JPS591088B2 - Catalyst composition for hydrocarbon decomposition - Google Patents

Catalyst composition for hydrocarbon decomposition

Info

Publication number
JPS591088B2
JPS591088B2 JP54060690A JP6069079A JPS591088B2 JP S591088 B2 JPS591088 B2 JP S591088B2 JP 54060690 A JP54060690 A JP 54060690A JP 6069079 A JP6069079 A JP 6069079A JP S591088 B2 JPS591088 B2 JP S591088B2
Authority
JP
Japan
Prior art keywords
catalyst
alumina
composition
crystalline
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54060690A
Other languages
Japanese (ja)
Other versions
JPS55152548A (en
Inventor
陽一 西村
政光 緒方
孝徳 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP54060690A priority Critical patent/JPS591088B2/en
Publication of JPS55152548A publication Critical patent/JPS55152548A/en
Publication of JPS591088B2 publication Critical patent/JPS591088B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は炭化水素の接触分解に使用される触媒組成物に
関するものであって、さらに詳しくは高い分解活性とガ
ソリン選択性を有しているばかりでなく、熱及び水蒸気
に対する安定性を備え、しかも耐摩耗性にも優れた新し
い接触分解用触媒組成物に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst composition used for catalytic cracking of hydrocarbons. The present invention relates to a new catalyst composition for catalytic cracking that has stability against catalytic cracking and excellent abrasion resistance.

炭化水素の接触分解用触媒としては、シリカ−アルミナ
、シリカ−マグネシア、シリカ−ジルコニア、アルミナ
−ボリアなどの無機酸化物系触媒が知られており、この
なかではシリカ−アルミナが最も実用的な触媒として流
動接触分解プロセスに汎用されている。
Inorganic oxide catalysts such as silica-alumina, silica-magnesia, silica-zirconia, and alumina-boria are known as catalysts for catalytic cracking of hydrocarbons, and among these, silica-alumina is the most practical catalyst. It is widely used in fluid catalytic cracking processes.

この外、適当な無機酸化物又はその混合物をマh IJ
フラックス、これに結晶性アルミノ珪酸塩を分散させた
接触分解用触媒も知られている。
In addition, suitable inorganic oxides or mixtures thereof may be used.
Catalytic cracking catalysts in which crystalline aluminosilicate is dispersed in flux are also known.

本発明は分解活性、ガソリン選択性、熱及び水蒸気に対
する安定性並びに耐摩耗性の各点で従来触媒を凌ぐ新規
な接触分解用触媒を提供せんとするものである。
The present invention aims to provide a novel catalyst for catalytic cracking that exceeds conventional catalysts in terms of cracking activity, gasoline selectivity, stability against heat and steam, and wear resistance.

炭化水素の接触分解に使用される触媒は本来分解活性と
ガソリン選択性を備えていなければならないが、これに
加えて熱及び水蒸気に対する安定性と耐摩耗性を備えて
いなければならない。
Catalysts used for catalytic cracking of hydrocarbons must inherently have cracking activity and gasoline selectivity, but in addition, they must also have stability against heat and steam and wear resistance.

炭化水素の接触分解プロセスにあっては、炭素質物質の
析出によって被毒された触媒を再生した後、その再生触
媒を再び接触分解反応に供するのが通例であり、その再
生処理はまず被毒触媒に付着する炭化水素を水蒸気でス
トリッピングし、次いで酸素の存在下に被毒触媒上の炭
素質物質を燃焼させることを内容とする。
In the catalytic cracking process of hydrocarbons, it is customary to regenerate a catalyst that has been poisoned by precipitation of carbonaceous substances, and then subject the regenerated catalyst to the catalytic cracking reaction again. The process involves stripping hydrocarbons adhering to the catalyst with steam, and then burning the carbonaceous material on the poisoned catalyst in the presence of oxygen.

このため、触媒の熱及び水蒸気に対する安定性が不充分
であると、再生時に触媒の活性が損われて、再生後の触
媒は新鮮な触媒よりもかなり低い分解活性とガソリン選
択性しか示さなくなるのである。
Therefore, if the thermal and steam stability of the catalyst is insufficient, the activity of the catalyst will be impaired during regeneration, and the regenerated catalyst will have significantly lower cracking activity and gasoline selectivity than the fresh catalyst. be.

