JPS59107765A - Method for cooling coil spring of rotary nozzle - Google Patents

Method for cooling coil spring of rotary nozzle

Info

Publication number
JPS59107765A
JPS59107765A JP57217685A JP21768582A JPS59107765A JP S59107765 A JPS59107765 A JP S59107765A JP 57217685 A JP57217685 A JP 57217685A JP 21768582 A JP21768582 A JP 21768582A JP S59107765 A JPS59107765 A JP S59107765A
Authority
JP
Japan
Prior art keywords
air
coil spring
rotor
hole
plate brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57217685A
Other languages
Japanese (ja)
Other versions
JPS6255948B2 (en
Inventor
Tetsuya Yoshihara
吉原 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokan Kikai Kogyo KK
Nippon Rotary Nozzle Co Ltd
JFE Engineering Corp
TYK Corp
Original Assignee
Kokan Kikai Kogyo KK
Nippon Rotary Nozzle Co Ltd
NKK Corp
Nippon Kokan Ltd
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokan Kikai Kogyo KK, Nippon Rotary Nozzle Co Ltd, NKK Corp, Nippon Kokan Ltd, TYK Corp filed Critical Kokan Kikai Kogyo KK
Priority to JP57217685A priority Critical patent/JPS59107765A/en
Priority to GB08333127A priority patent/GB2133505B/en
Priority to US06/560,997 priority patent/US4591080A/en
Priority to KR1019830005907A priority patent/KR840006925A/en
Priority to IT8324143A priority patent/IT1194516B/en
Priority to ES528005A priority patent/ES528005A0/en
Priority to LU85134A priority patent/LU85134A1/en
Priority to FR8320034A priority patent/FR2537473B1/en
Priority to DE3347903A priority patent/DE3347903C2/en
Priority to DE3345247A priority patent/DE3345247C2/en
Priority to DE3347901A priority patent/DE3347901C2/en
Priority to BE0/212047A priority patent/BE898457A/en
Publication of JPS59107765A publication Critical patent/JPS59107765A/en
Publication of JPS6255948B2 publication Critical patent/JPS6255948B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/26Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings characterised by a rotatively movable plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like

Abstract

PURPOSE:To extent the life of bricks by supplying discretely air, etc. to many coil spring to cool the springs thereby bringing a sliding plate brick into tight contact with a stationary plate brick with uniform force and preventing the leakage of a molten steel and intrusion of air. CONSTITUTION:Air for cooling fed from an air pressure source is fed through a pipeline 23, the hole 6a of a frame 6, and the through-hole 22 of each guide pipe 21 to the coil springs 9 in a chamber 8. The air runs through the clearances among the strands of the respective springs 9 and is released through a clearance 6b to the outside. The springs 9 are respectively cooled and are maintained at a prescribed temp. during this time. Since the cooling effect is acted equally to all the coil springs, all the coil springs are maintained always under the same condition.

Description

【発明の詳細な説明】 本発明は、取鍋やタンディツシュの如き溶鋼鍋の底部に
装着するロータリーノズル、さらに詳しくは、主として
摺動板煉瓦を固定板煉瓦に密着させるためのコイルばね
の冷却方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary nozzle attached to the bottom of a molten steel ladle such as a ladle or a tundish, and more specifically, a method for cooling a coil spring mainly for bringing a sliding plate brick into close contact with a fixed plate brick. It is related to.

ロータリーノズルの一例を第1図(公知ではない)に示
す。1は溶鋼鍋の底部に固定される基盤、2はヒンジI
a、Ibに回動可能に装着された受金物で、ノズル穴4
を有する固定板煉瓦6が収容されている。5は扉である
。6は下方が折曲げられて断面はML字伏に形成された
円筒状のフレーム、7はフレーム乙の下方に配設された
断面逆り字状の可動部材で、フレーム6と可動部材7と
で形成するドーナツ状の室8内には、多数のコイルノ(
ネ9が配置されている。11は可動部材7上に多数の球
軸受10ヲ介して回転可能に配設された鍔付円筒状のロ
ータ、12はロータ11の外周に固定されり歯車、16
はノズル穴14,14at備え、ロータ11に取付けら
れた摺動板煉瓦である。この扉5は、作業時は閉じられ
、ロンファーム25.25aによシロツクされる。扉5
がロックされると、ロータ11はコイルばね9によシ均
一に押圧され、摺動板煉瓦16を固定板煉瓦6に密着さ
せる。なお、16は支持金物15によシ摺動板煉瓦16
のノズル穴14,14aに連通して取付けられた下ノズ
ル、26は歯車12と噛合い、口−タ11を回転させる
中間歯車で、減速機構ヲ介してモータ(共に図示せず)
に連結されている。
An example of a rotary nozzle is shown in FIG. 1 (not known). 1 is a base fixed to the bottom of the molten steel ladle, 2 is a hinge I
A and Ib are rotatably attached to the nozzle hole 4.
A fixed plate brick 6 having a shape is housed therein. 5 is a door. 6 is a cylindrical frame whose lower part is bent and the cross section is ML-shaped; 7 is a movable member with an inverted cross section disposed below frame O; the frame 6 and the movable member 7 are Inside the donut-shaped chamber 8 formed by the
Ne9 is placed. 11 is a flanged cylindrical rotor that is rotatably disposed on the movable member 7 via a number of ball bearings 10; 12 is a gear fixed to the outer periphery of the rotor 11; 16;
is a sliding plate brick equipped with nozzle holes 14, 14at and attached to the rotor 11. This door 5 is closed during operation and is locked by the Ronfirm 25.25a. door 5
When the rotor 11 is locked, the rotor 11 is uniformly pressed by the coil spring 9 to bring the sliding plate brick 16 into close contact with the fixed plate brick 6. In addition, 16 is a sliding plate brick 16 that is supported by the supporting hardware 15.
The lower nozzle 26 is connected to the nozzle holes 14 and 14a of the lower nozzle, and is an intermediate gear that meshes with the gear 12 and rotates the mouthpiece 11. The lower nozzle 26 is connected to a motor (not shown) through a reduction mechanism.
is connected to.

