JPS59107190A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59107190A
JPS59107190A JP21750482A JP21750482A JPS59107190A JP S59107190 A JPS59107190 A JP S59107190A JP 21750482 A JP21750482 A JP 21750482A JP 21750482 A JP21750482 A JP 21750482A JP S59107190 A JPS59107190 A JP S59107190A
Authority
JP
Japan
Prior art keywords
core
louver
fin
pitch
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21750482A
Other languages
Japanese (ja)
Inventor
Koji Yamaguchi
山口 孝二
Mitsuo Okano
岡野 光雄
Yukio Abe
幸夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON RADIATOR CO Ltd
Marelli Corp
Original Assignee
NIPPON RADIATOR CO Ltd
Nihon Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON RADIATOR CO Ltd, Nihon Radiator Co Ltd filed Critical NIPPON RADIATOR CO Ltd
Priority to JP21750482A priority Critical patent/JPS59107190A/en
Publication of JPS59107190A publication Critical patent/JPS59107190A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve a heat radiating characteristic, while realizing an inexpensive core of reduced diameter and weight, by employing specific values for the width, louver pitch and the angle of fin that lines in parallel to an air stream, in a corrugated fin type heat exchanger for a vehicle. CONSTITUTION:A corrugated fin 1b is molded by bending a brass or an aluminium sheet in the corrugated shape of sine curve. The flat plate portion of fin 1b is integrally formed with a number of louvers by cutting and raising transversely to the direction X of cooling air stream. In this case, a louver pitch Lw is preset in the range of 0.7-1.3mm., and a louver angle theta defined by cutting and raising is preset in the range of 32.5-40 deg. for realizing a reduction in dimension and weight. The width (c) of core is preset in the range of 10-20mm. which is advantageous from the viewpoint of heat radiating characteristic and air loss level. Furthermore, by presetting the louver angle theta in the range of 32.5-40 deg., a heat radiating efficiency, that is, the heat radiating capability of core can be improved. Besides, the smaller than louver pitch is, the more the number of louver blade is, the better the coefficient of overall heat transfer is. However, the louver pitch should be restricted to 0.7mm. for processing reasons.

Description

【発明の詳細な説明】 この発明は、自動車用ラジェータ及び自動車用暖房装置
のヒータコア等として使用される熱交換器に関し、特に
コアを構成するコルゲートフィンの改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger used as a heater core of an automobile radiator and an automobile heating system, and particularly relates to an improvement of corrugated fins constituting the core.

熱交換器、例えば自動車用ラジェータにおいて、機関冷
却液と冷却空気との間の熱交換を行うコルゲートフーイ
ン形コアは、冷却空気流と平行な方向に2列ないし3列
に配置した冷却液°流通用の扁平チューブと、空気流れ
方向と平行する扁平チューブ間に介在され、かつチュー
ブ配列の全長に亘る長さの幅を有するコルゲートフィン
と、扁平チューブの両端をそれぞれ水密に圧入した入口
及び出口側の座板とから構成され、そして各座板には冷
却液の入口及び出口タンクがそれぞれ取り付けられた構
造になっている。
In a heat exchanger, such as an automobile radiator, a corrugated hu-in core that exchanges heat between engine coolant and cooling air is used to exchange coolant fluid in two or three rows in a direction parallel to the cooling air flow. A flat tube for circulation, a corrugated fin that is interposed between the flat tubes parallel to the air flow direction and has a width spanning the entire length of the tube arrangement, and an inlet and an outlet in which both ends of the flat tube are press-fitted, respectively, in a watertight manner. Each seat plate has an inlet and an outlet tank for cooling liquid.

この種方式の従来のラジェータに用いられているコルゲ
ートフィンの幅及びピッチは、放熱性能、空気抵抗など
の点から比較的大きくとって、l、ラジェータの薄形、
軽量化の面で問題がある−ところで近年では、自動車の
小型軽量化及び排気ガス対策のだめの機器などを設ける
関係上、二/ジンルーム内の空間スペースが小さくなシ
、これに伴いラジェータの設置場所も空間的に制限され
、ラジェータの薄形軽量化が望まれている。
The width and pitch of the corrugated fins used in conventional radiators of this type are relatively large in terms of heat dissipation performance and air resistance.
There is a problem in terms of weight reduction.However, in recent years, due to the miniaturization and weight reduction of automobiles and the installation of equipment to prevent exhaust gases, the space inside the gin room has become smaller, and as a result, the location of the radiator has become smaller. However, space is limited, and it is desired that the radiator be made thinner and lighter.

この発明は上記要求を満足すべくなされたもので、放熱
性能を向上させ、かつコアの薄形化、軽量化及び低コス
ト化を可能にしたコルゲートフィン付き熱交換器を提供
することを目的とする。
This invention was made to satisfy the above requirements, and the purpose is to provide a heat exchanger with corrugated fins that improves heat dissipation performance and enables a thinner core, lighter weight, and lower cost. do.