また、最近の接触分解の多くは流動床反応器を使用する
のが慣例であるが、触媒の耐摩耗性が充分でないと流動
床内で触媒が微粉化して系外に失われてしまうので、こ
れもまた触媒の分解活性とガソリン選択性を損う一因な
のである。
In addition, it is customary in most modern catalytic cracking to use a fluidized bed reactor, but if the catalyst does not have sufficient wear resistance, the catalyst will be pulverized in the fluidized bed and lost to the outside of the system. This is also a factor that impairs the cracking activity and gasoline selectivity of the catalyst.

従って炭化水素の接触分解用触媒にあっては、高い分解
活性とガソリン選択性を備えていることもさることなが
ら、熱及び水蒸気に対する安定性が高く、耐摩耗性も充
分であることが重要な要件であると言える。
Therefore, it is important for catalysts for catalytic cracking of hydrocarbons to not only have high cracking activity and gasoline selectivity, but also to have high stability against heat and steam, and sufficient wear resistance. It can be said that this is a requirement.

本発明者らは従来の接触分解用触媒の性能を凌ぐ新しい
接触分解用触媒の開発を月差して研究を重ねた結果、驚
くべきことには、耐熱性無機酸化物とX線回折法で結晶
質として検知可能なアルミナ(本明細書ではこれを結晶
性アルミナという)とで構成される組成物は、それ自体
従来の無機酸化物系触媒を凌ぐ性能を有し、またこの組
成物をマトリックスとしてこれに結晶性アルミノ珪酸塩
を分散させたものも、従来の結晶性アルミノ珪酸塩含有
触媒より高性能であることを見い出した。
The inventors of the present invention have spent months researching the development of a new catalyst for catalytic cracking that outperforms the performance of conventional catalysts for catalytic cracking.As a result, surprisingly, they have found that crystallization using heat-resistant inorganic oxides and X-ray diffraction method A composition composed of alumina (herein referred to as crystalline alumina) that can be detected as a crystalline alumina has a performance that exceeds that of conventional inorganic oxide catalysts. It has also been found that a catalyst in which crystalline aluminosilicate is dispersed has higher performance than the conventional catalyst containing crystalline aluminosilicate.

つまり、結晶性アルミナの存在は触媒の熱及び水蒸気に
対する安定性を向上させるばかりでなく、分解活性を犠
牲にすることなくガソリン収率を増加させ、さらに触媒
の耐摩耗性をも増大させることが見い出されたのである
In other words, the presence of crystalline alumina not only improves the thermal and steam stability of the catalyst, but also increases the gasoline yield without sacrificing cracking activity, and also increases the wear resistance of the catalyst. It was discovered.

而して本発明に係る組成物はアルミナと他の無機酸化物
とで構成され、且つ組成物中の結晶性アルミナ量が10
〜85重量係の範囲にあることを特徴とする。
Therefore, the composition according to the present invention is composed of alumina and another inorganic oxide, and the amount of crystalline alumina in the composition is 10
It is characterized by being in the range of ~85 weight ratio.

結晶性アルミナ量が上記範囲の下限以下では組成物中に
結晶性アルミナを存在させた意義が失われ、また上限以
上では組成物の脱水素活性が接触分解活性を凌ぐため、
組成物中の結晶性アルミナ量は10〜85重量係の範囲
であることを可とする。
If the amount of crystalline alumina is below the lower limit of the above range, the significance of the presence of crystalline alumina in the composition is lost, and if it is above the upper limit, the dehydrogenation activity of the composition exceeds the catalytic cracking activity.
The amount of crystalline alumina in the composition can range from 10 to 85 parts by weight.

本発明の組成物はアルミナ以外の無機酸化物を含有する
ことを要件とする。
The composition of the present invention is required to contain an inorganic oxide other than alumina.

この種の無機酸化物としては、シリカ、マグネシア、チ
タニア、ジルコニア、ボリアなどの外、シリカ−アルミ
ナ、シリカ−マグネシア、シリカ−ジルコニア、アルミ
ナ−ボリアなどの1種もしくは2種以上が使用可能であ
る。
As this type of inorganic oxide, in addition to silica, magnesia, titania, zirconia, and boria, one or more of silica-alumina, silica-magnesia, silica-zirconia, alumina-boria, etc. can be used. .

