JPS5910888A - Core stability monitoring device of bwr type reactor - Google Patents

Core stability monitoring device of bwr type reactor

Info

Publication number
JPS5910888A
JPS5910888A JP57119841A JP11984182A JPS5910888A JP S5910888 A JPS5910888 A JP S5910888A JP 57119841 A JP57119841 A JP 57119841A JP 11984182 A JP11984182 A JP 11984182A JP S5910888 A JPS5910888 A JP S5910888A
Authority
JP
Japan
Prior art keywords
spectral density
reactor
fourier transform
stability
core stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57119841A
Other languages
Japanese (ja)
Inventor
茂 兼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57119841A priority Critical patent/JPS5910888A/en
Publication of JPS5910888A publication Critical patent/JPS5910888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は沸騰水型原子炉の炉心安定性監視装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a core stability monitoring system for a boiling water nuclear reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

沸騰水型原子炉の運転は通常制御棒と炉心流量の両者を
制御することにより、炉出力のト昇、下降等の変更を行
っているが、ある種の条件下では、原子炉の核及び熱水
力的動特性のカノプリングにより炉心が不安定状態にな
ることがある。そのため、あらかじめ設計計算により設
定した範囲内での炉出力、炉心流量の変更を行っている
のが現状である。これに対し、上記安定度が常時測定監
視できれば、原子力プラントの安全な運転に役r’fつ
のみならず従来の運転範囲を広げることができ、いっそ
う効率的な原子カプラントの運用につながる。
Normally, boiling water reactors operate by controlling both the control rods and the core flow rate to increase or decrease the reactor output, but under certain conditions, the reactor core and Canopling of thermal-hydraulic dynamics may cause the core to become unstable. Therefore, the current situation is to change the reactor power and core flow rate within the ranges set in advance through design calculations. On the other hand, if the above-mentioned stability can be constantly measured and monitored, it will not only be useful for the safe operation of a nuclear power plant, but also the conventional operating range can be expanded, leading to more efficient operation of an atomic coupler.

従来、このような炉心安定性を測定する装置としては、
人為的外乱をプラントに加え、その応答から評価する方
法、定常状態において中性r束信号の変動成分のパワス
ペクトル密度を求め、そのバター/から安定度を評′徊
するもの等が提案′されているが、(・ずれもある程度
の長さのデータを測定した後に安定度を求めるという装
置であり、オンライン逐次型で安定度を測定する装置で
はない。
Conventionally, the equipment for measuring core stability is as follows:
A method has been proposed in which artificial disturbance is applied to the plant and evaluation is made from the response, and a method in which the power spectrum density of the fluctuating component of the neutral r-flux signal is determined in a steady state and the stability is evaluated from that butter. However, it is a device that calculates stability after measuring data of a certain length, and is not a device that measures stability online sequentially.

また、オンライン逐次形の監視装置として自己回帰モデ
ルに基つ(のがあるが、複雑でありより簡便かつ直接的
な装置が望まれている。
In addition, there is an online sequential monitoring device based on an autoregressive model, but it is complicated and a simpler and more direct device is desired.

〔発明の目的〕[Purpose of the invention]

本発明は、−」−記の事情に基きなされたものでオンラ
インで逐次的に炉心安定度を監視することのできる炉心
安定性監視装置を得ることを目的としている。
The present invention has been made based on the circumstances mentioned above, and an object of the present invention is to obtain a core stability monitoring device that can sequentially monitor core stability online.

1発明の概要〕 本発明においては、定常状態で常に得られる中性子束信
号の変動成分を解析することにより前記を達成している
1. Summary of the Invention In the present invention, the above is achieved by analyzing the fluctuation component of a neutron flux signal that is always obtained in a steady state.

し発明の実施例〕 以丁本発明の詳細な説明する。Examples of the invention] The present invention will now be described in detail.

プラントから得られる中性P束信号の変動成分をX(t
)とすると、そのフーリエ変換は次式(1)により与え
られる。
The fluctuation component of the neutral P flux signal obtained from the plant is expressed as X(t
), its Fourier transform is given by the following equation (1).

この計算は高速フーリエ変換のアルゴリズムを用(・れ
ばデータがx(t+(N−1)△t)〜X(t)土テ△
を秒おきにN点あつまるごとに、T=N△を秒の間隔で
実時間で行うことができ、る。式(1)に対応する自己
パワスペクトル密度(APSD)は1次式(2)で求め
られる。
This calculation uses a fast Fourier transform algorithm (if the data is x(t+(N-1)△t) ~
When N points are collected every second, T=N△ can be performed in real time at intervals of seconds. The self-power spectral density (APSD) corresponding to equation (1) is determined by linear equation (2).