ところで、このようなロータリーノズルは、溶鋼鍋の底
部に装着されているため、作業時はその輻射熱によシ3
00℃程度の高温になる。このため、コイルばね9が加
熱されて劣化するので、これを防止するため、フレーム
乙の外壁に設けた穴18から空気を吹ぎ込み、室8内を
一周させて他方の穴18aから外部に放出し、コイルば
ね9を冷却している。
By the way, since such a rotary nozzle is attached to the bottom of the molten steel ladle, the radiant heat is used during work.
The temperature will be as high as 00℃. For this reason, the coil spring 9 is heated and deteriorated, so in order to prevent this, air is blown through the hole 18 provided in the outer wall of the frame B, circulated around the inside of the chamber 8, and then passed through the other hole 18a to the outside. The coil spring 9 is cooled.

しかしながら、こDような冷却方式では、空気を吹き込
む穴18付近のコイルばねはよく冷却されるが、作業時
はコイルばね9が圧縮されて素線の間隔が狭くなる(1
〜2闘)こともあって空気の流通が悪く、このため空気
が室8内を流れる間に加熱され、穴18aから外部に放
出されるときには相当高温になって、穴18a付近のコ
イルばね9はほとんど冷却されず、場所によって冷却効
果に大きな差を生ずる。この結果、冷却効果の良い所と
悪い所によってコイルばね9の性能に差を生じ、ロータ
11の押圧力が場所によって相違するので、摺動板煉瓦
16ヲ均一に固定板煉瓦6に密着させることができず、
溶鋼洩れや空気の侵入あるいは両煉瓦3.13の早期損
耗の原因になっていた。
However, in this cooling method, although the coil spring near the air blowing hole 18 is well cooled, the coil spring 9 is compressed during work and the spacing between the wires becomes narrow (1
~ 2 fights) Due to poor air circulation, the air is heated while flowing through the chamber 8, and when it is discharged to the outside from the hole 18a, it becomes quite high temperature, causing the coil spring 9 near the hole 18a to become heated. is hardly cooled, and the cooling effect varies greatly depending on the location. As a result, there are differences in the performance of the coil spring 9 depending on where the cooling effect is good and where the cooling effect is bad, and the pressing force of the rotor 11 is different depending on the location. I can't do it,
This caused molten steel leakage, air intrusion, and early wear and tear of both bricks.

本発明は、上記のような従来の問題点全解決するために
なされたもので、すべてのコイルばねを均等に冷却する
ことによシ、全コイルばねを常に同じ条件下でロータに
作用させ、摺動板煉瓦全固定板煉瓦に均一な力で苦情さ
せるようにしたロータリーノズルのコイルばね冷却方式
を得ることを目的としたものである。
The present invention was made in order to solve all of the conventional problems as described above, and by uniformly cooling all the coil springs, all the coil springs are always applied to the rotor under the same conditions. The purpose of this invention is to obtain a coil spring cooling system for a rotary nozzle that applies uniform force to sliding plate bricks and completely fixed plate bricks.

本発明に係るロータリーノズルのコイルはね冷却方式は
、上記の目的を達成するため、固定板煉瓦と、摺動板煉
瓦が収容され外周に歯車を備えたロータ及び該ロータが
可動部材を介して回転可能に装着されたフレーム等から
なシ、前記可動部材とフレームとの間に配設された多数
のコイルばねにより前記ロータを押圧して前記摺動板煉
瓦を固定板煉瓦に密着させるように構成したロータリー
ノズルにおいて、前記多数のコイルばねに個別的に空気
等を供給して該コイルはねを冷却することを特徴とする
ものである。以下図面を用いて、本発明を説明する。
In order to achieve the above object, the coil spring cooling method for a rotary nozzle according to the present invention includes a rotor that accommodates fixed plate bricks and sliding plate bricks and is equipped with gears on the outer periphery, and the rotor is connected to a rotor through a movable member. A rotatably mounted frame or the like presses the rotor with a large number of coil springs disposed between the movable member and the frame to bring the sliding plate brick into close contact with the fixed plate brick. The rotary nozzle thus constructed is characterized in that air or the like is individually supplied to the plurality of coil springs to cool the coil springs. The present invention will be explained below using the drawings.

