selectivity for the main product, OH, decreased from deλ% to t6%. Ethane C2H6 and propane C31 (8) were the major products other than methane. Co2 was not detected by gas chromatography and H2O was the only oxygen-containing product.

P、a触媒によるCOの水素化によれば専らメタンが生
成することが知られている。従って本触媒による生成物
分布は活性サイトが純Paのサイトと異なっていること
がわかる。
It is known that hydrogenation of CO using a P,a catalyst produces exclusively methane. Therefore, it can be seen that the active sites in the product distribution of this catalyst are different from those of pure Pa.

第1表  メタン化触媒のTF値 i j  /、tA   Pa/Ti02I     、2
7      9r、A  +  2.9R&n@y 
Ni    l   4’j   l/、7θ第1表は
CO化学吸着量基準に基く定常状態におけるターンオー
バーフレクエンシー(TF )を1示す表である。他文
献からのTF値も同表に示す。
Table 1 TF value of methanation catalyst i j /, tA Pa/Ti02I, 2
7 9r, A + 2.9R&n@y
Ni l 4'j l/, 7θ Table 1 is a table showing the turnover frequency (TF ) in a steady state based on the CO chemisorption amount standard. TF values from other literature are also shown in the same table.

本触媒のTFは担持Pa触媒のそれより7〜3桁大きく
、これは通常の担持N1触媒よ910倍大きく、既知の
最も大きいメタン化活性触媒である担持Ru触媒よシも
なおダ倍大きいことがわかる。″□本触媒は反応中その
表面積が増大するが、しかし・アモルファスl’J16
3zr3’7触媒の場合に較べるとはんの僅かであ’)
 、Ni63Zr3+7触媒では同一反応中にコ桁大き
い表面積の増大がみられる。これらの実験結果ならびに
その考察によれば、いくつかの触媒的活性種が第1図に
示す如き遷移反応期間中に触媒表面に形成されたものと
考えられる。
The TF of this catalyst is 7 to 3 orders of magnitude larger than that of the supported Pa catalyst, which is 910 times larger than that of the conventional supported N1 catalyst, and even more than that of the supported Ru catalyst, which is the largest methanation active catalyst known. I understand. ``□The surface area of this catalyst increases during the reaction, but ・Amorphous l'J16
It is very small compared to the case of 3zr3'7 catalyst)
, Ni63Zr3+7 catalyst shows an increase in surface area of several orders of magnitude during the same reaction. According to these experimental results and their discussion, it is believed that some catalytically active species were formed on the catalyst surface during the transition reaction period as shown in FIG.

第一図はXm回折スペクトルを示す図である。Figure 1 is a diagram showing an Xm diffraction spectrum.

第1図の最初の実験において用いられたスペクトル(B
) ハ標準的アモルファス構造を示すアモルフ″□アス
合金のスペクトル(A)が反応中に結晶化されたことを
示す。しかしスペクトル(B)はPa l Zrおよび
Pa=ZrJ元合金の何れのスペクトルとも一致してい
ないし、またPa、Zrそれぞれの化合物についての従
来報告されているいずれのスペクトル中も一致しない。
The spectrum used in the first experiment in Figure 1 (B
) Spectrum (A) of the amorphous alloy showing a standard amorphous structure shows that it was crystallized during the reaction. However, the spectrum (B) is different from either the spectrum of Pal Zr or Pa=ZrJ original alloy. They do not match, nor do they match in any of the spectra previously reported for Pa and Zr compounds.

それ故活性種は、それらと全く異なっていると思われ、
またPa、Zrおよび反応ガス間の何らかの反応によっ
て生成されるものと思われる。
Therefore, the active species seems to be quite different from these,
It is also thought to be generated by some kind of reaction between Pa, Zr, and the reaction gas.