念のため付言すると、従来知られているシリカ−アルミ
ナやアルミナ−ボリアは本来アルミナを含んでいるにも
拘らず、X線回折法で検知可能な結晶性アルミナについ
ては、全くこれを含有していない。
Just to be sure, although conventionally known silica-alumina and alumina-boria originally contain alumina, crystalline alumina, which can be detected by X-ray diffraction, does not contain any alumina. do not have.

従って、本発明の組成物を調製するに際しては、シリカ
−アルミナやアルミナ−ボリアを使用する場合でも、結
晶性アルミナ源を他に求めなければならない。
Therefore, even when using silica-alumina or alumina-boria, other sources of crystalline alumina must be sought in preparing the compositions of the present invention.

そうしたアルミナ源としてはバイヤー法水酸化アルミニ
ウム(ジブサイト)、パイヤライト、ベーマイトなどを
初めとして、χ−2ρ−2η−2γ−アルミナなどの使
用が推奨される。
As such an alumina source, it is recommended to use Bayer process aluminum hydroxide (gibbsite), bayerite, boehmite, and χ-2ρ-2η-2γ-alumina.

本発明の組成物の他の要件は、X線回折法で結晶質とし
て検知可能なアルミナが10〜85重量%含まれている
ことである。
Another requirement of the compositions of the present invention is that they contain 10 to 85% by weight alumina detectable as crystalline by X-ray diffraction.

この場合、結晶性アルミナの結晶形は如何なるものであ
っても差支えない。
In this case, the crystalline alumina may have any crystal form.

しかし、結晶性アルミナの量は、組成物を調製するに際
して採用する結晶性アルミナ源の種類及び組成物の調製
手段の内容に応じて、予めX線回折法による検量線を作
成し、この検量線によって定量することを可とする。
However, the amount of crystalline alumina can be determined by preparing a calibration curve using X-ray diffraction method in advance, depending on the type of crystalline alumina source used in preparing the composition and the contents of the composition preparation method. It is possible to quantify by

この点をさらに詳述すると、一般に本発明の組成物は上
記した結晶性アルミナ源をアルミナ以外の無機酸化物の
ヒドロシル又はヒドロゲルに添加し、典型的には熟成後
噴霧乾燥する方法で製造されるのが通例であるが、同じ
結晶性アルミナ源を同量使用した場合でも、上記の熟成
条件や噴霧乾燥条件の変更によって、最終的に得られる
組成物中の結晶性アルミナ量は変動する。
To further elaborate on this point, the composition of the present invention is generally produced by adding the above-described crystalline alumina source to a hydrosil or hydrogel of an inorganic oxide other than alumina, and typically spray-drying the mixture after aging. However, even if the same amount of the same crystalline alumina source is used, the amount of crystalline alumina in the final composition will vary depending on the above-mentioned changes in the aging conditions and spray drying conditions.

従って、本発明の組成物中の結晶性アルミナを正確に定
量するに当っては、使用した結晶性アルミナ源毎に、ま
た熟成条件毎に、そしてまた乾燥条件毎に個個の検量線
を作成し、その検量線によって組成物中の結晶性アルミ
ナ量を定量することが好ましい。
Therefore, in order to accurately quantify the crystalline alumina in the composition of the present invention, individual calibration curves must be prepared for each crystalline alumina source used, each aging condition, and each drying condition. However, it is preferable to quantify the amount of crystalline alumina in the composition using the calibration curve.

本発明の組成物は付加的に結晶性アルミナ源を組成物調
製段階の何れかで添加する点を除けば、従来の無機酸化
物系炭化水素接触分解用触媒と実質的に同じ方法で調製
することができる。
The compositions of the present invention are prepared in substantially the same manner as conventional inorganic oxide catalysts for catalytic cracking of hydrocarbons, except that a source of crystalline alumina is additionally added at some stage in the preparation of the composition. be able to.

結晶性アルミナ源は既述した通り、アルミナ以外の無機
酸化物のヒドロシル又はヒドロゲルに添加できる外、ヒ
ドロシルが生成される前の無機塩水溶液、例えば珪酸ア
ルカリ水溶液、硫酸アルミニウム水溶液、或いはアルミ
ン酸アルカリ水溶液などに添加することができる。
As mentioned above, the crystalline alumina source can be added to hydrosil or hydrogel of inorganic oxides other than alumina, and can also be added to an aqueous inorganic salt solution before hydrosil is generated, such as an aqueous alkali silicate solution, an aqueous aluminum sulfate solution, or an aqueous alkali aluminate solution. It can be added to etc.