第2図は本発明実施例の縦断面図、第6図はそのA−A
断面図である。なお、第1図と同−又は類似の機能の部
分には同じ符号を付し、説明を省略する。19ばばね座
20と案内21とからなシ、中心部に貫設穴22が設け
られたコイルばね9のガイドである。6aはフレーム乙
の底部に設けられ、貫通穴22と連通ずる穴、6bはフ
レーム6の内周壁に設けられた空気全放出する穴、26
はフレーム6の下側に配設された管路で、フレーム乙の
底部に設けた各穴6aとそれぞれ連通しておシ、空気圧
源(図示せず)に接続されている。なお、上記ガイド1
9穴6a及び放出穴6bは、各コイルばね9ごとに設け
られている。
Fig. 2 is a longitudinal sectional view of the embodiment of the present invention, and Fig. 6 is its A-A
FIG. Note that parts with the same or similar functions as those in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted. 19 This is a guide for the coil spring 9, which includes a spring seat 20 and a guide 21, and has a through hole 22 in the center. 6a is a hole provided at the bottom of frame B and communicates with the through hole 22; 6b is a hole provided in the inner circumferential wall of frame 6 for releasing all the air; 26
is a conduit arranged on the lower side of the frame 6, which communicates with each hole 6a provided at the bottom of the frame 6, and is connected to an air pressure source (not shown). In addition, the above guide 1
Nine holes 6a and discharge holes 6b are provided for each coil spring 9.

上記のように構成したロータリーノズルにおいて、いま
、歯車12を介してロータ11ヲ回転し、ノズル穴4と
14の開度を所望の値に調節すれば、溶鋼鍋内の溶鋼は
、上ノズル、ノズル穴4.14及び下ノズル16ヲ経て
鋳型等に注入される。一方、空気圧源から送られた冷却
用の空気は、第4図に示すように管路23からフレーム
乙の穴6a、各ガイド19の貫通穴22ヲ通ってコイル
ばね9に送られる。この空気は、各コイルはね9の素線
間の間隙(実施例によれば1〜2朋)を通って、放出口
6bから外部に放出されるが、この間にコイルばね9を
それぞれ冷却して、所定の温度に維持する。
In the rotary nozzle configured as described above, if the rotor 11 is now rotated via the gear 12 and the opening degrees of the nozzle holes 4 and 14 are adjusted to a desired value, the molten steel in the molten steel ladle will flow through the upper nozzle, It is injected into a mold or the like through the nozzle hole 4.14 and the lower nozzle 16. On the other hand, the cooling air sent from the air pressure source is sent from the pipe line 23 to the coil spring 9 through the hole 6a of the frame B and the through hole 22 of each guide 19, as shown in FIG. This air passes through the gap between the wires of each coil spring 9 (according to the embodiment, there are 1 to 2 gaps) and is released from the outlet 6b to the outside. During this time, the coil spring 9 is cooled. to maintain the specified temperature.

このような冷却作用は、全コイルばねに対して等しく行
なわれるので、全コイルばねを常に同じ条件下におくこ
とができる。したがって、コイルばねの性能に差異を生
ずるおそれがなく、ロースし1こがって摺動板煉瓦全均
一な力で押圧し、固定板煉瓦に均一に密着させることが
できる。
Since such a cooling effect is applied equally to all coil springs, all coil springs can always be kept under the same conditions. Therefore, there is no risk of causing a difference in the performance of the coil spring, and it is possible to press the sliding plate bricks with a uniform force after roasting and rolling them, and to make them adhere uniformly to the fixed plate bricks.

上記の説明では、固定板煉瓦をヒンジによシ開閉可能に
構成した場合を示したが、固定板煉瓦を基盤に固定した
ロータリーノズルにも本発明を実施しうろことは云う迄
もない。また、空気の放出穴をフレームの内周壁に設け
た場合を示したが、フレームの外周壁に設げてもよい。
In the above description, a case has been shown in which the fixed plate brick is configured to be openable and closable by means of a hinge, but it goes without saying that the present invention can also be applied to a rotary nozzle in which the fixed plate brick is fixed to a base. Moreover, although the case where the air discharge hole is provided in the inner circumferential wall of the frame is shown, it may be provided in the outer circumferential wall of the frame.