スペクトル(B)は文献に報告されたPaとZrの゛□
化合物のスペクトル中に発見されないから、活性1種を
実験的に決定するある試みを行った。スペクトル(C)
と(D)は第1図の反応温度コAO″Cにおいて酸素ま
たは水素の流れによってアモルファスP(135Zr6
5合金を処理して作製した試料について□のスペクトル
である。このアモルファス合金の結晶化温度(、igs
oC)より低い温度である2AO”Cにおける水素処理
はアモルファス構造にはほとんど影響を及ぼさない。ス
ペクトル(C)と(B)が近似していることは、アモル
ファス合金が水素化反応”中に酸化されたことを示して
いる。
The spectrum (B) is the ゛□ of Pa and Zr reported in the literature.
Since it was not found in the spectrum of the compound, an attempt was made to experimentally determine the active species. Spectrum (C)
and (D) are amorphous P (135Zr6
□ is the spectrum of a sample prepared by processing No. 5 alloy. The crystallization temperature of this amorphous alloy (, igs
Hydrogen treatment at a lower temperature than 2AO"C has little effect on the amorphous structure. The closeness of spectra (C) and (B) indicates that the amorphous alloy is oxidized during the hydrogenation reaction. It shows that it was done.

またスペクトル(CI)を示す予め酸素で処理された合
金は第1図の定常高活性よりは約%と低いが、通常のN
1触媒と比べると3倍以上、また、810zに担持され
た通常のPa触媒の約7000倍、T tO2に゛担持
されたPa触媒の約700倍という高い活性を示した。
In addition, the alloy that has been treated with oxygen beforehand exhibits a spectrum (CI), which is about % lower than the steady state high activity shown in Figure 1, but the normal N
The activity was more than 3 times that of the 1 catalyst, about 7000 times that of the normal Pa catalyst supported on 810z, and about 700 times that of the Pa catalyst supported on TtO2.

このことは、予め酸素で処理された触媒は活性、X線ス
ペクトルともに、第1図で6o時間後に到達した触媒と
類似していることを示すものである。
This shows that the catalyst previously treated with oxygen is similar in both activity and X-ray spectrum to the catalyst arrived at after 60 hours in FIG.

以上、アモルファスP435Zr65合金は、COの水
1素化反応条件下あるいは02単独流通条件下で極めて
高活性なPa −Zr−〇複合酸化物触媒を生成し得る
ことを示した。複合酸化物の生成する原因は、合金中の
Zrに対する強い02親和力ならびにCO水素化反応中
に吸着されたGOの解離によるものと考えられる。
As described above, it has been shown that the amorphous P435Zr65 alloy can produce an extremely highly active Pa-Zr-〇 composite oxide catalyst under CO hydrogenation reaction conditions or under 02 single flow conditions. The cause of the formation of the composite oxide is thought to be due to the strong 02 affinity for Zr in the alloy and the dissociation of GO adsorbed during the CO hydrogenation reaction.

第3図はP(L−Zr系の成分組成比を種々に変えた各
種触媒の反応速度を求めた図であり、アモルファス箔を
結晶化させた後反応させたもの(・印゛□゛で示す)の
特性は、アモルファス状態を経由させずに初から結晶状
態の合金によって反応させたもの(Δ印で示す)の特性
に近似していることがわかり、またPa−Zr系触媒の
成分組成による活性の変化はp”50zr50付近にお
いて最大の活性を□示すことがわかる。以上のことがら
CO解離活性の強いZrと分子状吸着作用の強いPaの
組合せにより反応温度付近において適度なCO解離作用
が得られるのではないかと推考される。
Figure 3 shows the reaction rates of various catalysts with various composition ratios of P(L-Zr system), and shows the reaction rate of various catalysts with various composition ratios of P(L-Zr system). It was found that the characteristics of the catalyst (indicated by the symbol Δ) are similar to those of the reaction in which the reaction was performed with the alloy in the crystalline state from the beginning without passing through the amorphous state, and the component composition of the Pa-Zr catalyst It can be seen that the change in activity due to It is assumed that this can be obtained.