この場合、結晶性アルミナ源は粉末状で添加しても、ま
た懸濁液として添加してもよい。
In this case, the crystalline alumina source may be added in powder form or as a suspension.

結晶性アルミナ源の粒度はできるだけ細かい方が、分散
性や最終的に得られる組成物の耐摩耗性の点で好ましい
が、実用的に使用されるFCC触媒の平均粒度以下であ
れば大きな問題はない。
It is preferable for the particle size of the crystalline alumina source to be as fine as possible in terms of dispersibility and wear resistance of the final composition, but if it is below the average particle size of the FCC catalyst used in practical use, there will be no major problem. do not have.

本発明の組成物はこれ単独で炭化水素の接触分解用触媒
として使用することができ、分解活性、ガソリン選択性
、熱及び水蒸気に対する安定性並びに耐摩耗性の各点で
、従来の無機酸化物系触媒を圧倒する性能を発揮する。
The composition of the present invention can be used alone as a catalyst for catalytic cracking of hydrocarbons, and is superior to conventional inorganic oxides in terms of cracking activity, gasoline selectivity, stability against heat and steam, and wear resistance. Demonstrates performance that overwhelms other catalysts.

また、本発明の組成物は所謂ゼオライト系触媒のマトリ
ックスとしても使用可能であって、この場合でも従来の
無機酸化物をマトリックスとしたゼオライト系触媒に優
るとも劣らない性能を発揮する。
Furthermore, the composition of the present invention can be used as a matrix for a so-called zeolite catalyst, and even in this case, it exhibits performance that is as good as that of a conventional zeolite catalyst using an inorganic oxide as a matrix.

本発明の組成物をマ) IJフラックスたゼオライト系
触媒にあっては、微細なゼオライト(アルミノ珪酸塩)
を10〜40重量%含有しているこ吉を可とする。
In the case of IJ fluxed zeolite catalysts using the composition of the present invention, fine zeolites (aluminosilicate)
Kokichi containing 10 to 40% by weight is acceptable.

進んで実施例を示して本発明をさらに具体的に説明する
が、本発明に係る炭化水素分解用触媒組成物は、これら
実施例で調製されたものに限られることはない。
The present invention will now be described in more detail with reference to Examples, but the catalyst composition for hydrocarbon decomposition according to the present invention is not limited to those prepared in accordance with these Examples.

実施例 1 25%硫酸5801に、純水2001を加えて、30℃
の希硫酸を調製した。
Example 1 Add pure water 2001 to 25% sulfuric acid 5801 and heat at 30°C.
dilute sulfuric acid was prepared.

これに30℃のJIS3号規格水硝子溶液(SiO□濃
度85%)37001を、pH4,0まで加えた。
To this was added 37001 JIS No. 3 standard water glass solution (SiO□ concentration 85%) at 30°C until the pH reached 4.0.

150分熟成し、15%アンモニア水をpH7、6まで
加え、更に90分熟成した。
The mixture was aged for 150 minutes, 15% aqueous ammonia was added until the pH reached 7.6, and the mixture was further aged for 90 minutes.

次に25%硫酸をpH13,5まで加え、続けて24%
の硫酸アルミニウム溶液57’OAを加え、30分熟成
した。
Next, 25% sulfuric acid was added until pH 13.5, followed by 24%
57'OA of aluminum sulfate solution was added and aged for 30 minutes.

最後に15%アンモニア水でpH7,6とした。Finally, the pH was adjusted to 7.6 with 15% aqueous ammonia.

このシリカ−アルミナスラリーの一部に、Al2O3濃
度を20%にした、バイヤー法水酸化アルミニウム(ジ
ブサイト)の水懸濁スラリーを加え、更に予め濃度を3
0%とした希土類交換Y型ゼオライトの水懸濁スラリー
を、最終触媒中のゼオライト含量が15%になるように
加えた。
A water suspension slurry of Bayer process aluminum hydroxide (Gibsite) with an Al2O3 concentration of 20% is added to a part of this silica-alumina slurry, and the concentration is further adjusted to 3% in advance.
A water suspension slurry of 0% rare earth-exchanged Y-type zeolite was added such that the zeolite content in the final catalyst was 15%.