また、炉心安定性の監視のためには、このAPSDをあ
る時間巾にわたって平均する事が必要である。。
Furthermore, in order to monitor core stability, it is necessary to average this APSD over a certain period of time. .

本発明においては次のようにして、前記の平均操作を逐
次的に行う。
In the present invention, the above-mentioned averaging operation is performed sequentially as follows.

すなわち、F記のAPSDは時刻t、 t −’+r、
  を−2T・・・・ごとに逐次得られるが、こわから
次式(8)により平均化したAPSDPj(f)を求め
る。
That is, the APSD of book F is at time t, t −'+r,
is obtained sequentially every -2T... However, due to the fear, the averaged APSDPj(f) is calculated using the following equation (8).

Pt(r)−屯(f)+−(Pj(f)−Pj(f))
  ・・・・・(3)なお、式(B) r4+ Mはこ
の平均操作の回数に相当しており、この値の調整に′α
リプラントの特イケ変化に対する一]二組APSDPt
(f)の追従性を変えることができる。このMの値が小
さいと追従性は良くなるが、PI(f)の精度が悪くな
り、逆に大きいと追従性が悪くなりPt(f)の精度が
向上する。この様な特性を考慮し本発明では次の様な方
法により、Mを随時変更して、プラントの特性変化に対
する追従性を向上させている。
Pt(r)-tun(f)+-(Pj(f)-Pj(f))
・・・・・・(3) Note that the formula (B) r4+ M corresponds to the number of times of this averaging operation, and ′α is used to adjust this value.
One for special changes in Replant] Two sets of APSDPt
The followability of (f) can be changed. If the value of M is small, the followability improves, but the accuracy of PI(f) deteriorates, and conversely, if the value of M is large, the followability deteriorates and the accuracy of Pt(f) improves. In consideration of such characteristics, the present invention uses the following method to change M as needed to improve followability to changes in plant characteristics.

まず、プラントの運転条件の変化を、信号X(t)の傾
きから検知する。即ち、 ここでαはしきい値である。
First, a change in the operating conditions of the plant is detected from the slope of the signal X(t). That is, where α is a threshold.

この変化を検知すると、上記Mを時刻がT秒進むごとに
、第1図の様に1からMまで逐次変化させ、プラントの
運転条件の変化に際しての上記APSDの計算の追従性
を向上させている。
When this change is detected, the above-mentioned M is successively changed from 1 to M as shown in Fig. 1 every time the time advances by T seconds, thereby improving the followability of the above-mentioned APSD calculation when the operating conditions of the plant change. There is.

次に、前記APSDPj(f)から炉心安定性の尺度で
ある減[1]比と共鳴周波数を求める方法を述べる。
Next, a method for determining the reduction [1] ratio and resonance frequency, which are measures of core stability, from the APSDPj(f) will be described.

通常このAPSDには、03〜0.5Hz月近に炉心安
定性を示す共振ピークが存在して(・るがこのピークの
形を次の様な近似式(5)で表わす。
Normally, in this APSD, there is a resonance peak indicative of core stability around 03 to 0.5 Hz, and the shape of this peak is expressed by the following approximate equation (5).

この近似式と実際のAPSDは、1一式中A、ζ、八。This approximate formula and the actual APSD are A, ζ, and 8 in 1 set.

を調整する事により、よく一致する様になる。これは次
の様な評価、関数 を最小にする様なA、ζ+JRを求めイ)という非線形
最小2乗法の原理に従って実行される。この様にして求
まったパラメータのうち、ζは減衰率を呼 ゛ばれ、前
記減巾比とは次式(7)の様な関係で結ばれている。
By adjusting, a good match can be obtained. This is performed according to the principle of the nonlinear least squares method, which is evaluated as follows: A, ζ+JR that minimizes the function is found (a). Among the parameters thus determined, ζ is called the attenuation rate, and is connected to the width reduction ratio as shown in the following equation (7).

DR=e−2“(/h丁と−・・ ・・・・・・・・・
(7)1ソ、トの言1算は、T秒おきの時間間隔でPi
 (f)が逐次得られるごとに実行され、求まった減巾
比DRと共鳴周波数−f□が出力される。ここで式(6
)の積分範囲は、炉心安定性を示す共振ピーり/lt+
+がゾラン1・の運転条件により、勇変なため、′次の
様に与えろ事が最も効果的である′。
DR=e-2"(/h ding and-......
(7) The words 1 and 1 are calculated by Pi at a time interval of every T seconds.
It is executed every time (f) is obtained one after another, and the determined width reduction ratio DR and resonance frequency -f□ are output. Here, the formula (6
) is the resonance peak/lt+, which indicates core stability.
Since + varies depending on the operating conditions of Zoran 1, it is most effective to give it as follows.

