JPS59108491A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS59108491A
JPS59108491A JP57218880A JP21888082A JPS59108491A JP S59108491 A JPS59108491 A JP S59108491A JP 57218880 A JP57218880 A JP 57218880A JP 21888082 A JP21888082 A JP 21888082A JP S59108491 A JPS59108491 A JP S59108491A
Authority
JP
Japan
Prior art keywords
filter
signal
color
signals
luminance signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57218880A
Other languages
Japanese (ja)
Other versions
JPH054878B2 (en
Inventor
Seiji Hashimoto
誠二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57218880A priority Critical patent/JPS59108491A/en
Publication of JPS59108491A publication Critical patent/JPS59108491A/en
Publication of JPH054878B2 publication Critical patent/JPH054878B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To obtain excellent picture quality by dividing information of one line, transferring the result to plural horizontal shift registers, and adding and subtracting the outputs to obtain a color difference signal and a luminance signal. CONSTITUTION:A color separation filter 15 is adhered on an image pickup section of CCD. The color separation filter 15 consists of, e.g., a yellow transmission Ye, a cyan transmission Cy, a white transmission W and a green transmission G filter. Electric charges corresponding to the Ye filter and the W filter among the electric charges from the image pickup section are transferred respectively to a horizontal shift register 30, and the electric charge corresponding to the Cy filter and the G filter are transferred to a register 50 through a register 30. The color difference signal and the luminance signal are formed by subtracting and adding the output signals of the registers 30, 50.

Description

【発明の詳細な説明】 (技術分野) 本発明は固体撮像素子を用いた撮像装置に関するO (従来技術) 従来、この種の装置にはMOS型と呼ばれるX−Yアド
レス型の固体撮像素子や、インターライン型のCOD、
フレーム転送型のCCD等が良く利用されている0 その中でフレーム転送型のCODはMOS型やインター
ライン型のものに比較して撮像部に垂直転送レジスタや
スイッチング素子を設けなくて良いので構造的に簡単で
ある。その為TV画面の水平方向に水平画素数をかせぐ
事ができる。
Detailed Description of the Invention (Technical Field) The present invention relates to an imaging device using a solid-state imaging device. (Prior Art) Conventionally, this type of device has been equipped with an X-Y address type solid-state imaging device called a MOS type. , interline type COD,
Frame transfer type CCDs etc. are often used0 Among these, frame transfer type CODs have a structure that does not require vertical transfer registers or switching elements in the imaging section compared to MOS type or interline type ones. It is easy. Therefore, the number of horizontal pixels can be increased in the horizontal direction of the TV screen.

第1図はこのような従来のフレーム転送型のCODの構
成を示す図であり、光電変換を行なう撮像部10と撮像
部からの電荷を一時的に蓄える為17)メモリ一部20
と、メモリ一部からの蓄積電荷をTV同期に従って電荷
転送する水平シフトレジスタ60と、電荷を電圧信号と
して読み出す為の出力アンプ40とから成っている。こ
の様な00D上にはカラー信号を形成する為に必要な色
分解フィルター等の光学手段が例えばオンチップ化され
ている。ここではR(赤)、G(緑)、B<青>ノ各フ
ィルタを有するストライプフィルタを用いたフレーム転
送方式のCODについて述べる0 ストライプ方式であって水平方向画素数が約580素子
の場合、水平転送周波数は10,7MHsaに相当する
が、この素子数のCODを用いた場合、通常、輝度信号
としてはCODの出力信号をそのまま高帯域のローパス
フィルタ(約3MHz)を通して得、又、R,G、B信
号の繰り返し周波数3.513 MHsgを夫々サンプ
ル・ホールド回路により色分離を行なう場合が多い。
FIG. 1 is a diagram showing the configuration of such a conventional frame transfer type COD, in which there is an imaging section 10 that performs photoelectric conversion and a memory section 20 for temporarily storing charges from the imaging section.
, a horizontal shift register 60 that transfers accumulated charges from a part of the memory in accordance with TV synchronization, and an output amplifier 40 that reads out the charges as a voltage signal. On such 00D, optical means such as color separation filters necessary for forming color signals are provided on-chip, for example. Here, we will discuss COD of a frame transfer method using a stripe filter having R (red), G (green), and B<blue> filters.0 In the case of a stripe method and the number of pixels in the horizontal direction is approximately 580 elements, The horizontal transfer frequency corresponds to 10.7 MHsa, but when using a COD with this number of elements, the output signal of the COD is usually obtained as a luminance signal through a high-band low-pass filter (approximately 3 MHz), and R, In many cases, color separation is performed using sample-and-hold circuits for the G and B signals, each having a repetition frequency of 3.513 MHsg.