このジブサイト−ゼオライト混合シリカ−アルミナスラ
リーを、熱風温度220℃で噴霧乾燥し、0.5係の硫
酸アンモニア水溶液と0.5%アンモニア水とで洗滌し
、110℃で16時間乾燥した。
This gibbsite-zeolite mixed silica-alumina slurry was spray-dried at a hot air temperature of 220°C, washed with a 0.5% ammonia sulfate aqueous solution and 0.5% aqueous ammonia, and dried at 110°C for 16 hours.

比較例 1 バイヤー法水酸化アルミニウム(ジブサイト)を混合し
ない以外は、実施例1と全く同じ方法で触媒を調製した
Comparative Example 1 Bayer Process A catalyst was prepared in exactly the same manner as in Example 1, except that aluminum hydroxide (gibsite) was not mixed.

比較例 2 バイヤー法水酸化アルミニウム(ジブサイト)を混合す
る代わりに、ジョーシアーカリオン(グレードKC8−
8D)を、最終触媒に於て、カリオン中の全固形分量が
40係になるようにした以外は、実施例1と全く同じ方
法で触媒を調製した。
Comparative Example 2 Instead of mixing Bayer process aluminum hydroxide (Gibsite), Josier Karion (Grade KC8-
8D) was prepared in exactly the same manner as in Example 1, except that the total solid content in carrion was adjusted to 40% in the final catalyst.

比較例 3 バイヤー法水酸化アルミニウム(ジブサイト)を混合す
る代わりに、ベントナイト(グレード利根印)を、最終
触媒に於て、ベントナイト中の全固形分量が40%にな
るようにした以外は、実施例1と全く同じ方法で触媒を
調製した。
Comparative Example 3 Example except that instead of mixing Bayer process aluminum hydroxide (Gibsite), bentonite (Grade Tone mark) was used so that the total solid content in bentonite was 40% in the final catalyst. The catalyst was prepared in exactly the same way as in 1.

これら4種の触媒の耐摩耗性テスト結果と、熱及び水蒸
気安定性テスト結果を表−1に示した。
Table 1 shows the abrasion resistance test results and the thermal and steam stability test results for these four types of catalysts.

これから判るように、本発明の結晶性アルミナを混合し
た触媒は、同じ合成マトリックスに同じ量混合したカオ
リン及びベントナイトより耐摩耗性、熱及び水蒸気安定
性共に優れていた。
As can be seen, the catalyst mixed with crystalline alumina of the present invention had better wear resistance and thermal and steam stability than kaolin and bentonite mixed in the same amount in the same synthetic matrix.

特に耐摩耗性に於ては、カオリン及びベントナイトを混
合した触媒の約1/2の粉化率であった。
Particularly in terms of abrasion resistance, the powdering rate was about 1/2 of that of a catalyst containing a mixture of kaolin and bentonite.

表−2に、実験室流動床パイロットプラントを用いて、
同一原料油、同一測定条件での分解活性を示した。
Table 2 shows the results using a laboratory fluidized bed pilot plant.
Decomposition activity was shown using the same raw material oil and under the same measurement conditions.

触媒は熱及び水蒸気安定性テストと同じ処理を施したの
ち、600℃で2時間焼成する前処理を行ない、原料油
には、クラエート系脱硫減圧軽油を用いた。
The catalyst was subjected to the same treatment as in the heat and steam stability test, and then pretreated by calcining at 600°C for 2 hours, and claate-based desulfurized vacuum gas oil was used as the raw material oil.

分解温度は490℃、W、HoS、V。は8hr−1、
触媒/原料油の重量比は5.0とした。
Decomposition temperature is 490°C, W, HoS, V. is 8hr-1,
The catalyst/raw oil weight ratio was 5.0.

これから判るように、本発明品は、水素及びコークスの
生成が少なく、ガソリン収率及びガソリン選択性が著し
く改良されている。
As can be seen, the product of the present invention produces less hydrogen and coke, and has significantly improved gasoline yield and gasoline selectivity.

特にガソリン収率に於ては、従来広く使用されている比
較例1の触媒より3.5wt%の増収である。
In particular, the gasoline yield is 3.5 wt% higher than the conventionally widely used catalyst of Comparative Example 1.