以下、この発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図はこの発明にかかるコルゲートフィン
構造方式を熱交換器、さらに詳しくは自動車用ラジェー
タに適用した場合のものである。
1 and 2 show a case where the corrugated fin structure according to the present invention is applied to a heat exchanger, more specifically a radiator for an automobile.

同図において、1はラジェータを構成するコルゲートフ
ィン形コアであシ、該コア1は、冷却空気の流れ方向X
と平行に配列した金属製の扁平チューブ1αと、この扁
平チューブ1a、la間に接触状態に介在された金属製
のコルゲートフイ71bと、上記扁平チューブ1cLの
上下端をそれぞれ水密に圧入固定した入口及び出口側座
板IC11dとから構成され、そして上記入口側座板I
Cには、図示しないエンジンのウォータジャケットから
の冷却液を導入する入口タンク2が取り付けられている
とともに、上記出口側座板1dにはコア1の扁平チュー
ブ1cLを通過した冷却液を集合しエンジンのウォータ
ジャケットに供給する出口タンク3が取シ伺けられてい
る。
In the figure, 1 is a corrugated fin-shaped core constituting a radiator, and the core 1 is in the direction of flow of cooling air
flat metal tubes 1α arranged in parallel with the flat tubes 1α, metal corrugated fins 71b interposed in contact between the flat tubes 1a and la, and an inlet in which the upper and lower ends of the flat tubes 1cL are respectively press-fitted and fixed in a watertight manner. and an exit side seat plate IC11d, and the entrance side seat plate I
C is attached with an inlet tank 2 that introduces the coolant from the water jacket of the engine (not shown), and the outlet side seat plate 1d collects the coolant that has passed through the flat tube 1cL of the core 1, and collects the coolant that has passed through the flat tube 1cL of the core 1. The outlet tank 3 that supplies water to the water jacket can be seen.

また、上記コルゲートフィン1b−は、厚さ0.05〜
006陥の黄銅又はアルミニウム板利をサインカーブの
波形状に折曲げ成形したものからなり、そのフィンピッ
チPfは1.7 TM1程度になっているとともに、フ
ィン1bの波形頂部とこれに接触する扁平チー−プ14
とはロー付けによシ一体化されている。また、フィン1
bの平、板部分には、第3図に示す如く冷却空気の流れ
方向Xと直角に多数のルーバ4が切シ起しによシ一体に
形成され、このときのルーバピッチLWは07〜1.3
 trrrhに設定され、その切シ起しによるルーバ角
度θは325°〜40°に設定されている。まだコア1
の幅Cば10〜20mmであり、チューブピッチPTは
85〜14mmの範囲に設定されるものである。
Further, the corrugated fin 1b- has a thickness of 0.05 to
It is made of 006 brass or aluminum plate bent into a sinusoidal wave shape, and the fin pitch Pf is about 1.7 TM1, and the wavy top of the fin 1b and the flat surface in contact with it. Cheap 14
and are integrated by soldering. Also, fin 1
As shown in FIG. 3, a large number of louvers 4 are cut and raised and integrally formed on the flat plate portion of b, perpendicular to the cooling air flow direction X, and the louver pitch LW at this time is 07 to 1. .3
trrrh, and the louver angle θ due to the cutting and raising is set to 325° to 40°. Still core 1
The width C is 10 to 20 mm, and the tube pitch PT is set in a range of 85 to 14 mm.

次に上述する如き値に設定したコルゲートフィンをラジ
ェータに適用したとき、ラジェータの放熱性能向上及び
薄形化ができる理由について説明する。
Next, the reason why the heat dissipation performance of the radiator can be improved and the radiator can be made thinner will be explained when the corrugated fins set to the above values are applied to the radiator.

そこで、捷ず第1図に示すコア1の寸法をtl=610
.  t z=360と固定し、コア1の幅、即ちフィ
ン1hの幅Cを種々変化させたときOラジェータの放熱
性能に及ぼす影響を調べて見た。
Therefore, the dimensions of the core 1 shown in Fig. 1 were changed to tl = 610.
.. The effect on the heat dissipation performance of the O radiator was investigated when the width of the core 1, that is, the width C of the fin 1h was varied, with tz=360 fixed.

第4図は縦軸に熱貫流率Kをとシ、横軸にコア1の厚さ
Cをとって、コアlの厚さCを変化させたときの熱貫流
率にの測定結果を表したものである3、ただし、ルーバ
角度θ=28°、ルーバピッチLW=1.0、冷却空気
の流速V a = 10 m / s 。
Figure 4 shows the thermal transmission coefficient K on the vertical axis and the thickness C of core 1 on the horizontal axis, and shows the measurement results for the thermal transmission coefficient when the thickness C of core 1 is changed. 3, where the louver angle θ = 28°, the louver pitch LW = 1.0, and the cooling air flow rate V a = 10 m/s.

冷却液流量G w = 120 t / minとする
Let the coolant flow rate G w = 120 t/min.