この場合色信号については、NTSC方式では500K
Hiの帯域が必要であるが、この例ではサンプリング周
波数が3.58MH2であって、そのナイキスト周波数
まで信号帯域は再現できるので問題はない。ところが輝
度信号については被写体が無彩色に近い場合社問題ない
が1色飽和度の高い被写体ではサンプリング周波数が1
58MHg(ナイキスト周波数1.8MHz) Icな
るので、折り返し歪がかなり発生してしまって画質を著
しく低下させてしまう。この欠点を解決する為には水平
画素数を例えば770として14MHzのクロックでC
ODを駆動してやれば良い。このようにすればサンプリ
ング周波数は約4.77 MHz (ナイキスト2.4
MHg)となり通常の受像機では問題にならな(ゝ0 しかし、14MH2対応のCODでは水平シフトレジス
タと出力アンプ及びクロックIC,色分離用サンプルホ
ールド回路上に以下に述べる問題が発生する。
In this case, the color signal is 500K in the NTSC system.
Although a Hi band is required, in this example, the sampling frequency is 3.58 MH2, and the signal band can be reproduced up to the Nyquist frequency, so there is no problem. However, regarding the luminance signal, if the subject is close to achromatic, there is no problem, but if the subject is highly saturated in one color, the sampling frequency is 1.
58 MHg (Nyquist frequency 1.8 MHz) Ic, a considerable amount of aliasing distortion occurs, significantly degrading the image quality. In order to solve this drawback, the number of horizontal pixels should be set to 770, for example, and C.
All you have to do is drive the OD. In this way, the sampling frequency is approximately 4.77 MHz (Nyquist 2.4
MHg), which is not a problem in a normal receiver (ゝ0) However, in a 14MH2 compatible COD, the following problem occurs in the horizontal shift register, output amplifier, clock IC, and color separation sample and hold circuit.

先ずCODの出力信号から色信号JG、Bを分離する為
には14 MH2信号の内の有効な信号成分の得られる
期間が成る程度長くなけれにならない。しかし、デユー
ティ−比50%の駆動パルスを用いると信号成分は計算
−ヒ35nsとなるがその内、駆動回路のスイッチング
の立上り、立下り時間を差し引くと有効な信号が得られ
る期間はせいぜい25n8となってしまう。又、クロッ
クの立上り、立下りが余りに鋭いとシフトレジスタ内で
の熱により暗電流が増加してしまい、有効な信号期間は
更に短いものとなり、出力アンプの周波数特性による影
響も考慮しなければならない。
First, in order to separate the color signals JG and B from the output signal of the COD, the period must be long enough to obtain valid signal components of the 14 MH2 signal. However, if a drive pulse with a duty ratio of 50% is used, the signal component will take 35ns, but if you subtract the rise and fall times of switching in the drive circuit, the period during which an effective signal can be obtained is at most 25n8. turn into. Also, if the clock rises and falls are too sharp, dark current will increase due to heat inside the shift register, and the effective signal period will become even shorter, and the effect of the frequency characteristics of the output amplifier must also be considered. .

又、りpツク信号の発生部に於けるバラツキや温度変動
も相乗的に働きサンプリングが極めて困難になる欠点が
ある。
Further, there is a drawback that variations in the ripple signal generation section and temperature fluctuations act synergistically, making sampling extremely difficult.