実施例 2 SIO2濃度5%のJIS3号規格水硝子溶液を陽イオ
ン交換樹脂処理してpH2,9、SiO2濃度5チの珪
酸液を得た。
Example 2 A JIS No. 3 standard water-glass solution with an SIO2 concentration of 5% was treated with a cation exchange resin to obtain a silicic acid solution with a pH of 2.9 and an SiO2 concentration of 5%.

この20に9に、予め濃度を30%にした、希土類交換
Y型ゼオライトを最終触媒中のゼオライト量が10%に
なるように加えた。
To this 20 and 9, rare earth-exchanged Y-type zeolite whose concentration had been adjusted to 30% in advance was added so that the amount of zeolite in the final catalyst was 10%.

15%アンモニア水を加えてpHを7.0としたのちホ
モジナイザーを通して均質化し、熱風温度220℃で噴
霧乾燥した(触媒A)。
After adjusting the pH to 7.0 by adding 15% aqueous ammonia, the mixture was homogenized through a homogenizer and spray-dried at a hot air temperature of 220° C. (Catalyst A).

触媒Aと同じ方法で、バイヤー法水酸化アルミニウム(
ジブサイト)を混合した触媒Bを調製した。
In the same manner as Catalyst A, Bayer process aluminum hydroxide (
Catalyst B was prepared by mixing gibbsite).

実施例 3 8102濃度11.2%の水硝子溶液195に9にβ−
水酸化アルミニウム(バイヤライト)粉末7.7に9を
混合した。
Example 3 8102 concentration 11.2% water glass solution 195 to 9
9 was mixed with aluminum hydroxide (bayerite) powder 7.7.

これとは別に10.5%の硫酸アルミニウム水溶液を調
製した。
Separately, a 10.5% aluminum sulfate aqueous solution was prepared.

結晶性アルミナ−水硝子溶液及び硫酸アルミニウム溶液
を各々201/分及び101/分の割合で10分間連続
的に混合した。
The crystalline alumina-water glass solution and the aluminum sulfate solution were mixed continuously for 10 minutes at a rate of 201/min and 101/min, respectively.

65℃で3.5時間の熟成をしたのち、11.2係の水
硝子溶液でpHを5.8とした。
After aging at 65° C. for 3.5 hours, the pH was adjusted to 5.8 with a 11.2 water-glass solution.

このゲルを各20に9ずつ4つに分取し、その1つには
何も加えなかった(触媒C)。
This gel was divided into 4 fractions of 9 in 20 fractions, and nothing was added to one of the fractions (catalyst C).

残りの3つには、予め濃度を30%にした、希土類交換
Y型ゼオライト水懸濁スラリーを、最終触媒中のゼオラ
イト含量が、夫々5,10、及び15%になるように混
合した(触媒り、E、F)。
The remaining three were mixed with a rare earth-exchanged Y-type zeolite water suspension slurry whose concentration was previously adjusted to 30% so that the zeolite content in the final catalyst was 5, 10, and 15%, respectively (catalyst R, E, F).

4種の触媒は、実施例1同様、噴霧乾燥し、洗滌し、そ
して乾燥した。
The four catalysts were spray dried, washed and dried as in Example 1.

実施例 4 SiO2濃度10.5%のJISB号水硝子溶液500
1と、14.5%のアラム溶液2501を調製した。
Example 4 JISB water glass solution 500 with SiO2 concentration 10.5%
1 and a 14.5% alum solution 2501 were prepared.

この2液を、夫々351/分、181/の割合で、14
分間連続的に混合し、pH3,9のシリカ−アルミナス
ラリーを得た。
These two liquids were mixed at a rate of 351/min and 181/min, respectively, for 14 min.
The mixture was mixed continuously for a minute to obtain a silica-alumina slurry with a pH of 3.9.

この200 K9を40℃で4時間熟成し40に2ずつ
5等分した。
This 200 K9 was aged at 40° C. for 4 hours and divided into 5 equal parts of 200 K9 each.

その1つには何も加えなかった(触媒G)。Nothing was added to one of them (Catalyst G).

3つには、実施例3の触媒り、E、Fと同じく希土類交
換Y型ゼオライトを混合した(触媒H,I、J)。
Three of the catalysts were mixed with rare earth-exchanged Y-type zeolite as in the catalysts E and F of Example 3 (catalysts H, I, and J).