さらに、コイルばねを空気で冷却する場合を示したが、
空気以外の流体を用いてもよい。その他各部の形状、構
成も上記実施例に限定するものではなく、本発明の要旨
を逸脱しない範囲で適宜変更することができる。
Furthermore, although we have shown the case where the coil spring is cooled with air,
Fluids other than air may also be used. The shapes and configurations of other parts are not limited to the above embodiments, and can be modified as appropriate without departing from the gist of the present invention.

以上の説明から明らかなように、本発明によれば、多数
のコイルばねを個別的かつ均等に冷却することによシ、
すべてのコイルはね全同一条件下で作用させ、摺動板煉
瓦を固定板煉瓦に均一な力で密着させることかできるの
で、溶鋼洩れや空気の侵入を防止し、煉瓦の寿命を延長
することができる。
As is clear from the above description, according to the present invention, by individually and uniformly cooling a large number of coil springs,
All coils are operated under the same conditions, and the sliding plate brick can be brought into close contact with the fixed plate brick with uniform force, which prevents molten steel leakage and air intrusion, and extends the life of the brick. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するためのロータリーノズルの斜
視図、第2図は本発明実施例の縦断面図、第6図はその
A−A断面図、第4図は本発明の作用説明図である。 1:基盤、3:固定盤ノズル、6:フレーム、9:コイ
ルばね、11;ロータ、12:歯車、16:摺動板煉瓦
、17:ヒンジ、19;ガイド、6a:穴、6b:放出
穴、22:貫通穴、23:管路。 代理人 弁卯士 木 村 三 朗 第3図 第4図 昭和59イ13113  I+ 1、事件の表示 特願昭57−217685 2、発明の名称 ロータリーノズルのコイルばね冷却方式3、補正をする
者 事件との関係   特許 出願人 名   称 (氏名)(412)日本鋼管株式会社 4、代理人       0は′″6名)住  所  
  東京都港区虎ノ門−丁1421番19÷j5、  
    の[]付  昭和 年 月  l1l(発送1
」 昭和  年  月  11)6、補11已の対象 明細書の全欄おLび図面 7、捕型の内容 (1]明細書を別紙訂正明細書の通シに全文訂正する。 (2)図面の第2図、第3図および第4図な別紙補正図
面の通りに補正する。 明   細   書 1、発明の名称 ロータリーノズルのコイルばね冷却方式2、特許請求の
範囲 固定板煉瓦と、摺動板煉瓦が収容され外周に歯車を備え
たロータ、及び該ロータが可動部材を介して回転可能に
装着されたフレーム等からなり。 前記可動部材とフレームとの間に配設された多数のコイ
ルばねにより前記ロータを押圧して前記摺動板煉瓦乞固
定板煉瓦に密着させる工うに構成したロータリーノズル
において、 前記多数のコイルばねに個別的に空気等を供給して該コ
イルばねを冷却することを特徴とするロータリーノズル
のコイルばね冷却方式。 6、 発明の詳細な説明 本発明は、取鍋やタンディツシュの如ぎ溶鋼鍋の底部に
装着するロータリ・−ノズル、さらに詳しくは、主とし
て摺動板煉瓦を固定板煉瓦に密着させるためのコイルば
ねの冷却方式に関するものである。 ロータリーノズルの一例ビ第1図(公知ではない)に示
す、、1は溶鋼鍋の底部に固定される基盤、2は受金物
であってヒンジIa、Ibにより基盤1に枢動可能に装
着され、受金物2内にはノズル穴4を有する固定板煉瓦
36−収容されている。5は扉である。6は下方(第1
甲ヂ右方)が折曲げられて断面はrL字状に形成された
円筒状のフレーム、7はフレーム乙の上方に配設された
断面逆り字状の可動部材で、フレーム6と可動部材7と
で形成するドーナツ状の室8内には、多数のコイルバネ
9が配置さねている。、11は可動部材Z上に多数の球
軸受10を介して回転可能に配置された鍔付円筒状のロ
ータ、12はロータ11の外周に固定された歯車、13
はノズル穴14.14aZ備え、ロータ11に取付けら
れた摺動板煉瓦である。この扉5は、作業時は閉じられ
、ロック了−A25.25aによシロツクされる。扉5
がロックされると、ロータ11はコイルばね9によシ均
一に押圧され、摺動板煉瓦13i固定板煉瓦6に密着さ
せる。なお、16は支持金物15により摺動板煉瓦16
のノズル穴14.14aに連通して取付ケられたコレク
タノズル、26は歯車12と噛合い、ロータ11を回転
させる中間歯車で、減速機構乞介してモータ(共に図示
せず)に連結されている。 ところで、このようなロータ】J−ノズルは、溶鋼鍋の
底部に装着されているため、作業時はその輻射熱により
300℃程度の高温になる。このため、コイルばね9が
加熱されて劣化するので、これ乞防止するため、フレー
ム乙の外壁に設けた穴18から空気を吹き込み、室8内
を一周させて他方の穴、48 aから外部に放出し、コ
イルばね9を冷却している。 しかしながら、このような冷却方式では、空気を吹ぎ込
む穴18付近のコイルばねはよく冷却されるが、作業時
はコイルばね9が圧縮されて素線の間隔が狭くなる(1
〜2 vlm )こともあって空気の流通が悪く、この
ため空気が室8内を流れる間に加熱され、穴18aから
外部に放出されるときには相当高温になって、穴18a
付近のコイルばね9はほとんど冷却されず、場所によっ
て冷却効果に大きな差ン生ずる。この結果、冷却効果の
良い所と悪い所によってコイルばね9の性能に差を生じ
、ロータ11の押圧力が場所によって相違するので、摺
動板煉瓦16を均一に固定板煉瓦3に密着させることが
できず、溶鋼洩れや空気の侵入あるいは両煉瓦3,15
の早期損耗の原因になっていた。 本発明は、上記のような従来の問題点を解決するために
なさねたもので、すべてのコイルばねt均等に冷却する
ことにより、全コイルばねな常に同じ条件下でロータに
作用させ、摺動板煉瓦ン固定板煉瓦に全周均一な力で密
着させるようにした口・−タリーノズルのコイルばね冷
却方式Y得ることケ目的としたものである。 本発明に係るロータリーノズルのコイルばね冷却方式は
、上記の目的を達成するため、固定板煉瓦と、摺動板煉
瓦が収容され外周に歯車!備えたロータ及び該ロータが
可動部材?介して回転可能に装着されたフレーム等から
なり、前記可動部材とフレームとの間に配設された多数
のコイルばねにより前記ロータを押圧して前記摺動板煉
瓦を固定板煉瓦に密着させるように構成したロータリー
ノズルにおいて、前記多数のコイルばねにそれぞれ個別
的に空気等ン供給して該コイルばね乞冷却することを特
徴とするものである。以下図面を用いて、本発明を説明
する。 第2図は本発明実施例の縦断面図、第6図はそのA−A
断面図(一部省略)である。なお、第1図と同−又は類
似の機能の部分には同じ符号ン付し、説明ケ省略する。 19は環状のばね座20と複数の案内管21とからなる
ガイドで、各案内管の中心穴22はばね座20”r貫通
している。6aはフレーム6の底部に設けられ、貫通穴
22と連通ずる穴、6bはフレーム6の内周壁における
可動部材7との噛合いの隙間で、ここから室8内の空気
を放出する。26はZワーム60ノ下側に配設された管
路で、フレーム6の底部に設けた各穴6aのそれぞれと
連通しており、空気圧源(図示せ巾に接続されている。 なお、上記案内管21と穴6aは、各コイルばね9ごと
に設けられている。 上記のように構成したロータリーノズルにおいて、いま
、歯車12を介してロータ11を回転し、ノズル穴4と
14の開度な所望の値に調節すれば、溶鋼鍋内の溶鋼は
、上ノズル、ノズル穴4.14及ヒコレクタノズル16
乞経て鋳型等に注入される。一方、空気圧源から送られ
た冷却用の空気は、第4図に示すよつIこ管路23から
フレーム6の穴6a、各案内管21の貫通穴22を通っ
て室8内のコイルばね9に送られる。この空気は、各コ
イルばね9の素線間の間隙(実施例によれば1〜2川ビ
通って、隙間6bから外部に放出されるが、この間lこ
コイルばね9をそれぞIl、冷却して、所定の温度に維
持する。 このよう去冷却作用は、全コイルばねに対して等しく行
なわれるので、全コイルばねを常に同じ条件下におくこ
とができる。したがって、コイルばねの性能に差異を生
ずるおそれがなく、ロータしたがって摺動板煉瓦を均一
なカで押圧し、固定板煉瓦に均一に密着させることかで
きる。 上記の説明では、固定板煉瓦と摺動板煉瓦の双方をそれ
ぞれヒンジにより開閉可能に構成した場合ン示したが、
固定板煉瓦を基盤に固定したロータリーノズルにも本発
明を実施しうろことは云う迄もない。また、隙間6bの
他に空気の放出穴をフレームの内周壁またはフレームの
外周壁に設けてもよい。さらに、コイルばねを空気で冷
却する場合を示したが、空気以外の流体?用いてもよい
、その他塔部の形状、構成も上記実施例に限定するもの
ではなく、本発明の要旨を逸脱しない範囲で適宜変更す
ることができる。 以上の説明から明らかなように、本発明によれば、多数
のコイルばねを個別的かつ均等に冷却することにより、
すべてのコイルばねな同一条件下で作用させ、摺動板煉
瓦を固定板煉瓦に均一な力で密着させることができるの
で、溶鋼洩れや空気の侵入を防止し、煉瓦の寿命を延長
することができる。 4、図面の簡単な説明 第1図は木兄BA乞読鯛するためのロータリーノズルの
斜視図、第2図は本発明実施例の縦断面図。 第6図はそのA−A断面図、第4図は本発明の作用説明
図である。 1:基盤、3:固定板煉瓦、6:フレーム、9:コイル
ばね、11:ロータ、12:歯車、16:摺動板煉瓦、
17:ヒンジ、19ニガイド。 6EL=穴、6b:隙間、22:貫通穴、26:管路。 代理人 弁理士 木 村 三 朗 第2図 第3図 第4図