又1例えば1相駆動方式の水平シフトレジスタについて
考えてみると仮想電極部の夫々に対してポテンシャルウ
ェル部とパリ7部が含まれるから、素子数が770の場
合K ハフ 70 X 4 = 308 Of) m分
化された電極が必要となる0これを2/6′のイメージ
センサで可能にする罠は、水平方向の幅は8.8mmで
あるから最小の電極巾は2.8μm以下となり、現在可
能とされている3μmルールでは及ばない。
For example, if we consider a one-phase drive type horizontal shift register, each virtual electrode section includes a potential well section and a Paris 7 section, so if the number of elements is 770, K Huff 70 x 4 = 308 Of ) m-divided electrodes are required.The trick to make this possible with a 2/6' image sensor is that the horizontal width is 8.8 mm, so the minimum electrode width is less than 2.8 μm, which is currently the case. The 3 μm rule, which is considered possible, is not enough.

又、従来の色分離用サンプルホールド回路の構成線、例
えばR,G、B用の各サンプルホールド回路と、これら
3つの回路へ適正な波形の被サン1iv*−tv’F信
号を供給する為の別のサンプルホールド回路とが必要と
なる欠点もあった。
In addition, in order to supply the constituent lines of the conventional sample and hold circuit for color separation, for example, each sample and hold circuit for R, G, and B, and the sampled 1iv*-tv'F signal with an appropriate waveform to these three circuits. Another drawback was that a separate sample and hold circuit was required.

又、このような複数の水平シフトレジスタを有する撮像
装置に於ては、色分l11フイルターとしてRGBGR
・・・・の如き繰り返しのものが使われる事も考えられ
るが、その場合にはCODの出力から色分離を行なう為
の信号処理回路が複雑化する問題があった。
In addition, in an imaging device having such a plurality of horizontal shift registers, RGBGR is used as a color separation filter.
It is conceivable that a repeating method such as .

(目 的) 本発明の目的は上述の如き諸欠点を除いた現状のプロセ
ス技術でも生産可能な撮像素子を提供する事にある。ま
た、この様な撮像素子に適した色分解フィルタを利用す
る事により、良好な画質が得られる固体撮像装置を提供
する事にある。
(Objective) The object of the present invention is to provide an image sensor that can be produced using current process technology without the above-mentioned drawbacks. Another object of the present invention is to provide a solid-state imaging device that can obtain good image quality by using a color separation filter suitable for such an imaging device.

(実施例) 以下実施例に基づき本発明の詳細な説明する。(Example) The present invention will be described in detail below based on Examples.

第2図は本発明に適した撮像素子の一例を示す図であっ
て、フレーム転送型CODの水平読み出し用のシフトレ
ジスタを2つ設けたものである。
FIG. 2 is a diagram showing an example of an image sensor suitable for the present invention, which is provided with two shift registers for horizontal readout of a frame transfer type COD.

30.50がこのレジスタである。40.60は夫々レ
ジスタ30.50の出力電荷信号を電圧信号に変換する
為のアンプである。
30.50 is this register. 40 and 60 are amplifiers for converting the output charge signals of the registers 30 and 50 into voltage signals, respectively.

次にシフトレジスタ30.50の駆動法を第3図を用い
て説明する。
Next, a method of driving the shift registers 30 and 50 will be explained with reference to FIG.

第6図に於て15はCODの撮像部1o上に貼り合わさ
れた色分解フィルタであるが、ここでは説明上撮像部1
0からメモリ一部20に転送された各色フィルターに対
応する電荷を表わすものとする。尚、色フィルタ15の
一例として黄色透過Yθ、シアン透過C71白色透過W
、緑色透過Gの各フィルタから成るストライプ状のフィ
ルタを考えでいるが、他の色の組み合わせでも良いし、
モザイク状のフィルタであっても良い。
In FIG. 6, reference numeral 15 denotes a color separation filter pasted on the imaging section 1o of the COD, but here, for the sake of explanation, the imaging section 1
0 to represent the charge corresponding to each color filter transferred to the memory portion 20. In addition, as an example of the color filter 15, yellow transmission Yθ, cyan transmission C71, white transmission W
I'm thinking of a striped filter consisting of green and transparent G filters, but other color combinations may also be used.
A mosaic filter may also be used.