残りの1つには、触媒Jと同じく、最終触媒中のゼオラ
イト含量が15%になるようにゼオライトを加えたのち
、AI!203濃度を20%としたパイヤライト水懸濁
スラリーを混合した(触媒K)。
To the remaining one, like Catalyst J, zeolite was added so that the zeolite content in the final catalyst was 15%, and then AI! A water suspension slurry of payarite with a 203 concentration of 20% was mixed (Catalyst K).

4種の触媒は、実施例1と同じく、噴霧乾燥し、洗滌し
、そして乾燥した。
The four catalysts were spray dried, washed, and dried as in Example 1.

実施例2,3及び4の11種の触媒は、実施例1と同じ
条件で、耐摩耗性テスト、熱及び水蒸気安定性テスト及
びパイロットプラントによる分解テストを行なった。
The 11 catalysts of Examples 2, 3, and 4 were subjected to an abrasion resistance test, a thermal and steam stability test, and a pilot plant decomposition test under the same conditions as Example 1.

各種のテスト結果を表−3に示した。The various test results are shown in Table 3.

これらの一連のテスト結果から判るように、本発明品は
基材(合成無機酸化物)の種類に関係なく、優れた耐摩
耗性と、熱及び水蒸気に対する高い安定性を備えており
、活性的には、低い水素及びコークス収率で、高いガソ
リン収率及びガソリン選択性を示した。
As can be seen from these series of test results, the product of the present invention has excellent wear resistance and high stability against heat and water vapor, regardless of the type of base material (synthetic inorganic oxide). showed high gasoline yield and gasoline selectivity with low hydrogen and coke yields.

特に触媒AとB及び触媒JとKにみられる著しい活性の
改良は本発明の結晶性アルミナの混合効果を如実に示し
ている。
In particular, the remarkable improvement in activity seen in catalysts A and B and catalysts J and K clearly shows the effect of mixing the crystalline alumina of the present invention.

実施例 5 実施例2の方法でpH2,9のS 102濃度5係の珪
酸液を調製した。
Example 5 A silicic acid solution having a pH of 2.9 and an S 102 concentration of 5 was prepared by the method of Example 2.

これに、最終触媒中のゼオライト含量が5%になるよう
に、希土類交換したY型ゼオライトの水懸濁スラリーを
混合した。
A water suspension slurry of rare earth-exchanged Y-type zeolite was mixed with this so that the zeolite content in the final catalyst was 5%.

次にAl2O3濃度を20チに調整したρ−アルミナ(
バイヤー法水酸化アルミニウム(ジブサイト)を600
℃で気流焼成して得た)の懸濁スラリーを混合した。
Next, ρ-alumina (
Bayer method aluminum hydroxide (Jibsite) 600
(obtained by airflow calcination at ℃) was mixed.

触媒スラリーは、ホモジナイザーを通して均質化したの
ち、熱風温度220℃で噴霧乾燥した。
The catalyst slurry was homogenized through a homogenizer and then spray-dried at a hot air temperature of 220°C.

触媒はX線回折法により結晶性アルミナを定量し、マイ
クロ活性テストを行なった。
Crystalline alumina of the catalyst was determined by X-ray diffraction, and a microactivity test was conducted.

触媒は100%水蒸気雰囲気で、750℃17時間の熱
及び水蒸気処理を行なったのち3闘φ×3龍のタブレッ
ト状に成型し、600℃で2時間焼成した。
The catalyst was subjected to heat and steam treatment at 750° C. for 17 hours in a 100% steam atmosphere, then molded into a 3-diameter x 3-diameter tablet and calcined at 600° C. for 2 hours.

クラエート系脱硫減圧軽油を用いて、反応温度492℃
、W)(S、V、 2.2、反応時間は5分とした。
Using claate-based desulfurized vacuum gas oil, the reaction temperature was 492°C.
, W) (S, V, 2.2, reaction time was 5 minutes.

結果を表−4に示した。この結果から同じゼオライト量
の市販触媒と比較して、結晶性アルミナの混合量は、最
終触媒中の10〜85%が適当である。
The results are shown in Table-4. From this result, compared to a commercially available catalyst containing the same amount of zeolite, the appropriate amount of crystalline alumina mixed in the final catalyst is 10 to 85%.

これ以下では、活性効果が乏しくそれ以上では、活性低
下と同時に、耐摩耗性も満足できなくなる。
Below this range, the activation effect is poor, and above this range, the activity decreases and at the same time the wear resistance becomes unsatisfactory.