/ m a x −/ RO+△f /m i n ”” / R(+−△fここで/noは
A P S D P、(f)のピーク周波数であり、△
fはフィッティング帯域の巾を指定する設計パラメータ
である。
/ m a x - / RO + △f / min "" / R (+ - △f where /no is the peak frequency of A P S D P, (f), △
f is a design parameter that specifies the width of the fitting band.

第2図にはこの様な方法で実行されたAPSDと、フィ
ッティング後の、近似式(5)の−例を・示した。
FIG. 2 shows an example of APSD performed in this manner and the approximation formula (5) after fitting.

第3図は本発明一実施例のブ0ツク線図である。FIG. 3 is a block diagram of one embodiment of the present invention.

原T炉から得られた中性子束信号は、トリガー検出装置
1およびフーリエ変換装置2に送られる。
The neutron flux signal obtained from the original T reactor is sent to a trigger detection device 1 and a Fourier transform device 2.

フーリエ変換装置2は、式(1)に従い中性子束信号の
変動成分をフーリエ変換し、これをパワスペクトル密度
逐次計算装置3に送る。
The Fourier transform device 2 performs Fourier transform on the fluctuation component of the neutron flux signal according to equation (1), and sends this to the power spectral density sequential calculation device 3.

−・方、トリガー検出装置1は、式(4)に基きプラン
トの外乱を検知しAPSD逐次計算の重みを変化させる
。パワスペクトル密度逐次計算装置3は、トリガー検出
装置1の出力とフーリエ変換装置2の出力とにより、式
(8)に基ぎ、逐次的にA P S Dを計算する。
- On the other hand, the trigger detection device 1 detects a disturbance in the plant based on equation (4) and changes the weight of APSD sequential calculation. The power spectral density sequential calculation device 3 sequentially calculates A P SD based on the output of the trigger detection device 1 and the output of the Fourier transform device 2 based on equation (8).

安定度解析装置4は、前記の如くして求めたAPSDに
式(5)を適用し、減巾比と共鳴周波数を求める。
The stability analyzer 4 applies equation (5) to the APSD obtained as described above to obtain the attenuation ratio and resonance frequency.

パワスペクトル密度逐次計算装置3の計算値、安定度推
定装置4の計算値は、それぞれそれらの現在値のみでな
く、過去にさかのぼってい(つかの値を記憶装置5に記
憶させておき、表示装置6によりトレンド表示させる。
The calculated values of the power spectral density sequential calculation device 3 and the calculated values of the stability estimating device 4 are not only their current values, but also retroactive values (a fleeting value is stored in the storage device 5 and displayed on the display device 5). 6 to display the trend.

なお、安定度推定装置4により得られた減巾比が予め定
めた値をこえた時、警報装置7はアラームを発生し運転
員の注意をうながす。
Note that when the width reduction ratio obtained by the stability estimating device 4 exceeds a predetermined value, the alarm device 7 generates an alarm to alert the operator.

]二記構成の本発明装置によれば、表示装置6における
パワスペクトル密度、減巾比、共鳴周波数のトレンド表
示により、運転員はそ、11らの変化をオンラインで効
果的に知ることができ、炉心安定性を監視することがで
きる。
] According to the device of the present invention having the configuration described in (2) above, the trend display of the power spectrum density, attenuation ratio, and resonance frequency is displayed on the display device 6, so that the operator can effectively know the changes in the above and 11 etc. online. , core stability can be monitored.

〔発明の効果〕〔Effect of the invention〕

上記から明らかなように、本発明によれば、炉心安定性
をオンラインで常時監視することができ、原子カプラ/
l−の安全運′転に寄与し得るのみ゛でなく、従来より
原子炉運転範囲を拡大することカスでき、効率的なプラ
ント運用をはかることかできる。
As is clear from the above, according to the present invention, core stability can be constantly monitored online, and atomic coupler/
This not only contributes to the safe operation of nuclear reactors, but also enables the operating range of the nuclear reactor to be expanded compared to the conventional method, and enables efficient plant operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、APSD逐次計算の重み変更方法の例を示す
線図、第2図は、APSDのフィッティングの列を示す
線図、第3図は本発明の一実施例のフ。 ロック図である。 1・・トリガー検出装置、 2・・フーリエ変換装置、 3−パワスペクトル密度逐次計算装置、4 ・安定度推
定装置、 5・・記憶装置、   6・・・表示装置、7・・・警
報装置 出願代理人 弁理士 菊 池 五 部
FIG. 1 is a diagram showing an example of a weight change method for APSD sequential calculation, FIG. 2 is a diagram showing an APSD fitting sequence, and FIG. 3 is a diagram of an embodiment of the present invention. It is a lock diagram. 1--Trigger detection device, 2--Fourier transform device, 3-Power spectral density sequential calculation device, 4-Stability estimation device, 5--Storage device, 6--Display device, 7--Warning device application Agent Patent Attorney Gobe Kikuchi