次に本発明者らはPa 27Hf73 (数字は原子1
1示し、以下も合金の成分組成は同様に原子%で示1す
)結晶合金コ、7gを触媒として用いてPOOO、,2
atm + pH20,t atmのガス中1.2/、
0℃、SV ==t、tx 7o3 (hr−1)のも
とてメタン生成反応を行なわせた。この際のGOの転化
率(%′)と反応時間との□関係を第9図に示す。同図
によれば反応時間IO時間頃から転化率が急速に上昇し
、すなわち活性が増大し、ll0時間を経過する頃から
転化率は定常状態となることがわかる。なお反応終了後
の触媒はPa −Hf−0複合酸化物の存在がX線回折
によシバ。
Next, the present inventors calculated Pa27Hf73 (the number is 1 atom
The composition of the alloy is similarly shown in atomic %.
atm + pH 20, 1.2/ in atm gas,
Methane production reaction was carried out at 0°C, SV==t, tx 7o3 (hr-1). The relationship between the conversion rate (%') of GO and the reaction time in this case is shown in FIG. According to the figure, it can be seen that the conversion rate rapidly increases from around the reaction time IO time, that is, the activity increases, and the conversion rate reaches a steady state from around 110 hours. The presence of Pa-Hf-0 composite oxide in the catalyst after the reaction was determined by X-ray diffraction.

認められた。Admitted.

本発明者らは次にNi63Zr37アモルファス合金1
.311を触媒として用いてCo O0/? atm 
r N20、g3 atmのガス中、2st”c * 
SV −1,otxto5(hr−1)のもとでメタン
生成反応を行なわせた。1゛′その結果を第5図に示す
。同図によれば反応開始後直ちに転化率が急上昇し、5
0時間前後で転化率ははソ定常値となっていることがわ
かる。なお反応後の触媒の表面積はqm27IIと増大
した。前記反応はコst”cで行なわせたが、3θO°
Cで行々わせ′□′ると表面積は30 m2/ Iとさ
らに大きく増大した。1第6図は上記2sg″Cで反応
を行なわせた後の触媒のX線回折スペクトルを示す図で
あり、N12zτ金属間化合物結晶とN1結晶が存在す
ると共にN1−Zr−C複合炭化物が存在することが判
る。
The inventors next developed Ni63Zr37 amorphous alloy 1
.. Co O0/? using 311 as a catalyst. atm
r N20, g3 atm gas, 2st”c *
Methane production reaction was carried out under SV-1, otxto5 (hr-1). 1' The results are shown in Figure 5. According to the figure, the conversion rate rapidly increased immediately after the start of the reaction, and 5
It can be seen that the conversion rate reached a steady value around 0 hours. Note that the surface area of the catalyst after the reaction increased to qm27II. The reaction was carried out at a cost of 3θO°
When it was carried out at C'□', the surface area increased even more to 30 m2/I. 1 Figure 6 is a diagram showing the X-ray diffraction spectrum of the catalyst after the reaction with the above 2sg''C, in which N12zτ intermetallic compound crystals and N1 crystals are present, as well as N1-Zr-C composite carbide. It turns out that it does.

よって本発明者らはNi63Zr37アモルファス合金
をsso”cにCo中で加熱した後、上記と同様の実験
を行なったところ、Co転化率は反応開始直後より第S
図におけるり0時間経過後の高い活性とはソ等しい活性
を示した。
Therefore, the present inventors conducted an experiment similar to the above after heating a Ni63Zr37 amorphous alloy in Co to sso''c, and found that the Co conversion rate increased from the S stage immediately after the start of the reaction.
The high activity after 0 hours in the figure showed the same activity.