前述の各実施例の結果とあわせて考えると、結晶性アル
ミナの量は10〜85%、好ましくは20〜60%であ
る。
Considering the results of each of the above-mentioned Examples, the amount of crystalline alumina is 10 to 85%, preferably 20 to 60%.

Claims (1)

【特許請求の範囲】 1 アルミナさ他の無機酸化物との組成物からなり、そ
の組成物中にX線回折法で結晶質として検知可能なアル
ミナが10〜85重量%存在することを特徴とする炭化
水素分解用触媒組成物。 2 前記の他の無機酸化物がシリカ−アルミナである特
許請求の範囲第1項記載の触媒組成物。 3 アルミナと他の無機酸化物からなり、X線回折法で
結晶質として検知可能なアルミナが10〜85重量%存
在する組成物をマトリックスとし、これに3〜40重量
係重量品性アルミノ珪酸塩を配合したことを特徴とする
炭化水素分解用触媒組成物。
[Scope of Claims] 1 A composition comprising alumina and other inorganic oxides, characterized in that the composition contains 10 to 85% by weight of alumina that can be detected as crystalline by X-ray diffraction method. A catalyst composition for hydrocarbon decomposition. 2. The catalyst composition according to claim 1, wherein said other inorganic oxide is silica-alumina. 3 The matrix is a composition consisting of alumina and other inorganic oxides, in which 10 to 85% by weight of alumina, which can be detected as a crystalline substance by X-ray diffraction, is used as a matrix. A catalyst composition for hydrocarbon decomposition characterized by containing the following.
JP54060690A 1979-05-17 1979-05-17 Catalyst composition for hydrocarbon decomposition Expired JPS591088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54060690A JPS591088B2 (en) 1979-05-17 1979-05-17 Catalyst composition for hydrocarbon decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54060690A JPS591088B2 (en) 1979-05-17 1979-05-17 Catalyst composition for hydrocarbon decomposition

Publications (2)

Publication Number Publication Date
JPS55152548A JPS55152548A (en) 1980-11-27
JPS591088B2 true JPS591088B2 (en) 1984-01-10

Family

ID=13149539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54060690A Expired JPS591088B2 (en) 1979-05-17 1979-05-17 Catalyst composition for hydrocarbon decomposition

Country Status (1)

Country Link
JP (1) JPS591088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636484A (en) * 1983-09-22 1987-01-13 Catalysts & Chemicals Industries Co., Ltd. Method for the preparation of catalyst composition for use in cracking hydrocarbons

Also Published As

Publication number Publication date
JPS55152548A (en) 1980-11-27

Similar Documents

Publication Publication Date Title
US4259212A (en) Octane improvement cracking catalyst
US6022471A (en) Mesoporous FCC catalyst formulated with gibbsite and rare earth oxide
EP0176150B1 (en) Catalytic cracking, process for heavy oil
JPH0214102B2 (en)
US3823092A (en) Process for preparing cracking catalysts having improved regeneration properties
US3449265A (en) Cracking catalyst compositions
CA2178717C (en) Attrition resistant zeolite catalysts for production of methylamines in fluidized bed reactors
US4125591A (en) Process for producing rare earth exchanged crystalline aluminosilicate
US4308129A (en) Octane improvement cracking catalyst
CA1171054A (en) Hydrocarbon conversion catalysts and processes utilizing the same
JPS6233547A (en) Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
US2916437A (en) Cracking process with a zeolite catalyst
US3346512A (en) Preparation of a crystalline aluminosilicate zeolite in a siliceous matrix
US3407148A (en) Minimizing deactivation of aluminosilicate catalysts due to changes in hydration level
JPS62265389A (en) Cracking of hydrocarbon
US3717587A (en) Catalyst and method of preparing the same
JPS6128376B2 (en)
EP0157545B1 (en) Method for preparing hydrocarbon catalytic cracking catalyst compositions
JPS591088B2 (en) Catalyst composition for hydrocarbon decomposition
EP0201152A2 (en) Fluidizable cracking catalyst composition
EP0155851B1 (en) Hydrocarbon catalytic cracking catalyst compositions
US4636484A (en) Method for the preparation of catalyst composition for use in cracking hydrocarbons
EP0189267A2 (en) Fluidizable composition for catalytic cracking
JPH0475783B2 (en)
JP2009542428A (en) Catalyst combined with aluminum sulfate