Claims (1)

【特許請求の範囲】[Claims] 沸騰水型原子炉の中性子束信号の変動成分のフーリエ変
換を行うフーリエ変換装置と、原子炉の外乱を検知する
トリガ検出装置と、フーリエ変換装置の出力とトリガ検
出装置により与えられる重みとによりパワスペクトル密
度を実時間で逐次的に求めるパワスペクトル密度逐次計
算装置と、このパワスペクトル密度逐次計算装置の出力
に二次形伝達関数モデルを適用して炉心安定性を示す減
ri比および共鳴周波数を求める安定度推定装置と、パ
ワスペクトル密度、減巾比、共鳴周波数を記憶する記憶
装置と、これら各量の時間変化を常時表示する表示装置
と、前記算出した減巾比がしきい値をこえた時アラーム
を発する警報装置とを有することを特徴とする沸騰水型
原子炉の炉心安定性監視装置。
The power is controlled by a Fourier transform device that performs Fourier transform of the fluctuating component of the neutron flux signal of a boiling water nuclear reactor, a trigger detection device that detects disturbances in the reactor, and the output of the Fourier transform device and the weight given by the trigger detection device. A power spectral density sequential calculation device that sequentially calculates spectral density in real time, and a quadratic transfer function model applied to the output of this power spectral density sequential calculation device to calculate the reduction ratio and resonance frequency that indicate core stability. A stability estimation device to be obtained, a storage device for storing power spectral density, attenuation ratio, and resonant frequency, and a display device for constantly displaying temporal changes in each of these quantities; 1. A reactor core stability monitoring device for a boiling water reactor, comprising: an alarm device that issues an alarm when an alarm occurs.
JP57119841A 1982-07-12 1982-07-12 Core stability monitoring device of bwr type reactor Pending JPS5910888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57119841A JPS5910888A (en) 1982-07-12 1982-07-12 Core stability monitoring device of bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119841A JPS5910888A (en) 1982-07-12 1982-07-12 Core stability monitoring device of bwr type reactor

Publications (1)

Publication Number Publication Date
JPS5910888A true JPS5910888A (en) 1984-01-20

Family

ID=14771579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119841A Pending JPS5910888A (en) 1982-07-12 1982-07-12 Core stability monitoring device of bwr type reactor

Country Status (1)

Country Link
JP (1) JPS5910888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878139B2 (en) 2012-02-29 2014-11-04 Kabushiki Kaisha Toshiba Neutron measurement apparatus and neutron measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878139B2 (en) 2012-02-29 2014-11-04 Kabushiki Kaisha Toshiba Neutron measurement apparatus and neutron measurement method

Similar Documents

Publication Publication Date Title
TW297876B (en)
US20210328431A1 (en) Fault-tolerant grid frequency measurement algorithm during transients
KR20180032628A (en) Method and apparatus for detecting voltage in a supply network
CN108490257A (en) A kind of short time-window inter-harmonic wave measuring method based on spectrum curve fitting
JPS5910888A (en) Core stability monitoring device of bwr type reactor
CN116975544A (en) Online power system inertia identification system and method based on ARMAX model
US11664662B1 (en) Adaptive controller for forced oscillation suppression in the grid
CN115632410A (en) Broadband oscillation protection method for new energy power system
JPS642234B2 (en)
JPS58211694A (en) Method and device for monitoring core stability of bwr type reactor
JP3583399B2 (en) Method and apparatus for measuring void reactivity coefficient
JP2918266B2 (en) Monitoring method for core stability of boiling water reactor
JPS61181995A (en) Monitor system of safety of nuclear reactor
JP2005134291A (en) Reactor core monitoring method for boiling water nuclear reactor
JPS6124942Y2 (en)
Leelaruji et al. PMU-based voltage instability detection through linear regression
JPS59230492A (en) Monitoring method of rotary electric machine
Vorontsov et al. Problems of diagnostics of physical characteristics of RBMK reactors according to neutron noise
JPS5835597B2 (en) How to operate an aluminum electrolyzer
JPS60190124A (en) Method of preventing excess of contacted power amount
CN112952812A (en) RMS-based power system low-frequency oscillation monitoring method
JPH07159544A (en) Neutron flux monitoring device
JPS5979895A (en) Method of monitoring core stability of bwr type reactor
Subudhi et al. Online Estimation of Decay Ratio using Short Time Fourier Transform Ridge for Flow Instability Detection in Natural Circulation Boiling Water Reactors
CN117895528A (en) Method and system for rapidly stabilizing frequency of wind power photovoltaic frequency modulation system in frequency mutation