メモリ一部からの電荷は1水平ライン毎に水平シフトレ
ジスタに転送される。その内、YeフィルタとWフィル
タに対応した電荷は夫々水平シフトレジスタ60に転送
され、CyフィルタとGフィルタに対応した電荷はレジ
スタ6oを通ってレジスタ50に転送される。この結果
、水平シフトレジスタ60にはYeとWに対応した電荷
が、レジスタ50にはayとGK対応した電荷が一時的
に蓄積される。
The charges from the memory portion are transferred to the horizontal shift register for each horizontal line. Among them, the charges corresponding to the Ye filter and the W filter are transferred to the horizontal shift register 60, and the charges corresponding to the Cy filter and the G filter are transferred to the register 50 through the register 6o. As a result, charges corresponding to Ye and W are temporarily accumulated in the horizontal shift register 60, and charges corresponding to ay and GK are temporarily accumulated in the register 50.

従って撮像部10の画素の空間周波数が14.6MHz
 IC相当するものとすれば、水平シフトレジスタ30
と50は7.16MHzのクロックで駆動される事にな
る。
Therefore, the spatial frequency of the pixels of the imaging unit 10 is 14.6 MHz.
If it is equivalent to an IC, the horizontal shift register 30
and 50 will be driven by a 7.16MHz clock.

従って各レジスタの構造は従来の構造と比較した場合2
倍の電極巾となるので製造プロセスは非常に容易となる
Therefore, the structure of each register is 2 when compared with the conventional structure.
Since the electrode width is doubled, the manufacturing process becomes very easy.

第4図は色フィルタとして本発明に係るYa 、Cy 
FIG. 4 shows Ya, Cy according to the present invention as color filters.
.

W、G方式を採用したときの信号処理回路プ四ツクの一
例を示す図で、0GD60は制御手段としてのクロック
信号発生回路62からのパルスに基づき所定の電圧レベ
ルのパルスを形成するドライバ回路61により駆動され
る。このCCD60の出力アンプからは前述の様[、Y
eとWの点順次信号S1と、(3yとGの点順次信号S
2とが出力される。これらの点順次信号S1とS2は色
差分信号形成手段としでの減M器63において、G成分
が除去され、色差分信号R−BとR+Bの繰返し信号と
なる。とり色差分信号は次段のサンプルホールド回路6
4.65でR−BとR十B信号に分離サレ、クロックノ
イズを除去する低域フィルタ66.67に導かれる。低
域フィルタ66.67は通常のNTSC規格に基づ(1
MHz程度の通過帯域を有するフィルタであるが、本実
施例のR−BとR−1−B信号の繰返しは3.58MH
2であるので、色忠実度の高い色差分信号が得られる。
This is a diagram showing an example of a signal processing circuit when the W, G method is adopted, and 0GD60 is a driver circuit 61 that forms pulses of a predetermined voltage level based on pulses from a clock signal generation circuit 62 as a control means. Driven by. From the output amplifier of this CCD60, as mentioned above, [,Y
A dot sequential signal S1 of e and W, and a dot sequential signal S1 of (3y and G)
2 is output. These point-sequential signals S1 and S2 are subjected to an M subtractor 63 serving as a color difference signal forming means, in which the G component is removed and the signal becomes a repetition signal of color difference signals RB and R+B. The color difference signal is sent to the next stage sample hold circuit 6.
4.65 separates the R-B and R+B signals and leads to a low-pass filter 66.67 that removes clock noise. The low-pass filters 66 and 67 are based on the normal NTSC standard (1
Although this filter has a pass band of about MHz, the repetition rate of the R-B and R-1-B signals in this example is 3.58 MHz.
2, a color difference signal with high color fidelity can be obtained.