Fig. 1 is a perspective view of a rotary nozzle for explaining the present invention, Fig. 2 is a longitudinal cross-sectional view of an embodiment of the present invention, Fig. 6 is a cross-sectional view taken along line A-A, and Fig. 4 is an explanation of the operation of the present invention. It is a diagram. 1: Base, 3: Fixed plate nozzle, 6: Frame, 9: Coil spring, 11: Rotor, 12: Gear, 16: Sliding plate brick, 17: Hinge, 19: Guide, 6a: Hole, 6b: Release hole , 22: through hole, 23: conduit. Agent: Sanro Kimura, Attorney-at-Law, Figure 3, Figure 4, 1977-13113, I+ 1, Indication of the case, Patent application 1982-217685, 2, Title of the invention: Coil spring cooling system for rotary nozzles 3, Person making the amendment Relationship with Patent Applicant Name (Name) (412) Nippon Kokan Co., Ltd. 4, Agent 0 is ''' 6 persons) Address
Toranomon-cho, Minato-ku, Tokyo 1421-19÷j5,
With [] Showa month l1l (Shipping 1
” Month 11) 6, Supplement 11, all columns of the subject specification, drawing 7, and contents of the catch type (1) The full text of the specification is corrected to the notice of the attached amended specification. (2) Drawings The amendments are made in accordance with the attached amended drawings in Figures 2, 3, and 4. Description 1, Title of the invention: Coil spring cooling method for rotary nozzle 2, Claims: Fixing plate brick, sliding It consists of a rotor that accommodates plate bricks and has gears on its outer periphery, and a frame on which the rotor is rotatably mounted via a movable member. A large number of coil springs are arranged between the movable member and the frame. In the rotary nozzle configured to press the rotor to bring it into close contact with the sliding plate brick and the fixed plate brick, the coil springs may be cooled by individually supplying air or the like to the plurality of coil springs. A coil spring cooling system for a rotary nozzle characterized by: 6. Detailed Description of the Invention The present invention relates to a rotary nozzle that is attached to the bottom of a molten steel ladle such as a ladle or tundish, and more specifically, to a sliding plate brick. An example of a rotary nozzle is shown in Figure 1 (not publicly known), 1 is a base fixed to the bottom of a molten steel ladle, 2 is a It is a metal holder and is pivotally attached to the base 1 by hinges Ia and Ib, and a fixed plate brick 36 having a nozzle hole 4 is accommodated in the holder 2. 5 is a door. 6 is a lower part. (1st
A cylindrical frame whose cross section is formed into an rL-shape by bending A (right); 7 is a movable member with an inverted cross section disposed above frame B; frame 6 and the movable member A large number of coil springs 9 are arranged in a donut-shaped chamber 8 formed by 7 and 7. , 11 is a flanged cylindrical rotor rotatably disposed on the movable member Z via a large number of ball bearings 10, 12 is a gear fixed to the outer periphery of the rotor 11, 13
is a sliding plate brick equipped with nozzle holes 14.14aZ and attached to the rotor 11. This door 5 is closed during operation and is locked by locking A25.25a. door 5
When the rotor 11 is locked, the rotor 11 is uniformly pressed by the coil spring 9 to bring the sliding plate brick 13i into close contact with the fixed plate brick 6. In addition, 16 is a sliding plate brick 16 by the supporting hardware 15.
The collector nozzle 26 is an intermediate gear that meshes with the gear 12 and rotates the rotor 11, and is connected to a motor (both not shown) through a reduction mechanism. There is. By the way, since such a rotor J-nozzle is attached to the bottom of the molten steel ladle, the temperature reaches a high temperature of about 300°C due to radiant heat during operation. For this reason, the coil spring 9 is heated and deteriorated, so to prevent this from happening, air is blown through the hole 18 provided in the outer wall of the frame B, and the air is blown around the inside of the chamber 8 and then through the other hole 48a to the outside. The coil spring 9 is cooled. However, in such a cooling method, although the coil spring near the hole 18 into which air is blown is well cooled, the coil spring 9 is compressed during work, and the spacing between the strands becomes narrow (1
~2 vlm), the air circulation is poor, and as a result, the air is heated while flowing through the chamber 8, and when it is discharged to the outside from the hole 18a, it reaches a considerably high temperature.
The nearby coil spring 9 is hardly cooled, and the cooling effect varies greatly depending on the location. As a result, there are differences in the performance of the coil spring 9 depending on where the cooling effect is good and where it is bad, and the pressing force of the rotor 11 is different depending on the location. 3, 15 due to molten steel leakage, air intrusion, or both bricks 3 and 15.