第7図は、第1図で60時間後に定常活性に達した触媒
を、同じH2ICO流通条件で反応温度のみを、25f
’Cから逐次isy″ctで低下させてCOの反応率を
測定した結果である。同図よシ計算される反応の活性化
エネルギーEは/θOKJ/molと、本”反応系にお
いてこれまで報告されているものにほぼ等しい値を示す
。このことは、一旦高活性に達した複合酸化物を含む触
媒は、高活性触媒として広い反応温度域で安定に使用可
能であることを示すものである。
Figure 7 shows the catalyst that reached steady activity after 60 hours in Figure 1, with the same H2ICO flow conditions and only the reaction temperature at 25f.
This is the result of measuring the reaction rate of CO by sequentially decreasing isy"ct from 'C. As shown in the figure, the activation energy E of the reaction calculated is /θOKJ/mol, which has been reported so far in this reaction system. indicates a value approximately equal to that shown in the figure. This shows that once a catalyst containing a complex oxide has reached high activity, it can be stably used as a highly active catalyst over a wide reaction temperature range.

第g図に示すようか条件で、結晶質Pa35Ti65’
合金によるGOの水素化反応を行ったところ、Pd35
Zr65 * Pd27Hf73と同様に、複合酸化物
が反応中に生成し、Co転化率すなわち触媒活性が増大
した。
Under the conditions shown in Fig. g, crystalline Pa35Ti65'
When the hydrogenation reaction of GO using the alloy was carried out, Pd35
Similar to Zr65*Pd27Hf73, a composite oxide was generated during the reaction, increasing the Co conversion rate, that is, the catalytic activity.

本発明の触媒を製造するに当シ、その材料となる合金中
の■■族元素の含有量の範囲はS原子%〜灯原子%とす
る必要がある。この含有量の範囲の下限あるいは上限を
外れると本発明の目的とする高活性のCOO素化反応用
触媒を得ることは゛。
In order to produce the catalyst of the present invention, the content of the group 1-2 elements in the alloy used as its material must range from S atomic % to lamp atomic %. If the content is outside the lower or upper limit of this range, it is difficult to obtain a highly active COO hydrogenation reaction catalyst, which is the object of the present invention.

できない。この理由は第3図からも明らかなように、1
0原子%以上の複合化合物を本発明の触媒中に生成含有
させることができないことによる。
Can not. As is clear from Figure 3, the reason for this is 1.
This is because the catalyst of the present invention cannot contain a composite compound of 0 atomic % or more.

ところで本発明の触媒は複合化合物を含有することによ
り高活性を発揮することから、GOの水“素化反応以外
の一般還元反応はもとよシ金属酸化物が広く用いられる
酸化反応用触媒として有利に使用することができる。
By the way, since the catalyst of the present invention exhibits high activity by containing a composite compound, it can be used not only for general reduction reactions other than the hydrogenation reaction of GO, but also as a catalyst for oxidation reactions in which metal oxides are widely used. can be used to advantage.

以上詳しく述べたように本発明の触媒は、例えばCoの
水素化反応用として従来広く使用されて′“いる触媒な
らびにこの触媒が発揮する活性限度を・はるかに越えた
著しく大きな活性を有する触媒であるので、現在石油系
の原料より脱皮して石炭。
As described in detail above, the catalyst of the present invention is a catalyst that has a significantly high activity that far exceeds the activity limit of catalysts that have been widely used in the past, for example, for the hydrogenation reaction of Co, and the activity limit of this catalyst. Therefore, coal is now being used instead of petroleum-based raw materials.