ここまでJ/CR−BとFl−)−Bの信号が得られて
いるので、後はこれらを加算及び減算すれは色信号Rと
色信号Bを作る事ができる。このための働きをするのが
加算器68と減算器69である。
Since the J/CR-B and Fl-)-B signals have been obtained up to this point, color signals R and B can be created by adding and subtracting these signals. Adder 68 and subtracter 69 function for this purpose.

次に輝度信号の作り方を述べる。輝度信号は点順次信号
S1と82を輝度信号形成手段としての加算器70で加
算すれば元の空間サンプリング時の位相(即ちYe、 
Gy、 W 、 Gの位相)になるので、これを低域フ
ィルタ71でクロックノイズを除去し4.2MH2の擬
似輝度信号Yを得る0上述の場合水平シフトレジスタ3
0と50を同相で駆動した場合は、CCD出力S2と加
算器7oの間に水平シフトレジスタ駆動周波数の半ピ゛
ツチ分の、即ち第5図は上述の輝度信号を原理的に模式
化して示した図である。図示(a)は補色信号Ye、 
Gy、 W 、 GK占める原色信号の割合をR:G:
B”1:1:1の時を表わしたものであり、この図から
も明らかなように比較的バランスの良い輝度信号になる
事が解る。この輝度信号の低域成分はフィルタである程
度平均化されるが、色再現に必要なl MHg程度の帯
域信号として考えると、Y=R+2G+B==0.25
R+0.5G+0.25Bと、近似的KNTSC規格に
マツチした信号となる。
Next, we will explain how to create a luminance signal. The luminance signal can be obtained by adding the point sequential signals S1 and 82 using an adder 70 serving as a luminance signal forming means to obtain the original spatial sampling phase (i.e., Ye,
Gy, W, G phase), the clock noise is removed by a low-pass filter 71 to obtain a 4.2MH2 pseudo luminance signal Y.0 In the above case, the horizontal shift register 3
When 0 and 50 are driven in the same phase, a half-pitch of the horizontal shift register drive frequency is generated between the CCD output S2 and the adder 7o, that is, FIG. FIG. The illustration (a) shows a complementary color signal Ye,
Gy, W, GK: R:G:
B'' represents the case of 1:1:1, and as is clear from this figure, it is a relatively well-balanced luminance signal.The low-frequency components of this luminance signal are averaged to some extent by the filter. However, considering it as a band signal of about 1 MHg necessary for color reproduction, Y=R+2G+B==0.25
R+0.5G+0.25B, which is a signal that approximately matches the KNTSC standard.

ところでこの場合、Rと0とBの透過率は色フィルタの
設計である程度調節可能であり、また通常固体撮像素子
の感度は、C,RK比べてBは低い。
Incidentally, in this case, the transmittance of R, 0, and B can be adjusted to some extent by designing the color filter, and the sensitivity of solid-state imaging devices is usually lower for B than for C and RK.

図示(1)) a上述の理由によりBの感度をRとGK
対して半分に設定したときの輝度信号の模式図であり、
この時はさらにNTSC規格のYに近いR2O,Bの構
成比となる。即ちこの時Y=0.29R+0.57G+
0.14Bとなる。
Diagram (1)) a Due to the above-mentioned reasons, the sensitivity of B is changed to R and GK.
This is a schematic diagram of a luminance signal when the luminance signal is set to half of that of the
At this time, the composition ratio of R2O and B becomes even closer to Y of the NTSC standard. That is, at this time Y=0.29R+0.57G+
It becomes 0.14B.