This caused premature wear and tear. The present invention was made to solve the above-mentioned conventional problems. By cooling all the coil springs uniformly, all the coil springs are always applied to the rotor under the same conditions, and the sliding effect is improved. The object of the present invention is to obtain a coil spring cooling system for a spout/tally nozzle in which a movable plate brick is brought into close contact with a fixed plate brick with uniform force all around the circumference. In order to achieve the above-mentioned purpose, the coil spring cooling method for a rotary nozzle according to the present invention accommodates a fixed plate brick and a sliding plate brick, and has a gear on the outer periphery. Is the rotor equipped and the rotor a movable member? It consists of a frame etc. which is rotatably mounted through the movable member, and a large number of coil springs arranged between the movable member and the frame press the rotor to bring the sliding plate brick into close contact with the fixed plate brick. In the rotary nozzle configured as above, air or the like is individually supplied to each of the plurality of coil springs to cool the coil springs. The present invention will be explained below using the drawings. Fig. 2 is a longitudinal sectional view of the embodiment of the present invention, and Fig. 6 is its A-A
It is a sectional view (partially omitted). Note that parts having the same or similar functions as those in FIG. 1 are given the same reference numerals, and explanations thereof will be omitted. 19 is a guide consisting of an annular spring seat 20 and a plurality of guide tubes 21, and the center hole 22 of each guide tube passes through the spring seat 20"r. 6a is provided at the bottom of the frame 6, and the through hole 22 6b is a gap between the inner peripheral wall of the frame 6 and the movable member 7, from which the air inside the chamber 8 is released. 26 is a conduit provided below the Z worm 60. The guide tube 21 and the hole 6a are connected to each of the holes 6a provided at the bottom of the frame 6, and are connected to an air pressure source (not shown). In the rotary nozzle configured as described above, if the rotor 11 is now rotated via the gear 12 and the openings of the nozzle holes 4 and 14 are adjusted to a desired value, the molten steel in the molten steel ladle will be , upper nozzle, nozzle hole 4.14 and collector nozzle 16
It is then poured into molds, etc. On the other hand, the cooling air sent from the air pressure source passes through the hole 6a of the frame 6 and the through hole 22 of each guide tube 21 from the horizontal pipe line 23 shown in FIG. 4 to the coil spring in the chamber 8. Sent to 9th. This air passes through the gap between the strands of each coil spring 9 (according to the embodiment, 1 to 2 lines) and is released to the outside from the gap 6b. In this way, the cooling effect is applied equally to all coil springs, so all coil springs can be kept under the same conditions at all times.Therefore, there are no differences in the performance of coil springs. It is possible to press the rotor and therefore the sliding plate bricks with uniform force and make them adhere uniformly to the fixed plate bricks.In the above explanation, both the fixed plate bricks and the sliding plate bricks are hinged. The case where it is configured so that it can be opened and closed is shown, but
It goes without saying that the present invention can also be applied to a rotary nozzle in which a fixed plate brick is fixed to a base. Further, in addition to the gap 6b, air discharge holes may be provided in the inner circumferential wall of the frame or the outer circumferential wall of the frame. Furthermore, we have shown the case of cooling a coil spring with air, but what about fluids other than air? The shape and configuration of other tower parts that may be used are not limited to the above embodiments, and can be modified as appropriate without departing from the gist of the present invention. As is clear from the above description, according to the present invention, by individually and uniformly cooling a large number of coil springs,
All coil springs are operated under the same conditions, and the sliding plate brick can be brought into close contact with the fixed plate brick with uniform force, preventing molten steel leakage and air intrusion, and extending the life of the brick. can. 4. Brief Description of the Drawings Fig. 1 is a perspective view of a rotary nozzle for making wood-bream fish, and Fig. 2 is a longitudinal cross-sectional view of an embodiment of the present invention. FIG. 6 is a sectional view taken along the line A-A, and FIG. 4 is an explanatory diagram of the operation of the present invention. 1: Base, 3: Fixed plate brick, 6: Frame, 9: Coil spring, 11: Rotor, 12: Gear, 16: Sliding plate brick,
17: Hinge, 19 guide. 6EL=hole, 6b: gap, 22: through hole, 26: conduit. Agent Patent Attorney Sanro KimuraFigure 2Figure 3Figure 4