天然ガス、バイオマス等多様な炭素源を化学原料として
有利に使用するための新しい体系である ・Cノ化学に
おいて極めて有望な触媒となり得ることが期待される。
This is a new system for advantageously using various carbon sources such as natural gas and biomass as chemical raw materials. - It is expected that it can be an extremely promising catalyst in carbon chemistry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPd35Zr65アモルファス合金触媒による
Co水水化化反応反応時間とCOの転化率と 1の関係
を示す図、第、2図はP’135Zr65アモルファス
合金(A)、この合金をCOO素化反応に触媒として用
いた後のもの(B)、この合金を02中でムθ°CにS
OO間処理したもの(C)、この合金をN2中で240
″Cに5θ時間処理したもの(D)のX線゛回折スペク
トルを示す図、第3図はP(L−Zr系合金をCO水水
化化反応用触媒して用いたときのPa + Zrの含有
量と単位面積当シの反応速度r(mat CO/1−m
2− aea )との関係を示す図、第9図はPd27
Hf73合金をCOO素化反応用触媒に用い□死時の反
応時間とCOの転化率との関係を示す図、1第5図はP
a35 Ti65合金をCO水素化反応用触媒に用いた
時の反応時間とCOの転化率との関係を示す図、第6図
はNi63Zr37合金をCOとH2中Art″Cで反
応を行わせた後のX線回折スペクトル5を示す図、第7
図は第1図で定常活性に達した触媒を同じH2r Co
流通条件で反応温度のみをコyr°Cから/j9”cま
で低下させたときの反応温度とCOの転化率との関係を
示す図、第を図はPa35T165結晶合金をCO水素
化反応用触媒として用いた時1“の反応時間とCOの転
化率との関係を示す図である。 特許出願人 井 上 博 愛 同 出願人 増 本   健 同 出願人 小 宮 山  宏 代理人弁理士 村  1) 政  治 区 1−ψ 滌 −<ot*>ht冷す0〇− 区 Qり 綜 特開昭59−109244  (7) 第1頁の続き oInt、 C1,3識別記号   庁内整理番号C0
7C11048217−4H 271067457−4H C10K  3102           6561
−4H0発 明 者 増本健 仙台市上杉3丁目8−22 0発 明 者 小宮山宏 東京都新宿区新小川町2−10− 210 0発 明 者 横山明典 東京都文京区本郷7丁目3−1 東京大学工学部化学工学科内 0発 明 者 木村久道 仙台市片平2−1−1東北犬学 金属材料研究所内 ■出 願 人 増本健 仙台市上杉3丁目8−22 ■出 願 人 小宮山宏 東京都新宿区新小川町2−10− 210 234−
Figure 1 shows the relationship between Co water hydration reaction time and CO conversion rate using a Pd35Zr65 amorphous alloy catalyst. After being used as a catalyst in the reaction (B), the alloy was heated to θ°C in 02S.
OO treated (C), this alloy was heated in N2 at 240°C.
Figure 3 shows the X-ray diffraction spectrum of C treated for 5θ hours (D). content and reaction rate per unit area r (mat CO/1-m
2-aea), Figure 9 is a diagram showing the relationship with Pd27
Figure 1 shows the relationship between the reaction time at death and the conversion rate of CO using Hf73 alloy as a catalyst for COO hydrogenation reaction.
a35 A diagram showing the relationship between reaction time and CO conversion rate when Ti65 alloy is used as a catalyst for CO hydrogenation reaction. Figure 6 shows the relationship between Ni63Zr37 alloy and CO in Art''C in H2. Figure 7 showing the X-ray diffraction spectrum 5 of
The figure shows the same H2r Co catalyst that has reached steady activity in Figure 1.
A diagram showing the relationship between the reaction temperature and the conversion rate of CO when only the reaction temperature is lowered from COyr°C to /J9''c under flow conditions. FIG. 2 is a diagram showing the relationship between the reaction time of 1" and the conversion rate of CO when used as 1". Patent Applicant Hiroshi Inoue Aido Applicant Kendo Masumoto Applicant Hiroshi Komiyayama Attorney Mura 1) Political District 1-ψ 滌-<ot*>htcooling0〇- Ward Quri Sotoku 1983-109244 (7) Continuation of page 1 oInt, C1,3 identification code Internal serial number C0
7C11048217-4H 271067457-4H C10K 3102 6561
-4H0 Inventor Ken Masumoto 3-8-22 Uesugi, Sendai City 0 Inventor Hiroshi Komiyama 2-10-210 Shin-Ogawa-cho, Shinjuku-ku, Tokyo 0 Inventor Akinori Yokoyama 7-3-1 Hongo, Bunkyo-ku, Tokyo Tokyo Department of Chemical Engineering, Faculty of Engineering, University Inventor: Hisamichi Kimura, Tohoku Institute of Canine Science and Metals, 2-1-1 Katahira, Sendai City ■Applicant: Ken Masumoto, 3-8-22 Uesugi, Sendai City ■Applicant: Hiroshi Komiyama, Shinjuku-ku, Tokyo Shin-Ogawamachi 2-10- 210 234-