また本実施例の輝度信号はベースバンドにG成分がすべ
て含まれているので解像度が非常に高く、またR成分は
7.16MHzで変調されているので、そのナイキスト
である3 、58MHzまで社完全に復調出来るoしか
しB成分については3.53MHzの変調信号であるの
で、一般K 1.79 MHz以上においては折り返し
歪が発生する可能性があるが、とのB成分については輝
度信号に占める割合が少な(、変調度本手さいので実際
上問題はない0従って輝度信号帯竣としては4.5〜5
MHzが得られるととKなる。上述の様にして、NTS
C等の信号を発生させるに必要な色信号R,Bと擬似輝
度信号Yは得られたので、後はこれらの信号をプロセス
回路により直流再生、ガンマ補正、ホワイトクリップ等
の信号処理を行って輝度信号Y′を色差信号R−Y 、
B−Yを作り、エンコーダ回路(図示省略)へ接続すれ
ばNTSC信号となる。
Furthermore, since the luminance signal of this example includes all the G components in the baseband, the resolution is very high, and since the R component is modulated at 7.16 MHz, the brightness signal can be completely reproduced up to the Nyquist frequency of 3.58 MHz. However, since the B component is a modulated signal of 3.53 MHz, aliasing distortion may occur above 1.79 MHz, but the proportion of the B component in the luminance signal is (There is no practical problem because the modulation level is small. Therefore, the luminance signal band completion is 4.5 to 5.
When MHz is obtained, it becomes K. As described above, the NTS
Now that we have obtained the color signals R and B and the pseudo-luminance signal Y necessary to generate signals such as C, we need to perform signal processing such as DC reproduction, gamma correction, and white clipping on these signals using a process circuit. The luminance signal Y' is converted into a color difference signal RY,
By creating B-Y and connecting it to an encoder circuit (not shown), it becomes an NTSC signal.

第6図社色フィルタ構成を変えた本発明の第2の実施例
を示す色フイルタ図である。本実施例では、特にフレー
ム転送型CCDK適しており第1フイールドでは、電荷
蓄積時図示oddに示す様に撮像部電荷が加算され、第
2フイールドにおいても同様図示evanに示す矢印方
向電荷が加算されるので、CCD出力信号はYe、 O
y、 W 、 Cx トナルo尚、図中100は1画素
を示し、各フィールド毎に転送電極に印加されるバイア
ス電圧を切換える事により、ポテンシャルウェルが10
1又は102の位置の間で切換わるよう構成されている
0第7図は本発明の色フイルタ構成の第3の実施例であ
り、本実施例の特徴はモザイクフィルタ方式を採用した
事により第4図実施例の信号処理回路よりもさらに簡単
な回路構成としたものである。
FIG. 6 is a color filter diagram showing a second embodiment of the present invention in which the color filter configuration is changed. This embodiment is particularly suitable for a frame transfer type CCDK, and in the first field, when charge is accumulated, the image pickup unit charge is added as shown in the figure odd, and in the second field, the charge in the direction of the arrow shown in the figure evan is also added. Therefore, the CCD output signal is Ye, O
y, W, Cx tonal o Note that 100 in the figure indicates one pixel, and by switching the bias voltage applied to the transfer electrode for each field, the potential well can be divided into 10
Figure 7 shows a third embodiment of the color filter configuration of the present invention, and the feature of this embodiment is that the mosaic filter method is adopted. This circuit has a simpler circuit configuration than the signal processing circuit of the embodiment shown in FIG.

特に本実施例は電子写真の様な撮像装置に最適である。In particular, this embodiment is most suitable for imaging devices such as electrophotography.

以下第8図の信号処理回路ブ四ツク図を利用して動作を
説明する0 GCD60の出力は、先ず奇数フィールドのn水平ライ
ンではSlからYe、WがS2からはay、cの繰り返
し信号となるので、色差分信号形成手段としての減算器
63の出力としては色差分信号R−B 、 R−1−B
の繰り返し信号が得られる。この信号を次段の低域フィ
ルタ66を通すとB成分が相殺されて色信号Rだけとな
る。
The operation will be explained below using the signal processing circuit block diagram in Fig. 8.The output of the GCD 60 is first a repeating signal of Ye, W from Sl in the n horizontal lines of the odd field, and ay, c from S2. Therefore, the output of the subtracter 63 as a color difference signal forming means is the color difference signals R-B, R-1-B.
A repeating signal is obtained. When this signal is passed through the next-stage low-pass filter 66, the B component is canceled out, leaving only the color signal R.