Claims (1)

【特許請求の範囲】 固定板煉瓦と、摺動板煉瓦が収容され外周に歯車を備え
たロータ及び該ロータが可動部材を介して回転可能に装
着されたフレーム等からなカ、前記可動部材とフレーム
との間に配設された多数のコイルばねによシ前記ロータ
を押圧して前記摺動板煉瓦を固定板煉瓦に密着させるよ
うに構成し1こロータリーノズルにおいて、 前記多数のコイルばねに個別的に空気#全供給して該コ
イルばねを冷却することを特徴とするロータリーノズル
のコイルばね冷却方式。
[Scope of Claims] A rotor that accommodates fixed plate bricks and sliding plate bricks and has gears on its outer periphery, and a frame or the like on which the rotor is rotatably mounted via a movable member; In one rotary nozzle, the rotor is pressed by a large number of coil springs disposed between the frame and the sliding plate brick is brought into close contact with the fixed plate brick; A coil spring cooling method for a rotary nozzle, characterized in that the coil springs are cooled by individually supplying all air.
JP57217685A 1982-12-14 1982-12-14 Method for cooling coil spring of rotary nozzle Granted JPS59107765A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP57217685A JPS59107765A (en) 1982-12-14 1982-12-14 Method for cooling coil spring of rotary nozzle
GB08333127A GB2133505B (en) 1982-12-14 1983-12-12 Rotary nozzle system for metallurgical vessels
US06/560,997 US4591080A (en) 1982-12-14 1983-12-13 Rotary nozzle system for metallurgical vessels
KR1019830005907A KR840006925A (en) 1982-12-14 1983-12-13 Coil spring cooling method of rotary nozzle
IT8324143A IT1194516B (en) 1982-12-14 1983-12-13 Rotary nozzle for metallurgical vessel
ES528005A ES528005A0 (en) 1982-12-14 1983-12-13 A DOUBLE DOOR TYPE ROTARY NOZZLE DEVICE FOR A METALLURGICAL CONTAINER
LU85134A LU85134A1 (en) 1982-12-14 1983-12-14 ROTARY NOZZLE SYSTEM FOR METALLURGICAL CONTAINERS
FR8320034A FR2537473B1 (en) 1982-12-14 1983-12-14 ROTATING SHUTTER FOR METALLURGICAL CONTAINERS
DE3347903A DE3347903C2 (en) 1982-12-14 1983-12-14 Rotary nozzle arrangement for metallurgical containers
DE3345247A DE3345247C2 (en) 1982-12-14 1983-12-14 ROTARY NOZZLE ARRANGEMENT FOR METALLURGICAL CONTAINERS
DE3347901A DE3347901C2 (en) 1982-12-14 1983-12-14 Rotary nozzle arrangement for metallurgical containers
BE0/212047A BE898457A (en) 1982-12-14 1983-12-14 Rotating nozzle system for metallurgical vessels.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217685A JPS59107765A (en) 1982-12-14 1982-12-14 Method for cooling coil spring of rotary nozzle