Claims (1)

【特許請求の範囲】 1、  Fe p Ni y Co + Pt y P
a y Ru e Rh yos yIrのなかから選
ばれる何れか少なくとも1種とTh z Sc、 ! 
y La、+ E3e、 y Pr、v N67、Aj
、eSm/r Er * Ga、 p Tb−t Dy
 y Ho= +’、、Tu l Y)。 Lu、 t Ac r Ti t Zr * Hf s
 V e N’b * Ta t゛ゾ /  /  /
  l /  〆か少なくとも1種とからなる合金の複
合酸化物、複合炭化物を複合窒化物のなかから選ばれる
何れか少なくとも7種を含有し、残部主として前記合金
を前記合金を構成する元素。 前記合金を構成する元素の化合物のなかから選ばれる何
れか1種または2種以上からなることを特徴とするCo
水素化反応用触媒。 2、  Fe * Ni * Co F Pt * P
a t Ru e Rh v Os yIrのなかから
選ばれる何れか少なくとも1種とTh 、 Sc y 
Y t La s Se t Pr y Na t  
−In  #  Sm  +  Er  * Ga  
t  Tb  #  Dy  * Ho  +  Tu
  + ’Yb  l  Lu  r  Ae  y 
 Ti  t  Zr  r  Hf  v  V  
v  Nb  ITa * kl + Ga t Si
 + Ce Oなががら選ばれる何れか少なくとも1種
とからなる合金を02m Go + No 、 NO2
r N、Ooナカカラ1lltfれる何れか少なくとも
7種を含むガスと低くとも100″Cにおいて接触反応
させて得られる前記合金の複合酸化物、複合炭化物?複
合窒化物の寿かから選ばれる何れか少なくとも1種の反
応生成物を含有し、残部主として前記パ合金、前記合金
を構成する元素、前記合金を構成する元素の化合物のな
かから選ばれる何れか1種まだは2種以上からなること
を特徴とする特許請求の範囲第1項記載のCo水素化反
応用触媒。 3、前記合金の複合酸化物、複合炭化物、複合窒化物の
なかから選ばれる何れか少なくとも7種の含有量は少々
くとも10原子%である特許請求の範囲第1あるいは2
項記載のCo水素化反応用触媒。 4、前記残部のガかには、前記合金の成分元素1のなか
から選ばれる何れか1種または一種以上の単体元素およ
びまたは前記単体元素の酸化物−炭化物を窒化物のなか
から選ばれる何れか少なくとも7種が不可避的に含まれ
る特許請求の範囲第1〜3項の何れかに記載のCo水素
化反応用触媒。 5、  Fet Nt + Go 、 Pt + Pa
 + F(u 、 Rh t 0IlzIrのなかから
選ばれる何れか少な°くとも1種とTh l So *
 Y HLa v So * Pr I N6 *  
”’II HSm r Er l Ca l Tb l
 D7 t Ho l Tu tYb 、 Lu 、 
Ac + Tt 、 Zr + Ht * V * N
b 。 Ta 、 Al 、 Ga 、 St 、 Goのなか
から選ばれる何れか少なくとも7種とからなる合金をo
2.co 、 No 、 NO2、N20 ノナカカラ
at−1t ’る何れか少なくとも1種を含むガスと低
くとも700℃において接触させて前記合金の複合酸化
物、複合炭化物、複合窒化物のなかから選ばれる何れか
少なくとも7種を主として生成含有させ、残部主として
前記合金、前配合−′□′金を構成する元素−前記合金
を構成する元素・の化合物のなかから選ばれる何れか7
種または一種以上からなるCo水素化反応用触媒の製造
方法。 6、特許請求の範囲第5項記載の製造方法において前記
合金の複合酸化物を複合炭化物を複合窒化物のなかから
選ばれる何れか少なくとも1種の含有量は少なくとも1
0原子%であるCo水素化反応用触媒の製造方法。 7、特許請求の範囲第5あるいは6項記載の製□゛□造
方法において、前記ガスとの接触によシ前記合金の成分
元素のなかから選ばれる何れか7種または一種以上の単
体元素およびまたは前記単体元素の酸化物、炭化物、窒
化物のなかから選ばれる何れか少なくとも7種が不可−
避的に生成されるCo水素化反応用触媒の製造方法。
[Claims] 1. Fe p Ni y Co + Pt y P
At least one selected from a y Ru e Rh yos y Ir and Th z Sc,!
y La, + E3e, y Pr, v N67, Aj
, eSm/r Er * Ga, p Tb-t Dy
y Ho= +',, Tu l Y). Lu, t Ac r Ti t Zr * Hf s
V e N'b * Ta t゛zo / / /
An element constituting the alloy, which contains at least 7 types selected from among composite oxides, composite carbides, and composite nitrides consisting of at least one of the following: Co comprising one or more selected from the compounds of elements constituting the alloy.
Catalyst for hydrogenation reactions. 2. Fe * Ni * Co F Pt * P
at least one selected from a t Ru e Rh v Os y Ir and Th , Sc y
Y t La s Set Pr y Na t
-In # Sm + Er * Ga
t Tb # Dy * Ho + Tu
+ 'Yb l Lu r Ae y
Ti t Zr r Hf v V
v Nb ITa * kl + Ga t Si
02m An alloy consisting of + Ce O and at least one selected from Go + No, NO2