次lcn+1水平ラインでは、CCD出力信号として、
SlからはCy、Wカ、S2としてはYe、Gの繰り返
し信号が得られるので、これらの信号を減算すると減算
器63の出力はB−R、B十Hの繰り返し信号となり、
結局今度FiR成分が相殺されて色信号Bだけを得る事
ができる。
On the next lcn+1 horizontal line, as a CCD output signal,
Since repeating signals of Cy and W are obtained from Sl, and Ye and G are obtained from S2, when these signals are subtracted, the output of the subtracter 63 becomes a repeating signal of B-R, B+H,
In the end, the FiR component is canceled out and only the color signal B can be obtained.

即ち1水平ライン毎に色信号RとBが得られる事になる
。輝度信号の合成方法は第4図実施例と同じであるので
説明は省略する0 上述の様にして得たR、Bの線順次信号と輝度信号Yを
プロセス回路72に入力すれば、輝度信号と線順次色差
信号が得られろ〇 この様に本実施例の色フィルタを採用すれは、サンプル
ホールド回路が不必要で、また低域フィルタやプロセス
回路も2系統で良く非常に簡単な撮像装置となる。本実
施例でL色信号として線順次色差信号を形成する様にし
ているが、回路を追加すれに同時色差信号も得る事も出
来る事は言うまでもない。
That is, color signals R and B can be obtained for each horizontal line. The method of synthesizing the luminance signal is the same as in the embodiment shown in FIG. A line-sequential color difference signal can be obtained. By adopting the color filter of this example, a sample and hold circuit is not required, and only two low-pass filters and process circuits are required, resulting in a very simple imaging device. becomes. In this embodiment, line-sequential color difference signals are formed as L color signals, but it goes without saying that simultaneous color difference signals can also be obtained by adding a circuit.

第9図は第7図実施例の色フイルタ構成を変えたもので
上述と同様な効果を得る事が可能である。
FIG. 9 shows an example in which the color filter configuration of the embodiment shown in FIG. 7 is changed, and it is possible to obtain the same effect as described above.

(効 果) 以上説明した様K、2水平シフトレジスタGODK適し
た4色フィルタを採用する事により色信号形成回路を非
常に簡単な構成にする事が出来、かつ解像度の高い輝度
信号と色再現性の良いカラー信号を得る事が出来る0又
、爪磨方向の相関を利用していないので偽信号も出K<
い。
(Effects) As explained above, by adopting the four-color filter suitable for K and two horizontal shift registers GODK, the color signal forming circuit can be made very simple in configuration, and high-resolution luminance signals and color reproduction can be achieved. Although it is possible to obtain a color signal with good quality, it also produces false signals because it does not utilize the correlation of the nail polishing direction.
stomach.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフレーム転送型CODの構成図、第2図
は本発明に係る撮像素子の一例を示す図、第3図は第2
図示素子の信号読み出し方法を説明図、第6図は本発明
に係るフィルタの組み合わせの第2の例を示す図、第7
図は本発明の撮像素子の信号読み出し方法の第2の例を
示す図、第8図は第7図示の方゛法に係る信号処理プ四
ツクの第2実施例を示す図、第9図は本発明に係る色フ
ィルターの他の構成例を示す図。 40.60・S−・−出力アンプ 第2図 10
FIG. 1 is a block diagram of a conventional frame transfer type COD, FIG. 2 is a diagram showing an example of an image sensor according to the present invention, and FIG.
FIG. 6 is a diagram illustrating a signal readout method of the illustrated element, FIG. 6 is a diagram showing a second example of a combination of filters according to the present invention, and FIG.
The figures show a second example of the method for reading out signals from an image sensor according to the present invention, FIG. 8 shows a second embodiment of the signal processing block according to the method shown in FIG. 7, and FIG. FIG. 3 is a diagram showing another example of the configuration of a color filter according to the present invention. 40.60・S-・-Output amplifier Fig. 2 10