Publications (2)

Publication Number Publication Date
JPS59107765A true JPS59107765A (en) 1984-06-22
JPS6255948B2 JPS6255948B2 (en) 1987-11-24

Family

ID=16708111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217685A Granted JPS59107765A (en) 1982-12-14 1982-12-14 Method for cooling coil spring of rotary nozzle

Country Status (2)

Country Link
JP (1) JPS59107765A (en)
KR (1) KR840006925A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439811A (en) * 1977-09-02 1979-03-27 Citizen Watch Co Ltd Motors for electronic clocks
JPS5917497U (en) * 1982-07-26 1984-02-02 株式会社河合楽器製作所 Upright piano action

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439811A (en) * 1977-09-02 1979-03-27 Citizen Watch Co Ltd Motors for electronic clocks
JPS5917497U (en) * 1982-07-26 1984-02-02 株式会社河合楽器製作所 Upright piano action

Also Published As

Publication number Publication date
KR840006925A (en) 1984-12-04
JPS6255948B2 (en) 1987-11-24

Similar Documents

Publication Publication Date Title
US6536504B2 (en) Continuous strip casting device and method of use thereof
JPH08224641A (en) Casting roll
US1903909A (en) Rotary heat treating furnace
JPS59107765A (en) Method for cooling coil spring of rotary nozzle
US770130A (en) Apparatus for casting bars or rods.
US3558256A (en) Apparatus for the continuous casting of metals
US5065810A (en) Method of producing mechanical parts by mold casting
JPS6330155A (en) Refractory path connector for transporting molten steel to casting wheel continuous casting machine
US2089742A (en) Method of melting finely divided metal
JPS61247624A (en) Raw material batch heat treatment equipment for glass manufacture
US3736980A (en) Mold for continuous centrifugal casting
JPS58100633A (en) Variable crown water cooled roll
JPS61262452A (en) Roll device for producing thin metallic sheet by continuous casting
JPS5877748A (en) Continuous casting device for thin sheet
US2511068A (en) Furnace for bimetallic castings
RU2805517C2 (en) Bearing housing for a rotating roller which supplies high temperature substance or substances
JPH04344852A (en) Cooling roll for twin roll type continuous caster
US522414A (en) Can-seaming machine
JPS5921458A (en) Cooler for centrifugal casting die
JPS59199144A (en) Mold for continuous casting machine
US972629A (en) Method of and apparatus for producing coated metal objects.
US2785449A (en) Casting apparatus
Mills Mould fluxes for continuous casting and their effect on product quality
JPS586768A (en) Composite abrasion resistant casting and its production
EP1224337B1 (en) Apparatus for supporting material to be treated in continuously operated thermal treatment furnaces