At least one selected from the group consisting of composite oxides, composite carbides, and composite nitrides of the alloy obtained by contact reaction at at least 100''C with a gas containing at least 7 of the following: It is characterized by containing one type of reaction product, and the remainder mainly consisting of one or more selected from the above-mentioned PA alloy, elements constituting the alloy, and compounds of elements constituting the alloy. The catalyst for Co hydrogenation reaction according to claim 1. 3. The content of at least seven selected from among composite oxides, composite carbides, and composite nitrides of the alloy is at least a little. Claim 1 or 2 which is 10 atomic %
Catalyst for Co hydrogenation reaction described in Section 3. 4. The remaining portion may include any one or more elemental elements selected from the constituent elements 1 of the alloy, and/or any oxide-carbide or nitride of the elemental element. The catalyst for Co hydrogenation reaction according to any one of claims 1 to 3, which inevitably contains at least seven types. 5. Fet Nt + Go, Pt + Pa
+ At least one selected from F(u, Rh t 0 IlzIr and Th l So *
Y HLa v So * Pr I N6 *
”'II HSm r Er l Cal Tb l
D7 t Hol Tu tYb, Lu,
Ac + Tt, Zr + Ht * V * N
b. An alloy consisting of at least 7 types selected from Ta, Al, Ga, St, and Go.
2. A composite oxide, a composite carbide, or a composite nitride of the above-mentioned alloy is produced by contacting it with a gas containing at least one of the following: CO, NO, NO2, N20, NONAKAKARA at-1t' at at least 700°C. At least 7 types are mainly formed and contained, and the remainder is mainly the above alloy, and any 7 selected from the following: - '□' Elements constituting the gold - Elements/compounds constituting the alloy.
A method for producing a catalyst for Co hydrogenation reaction comprising one or more species. 6. In the manufacturing method according to claim 5, the content of at least one selected from composite oxides, composite carbides, and composite nitrides in the alloy is at least 1
A method for producing a catalyst for Co hydrogenation reaction having a concentration of 0 atom%. 7. In the manufacturing method according to claim 5 or 6, any seven or more elemental elements selected from the constituent elements of the alloy and Or at least 7 types selected from oxides, carbides, and nitrides of the above-mentioned single elements are not allowed.
A method for producing a catalyst for a Co hydrogenation reaction that is produced automatically.
JP57217018A 1982-12-13 1982-12-13 Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture Pending JPS59109244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217018A JPS59109244A (en) 1982-12-13 1982-12-13 Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217018A JPS59109244A (en) 1982-12-13 1982-12-13 Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture

Publications (1)

Publication Number Publication Date
JPS59109244A true JPS59109244A (en) 1984-06-23

Family

ID=16697533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217018A Pending JPS59109244A (en) 1982-12-13 1982-12-13 Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture

Country Status (1)

Country Link
JP (1) JPS59109244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190726A (en) * 1984-03-09 1985-09-28 Tokuyama Soda Co Ltd Methanation process
US4973369A (en) * 1989-05-11 1990-11-27 Yoshida Kogyo K.K. Alloy catalyst for oxidation of hydrogen
JPH07284665A (en) * 1994-04-20 1995-10-31 Agency Of Ind Science & Technol Catalyst for synthesis of methanol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388684A (en) * 1976-12-08 1978-08-04 Johnson Matthey Co Ltd Oxidation and reduction catalyst
JPS57184442A (en) * 1981-05-09 1982-11-13 Otsuka Chem Co Ltd Catalyst comprising amorphous inorg. substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388684A (en) * 1976-12-08 1978-08-04 Johnson Matthey Co Ltd Oxidation and reduction catalyst
JPS57184442A (en) * 1981-05-09 1982-11-13 Otsuka Chem Co Ltd Catalyst comprising amorphous inorg. substance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190726A (en) * 1984-03-09 1985-09-28 Tokuyama Soda Co Ltd Methanation process
JPH0324453B2 (en) * 1984-03-09 1991-04-03 Tokuyama Soda Kk
US4973369A (en) * 1989-05-11 1990-11-27 Yoshida Kogyo K.K. Alloy catalyst for oxidation of hydrogen
JPH07284665A (en) * 1994-04-20 1995-10-31 Agency Of Ind Science & Technol Catalyst for synthesis of methanol

Similar Documents

Publication Publication Date Title
US6992112B2 (en) Selective removal of oxygen from syngas
Tsang et al. Recent advances in the conversion of methane to synthesis gas
US5431855A (en) Processes for the conversion of methane to synthesis gas
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
EP1406725B1 (en) Perovskites comprising noble metals and their use as catalysts
CN1154684A (en) Process for catalystic partial oxidation of hydrocarbons
US6783749B2 (en) Gas recovery process
CA2512958C (en) Thermal cracking process for producing hydrogen from a hydrocarbon
KR20050103568A (en) High performance water gas shift catalysts and a method of preparing the same
KR20020079612A (en) A catalyst and process for removing carbon monoxide from a reformate gas
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
JPS58159847A (en) Amorphous alloy type catalyst for reduction reaction
JPS59109244A (en) Catalyst for conversion reaction of carbon monoxide to hydrogen and its manufacture
AU4155301A (en) Chromium-rare earth based catalysts and process for converting hydrocarbons to synthesis gas
CN113597422A (en) By CO2Recycled methanol production process with higher carbon utilization
Usachev et al. Conversion of hydrocarbons to synthesis gas: Problems and prospects
Yokoyama et al. AN ACTIVE METHANATION CATALYST PREPARED FROM AN AMORPHOUS Pd35Zr65 ALLOY
US20060168887A1 (en) Method for producing a fuel gas containing hydrogen for electrochemical cells and associated device
WO2007056835A1 (en) A method of converting natural gas into fuels
WO2005000458A2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
CN113710613A (en) Methanol production process with improved energy efficiency
CN113784913A (en) Production of synthesis gas and methanol
JPH08176034A (en) Synthesis of methanol
Jilei et al. NiO-Ce0. 5Zr0. 5O2 catalysts prepared by citric acid method for steam reforming of ethanol
Choudhary et al. Low temperature complete combustion of dilute propane over Mn-doped ZrO 2 (cubic) catalysts