Claims (1)

【特許請求の範囲】[Claims] 1水平ラインの情報を分割して読み出す為の複数の水平
シフトレジスタを有する固体撮像素子と、前記複数の水
平シフトレジスタの出力信号の減算から色差分信号を作
る色差分信号形成手段と、前記複数の水平シフトレジス
タの出力信号の加算から輝度信号を作る輝度信号形成手
段とを備えた撮像装置。
a solid-state imaging device having a plurality of horizontal shift registers for dividing and reading out information of one horizontal line; a color difference signal forming means for generating a color difference signal from subtraction of output signals of the plurality of horizontal shift registers; and a luminance signal forming means for producing a luminance signal from addition of output signals of the horizontal shift registers.
JP57218880A 1982-12-14 1982-12-14 Image pickup device Granted JPS59108491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218880A JPS59108491A (en) 1982-12-14 1982-12-14 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218880A JPS59108491A (en) 1982-12-14 1982-12-14 Image pickup device

Publications (2)

Publication Number Publication Date
JPS59108491A true JPS59108491A (en) 1984-06-22
JPH054878B2 JPH054878B2 (en) 1993-01-21

Family

ID=16726745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218880A Granted JPS59108491A (en) 1982-12-14 1982-12-14 Image pickup device

Country Status (1)

Country Link
JP (1) JPS59108491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284690A (en) * 1985-10-09 1987-04-18 Fuji Photo Film Co Ltd Solid-state image pickup element for color picture
US4794448A (en) * 1984-03-16 1988-12-27 Kabushiki Kaisha Toshiba Solid-state color imaging apparatus for preventing color alias
US4821088A (en) * 1986-11-27 1989-04-11 Fuji Photo Film Co., Ltd. Solid-state color image pickup unit with mosaic color filter and two horizontal output registers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165562U (en) * 1979-05-14 1980-11-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165562U (en) * 1979-05-14 1980-11-28

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794448A (en) * 1984-03-16 1988-12-27 Kabushiki Kaisha Toshiba Solid-state color imaging apparatus for preventing color alias
JPS6284690A (en) * 1985-10-09 1987-04-18 Fuji Photo Film Co Ltd Solid-state image pickup element for color picture
US4821088A (en) * 1986-11-27 1989-04-11 Fuji Photo Film Co., Ltd. Solid-state color image pickup unit with mosaic color filter and two horizontal output registers

Also Published As

Publication number Publication date
JPH054878B2 (en) 1993-01-21

Similar Documents

Publication Publication Date Title
US4985758A (en) Signal processing system having selected output from plural readout devices
KR100247371B1 (en) Color television camera apparatus and color television signal generating method
JPS63227293A (en) Face sequential color image pickup device
JP4212134B2 (en) Image signal processing device
JP2007235591A (en) Method for controlling camera apparatus and camera apparatus using the same
KR100462260B1 (en) Video pickup device
JP3350087B2 (en) Solid color imaging device
JPS59108491A (en) Image pickup device
US5945977A (en) Luminance signal producing circuits
JPH0620317B2 (en) Imaging device
JPH0223076B2 (en)
JPS59104880A (en) Image pickup device
JPH0515117B2 (en)
JPS59108469A (en) Image pickup device
JP3673068B2 (en) Color television camera device
JP2635545B2 (en) Solid-state imaging device
JP2845602B2 (en) Color solid-state imaging device
JP3035988B2 (en) Color television camera device
JP2000261817A (en) Image pickup device
JP3239029B2 (en) Solid-state imaging device
JP3232576B2 (en) Color television camera device
JPS59104881A (en) Image pickup device
JPH06113310A (en) Video-signal processing apparatus
JP2000341708A (en) Image pickup device
JPS6124379A (en) Signal circuit of solid-state image pickup device