この第4図において、特性曲線Iはフィンの高さ=5醇
、特性曲線■はフィンの高さ=6−1特性曲線■はフィ
ンの高さ一7祁としたときのもので、コア1の幅Cを漸
次減少させると、熱質流率には増加し、特にコア10幅
Cが20mm付近になると急上昇し、101幅付近では
最高値になることが認められた。このことはフィン1b
のルーバ角度θ、ルーバピッチLw及びフィン高さHl
fを適性値に設定すれば、コア1の幅Cを薄くできるこ
とを意味する。
In this Figure 4, the characteristic curve I is the one when the height of the fin is 5 mm, the characteristic curve (■) is when the height of the fin is = 6-1, and the characteristic curve (■) is when the height of the fin is -7, and the core is 1. When the width C of the core 10 is gradually decreased, the heat flow rate increases, particularly when the width C of the core 10 is around 20 mm, it rises rapidly, and it is observed that it reaches the highest value around the width C of the core 101. This means that fin 1b
Louver angle θ, louver pitch Lw and fin height Hl
This means that if f is set to an appropriate value, the width C of the core 1 can be made thinner.

また、第5図はコアサイズを610X360、フィンピ
ッチP f ”” 1.7胴、ルーバ角度θ=28°、
ルーバピッチL W−1,Orim 、冷却空気の流速
■α= 10 m / s 、冷却液流量G W: 1
201 / min、。
In addition, in Fig. 5, the core size is 610 x 360, the fin pitch P f "" is 1.7, the louver angle θ = 28°,
Louver pitch L W-1, Orim, cooling air flow rate ■α = 10 m/s, coolant flow rate G W: 1
201/min.

フィン高さHf= 7 wnとしたときのラジェータの
放熱率Hとコア厚さCとの実験結果を表わしたものであ
る。
It shows the experimental results of the heat dissipation rate H and core thickness C of the radiator when the fin height Hf=7wn.

この第5図の特性曲線■からも明らかなように、コア1
の厚さCを漸次減少させれば、コア1の放熱面積が減少
し、放熱率Hも2次カーブで減少するが、放熱率Hは放
熱面積に比例したものとならない。例えばコア1の厚さ
Cが16脳と13mmをとって比較した場合、16關の
厚さを基準にすると、13+IImのコア1の放熱面積
は16陥の厚さのコア1よI)19%と減少するが、第
4図からも明らかなように熱貫流率Kが大きいため、そ
の上昇分に対応して実質的な放熱率は15%の減少にと
どまることが認められる。
As is clear from the characteristic curve ■ in Figure 5, core 1
If the thickness C of the core 1 is gradually decreased, the heat dissipation area of the core 1 decreases, and the heat dissipation rate H also decreases in a quadratic curve, but the heat dissipation rate H is not proportional to the heat dissipation area. For example, when comparing the thickness C of core 1 with 16 mm and 13 mm, using the thickness of 16 mm as the standard, the heat dissipation area of core 1 of 13 + II m is 19% of that of core 1 with a thickness of 16 mm. However, as is clear from FIG. 4, since the heat transfer coefficient K is large, it is recognized that the actual heat dissipation rate decreases by only 15% corresponding to the increase.

また、第6図はコアサイズを610X360゜フィンピ
ッチP f= 1.7爺、ルーバ角度θ=28°、ルー
バピッチL w= 1.0 mm、、冷却空気の流速V
a== 10 m / s 、冷却液流量GW: 12
01/rn、in。
In addition, in Figure 6, the core size is 610 x 360 degrees, fin pitch P f = 1.7 mm, louver angle θ = 28 degrees, louver pitch L w = 1.0 mm, and cooling air flow rate V.
a==10 m/s, coolant flow rate GW: 12
01/rn, in.

フィン高さHf= 7 mmとしたときのラジエータコ
アの空気損失△Pαとコア厚さCとの実験結果を表わし
たものである。
It shows the experimental results of the air loss ΔPα and the core thickness C of the radiator core when the fin height Hf=7 mm.

この第6図の特性曲線■からも明らかなようにコア1の
厚さCを漸次減少させると、その空気損失△Paば1次
曲線的に減少し、コア1の厚さが薄い程有利となる。例
えばコア1の厚さCが16mmと13咽をとって比較し
た場合、16筋の厚さを基準にすると、13■のコアの
空気損失△Paは16mmのものよ920%減少できる
ことが認められている。
As is clear from the characteristic curve (■) in Fig. 6, when the thickness C of the core 1 is gradually reduced, the air loss △Pa decreases linearly, and the thinner the core 1 is, the more advantageous it is. Become. For example, when comparing the thickness C of core 1 with 16mm and 13cm, it is recognized that the air loss △Pa of the 13cm core can be reduced by 920% compared to that of 16mm, based on the thickness of 16mm. ing.

以上ハルーハ角度θ−28°、ルーバピッチLw=10
にしたときの実験結果であるが、フィン高さHfが5〜
7 mmに変化してもコアの厚さを10〜20rtrm
の範囲に設定することが放熱性能、空気損失の点から最
も有利であることが分かる。
The above haluha angle θ-28°, louver pitch Lw = 10
This is the experimental result when the fin height Hf is 5~
Even if it changes to 7 mm, the core thickness should be kept at 10 to 20 rtrm.
It can be seen that setting the range is most advantageous in terms of heat dissipation performance and air loss.

」二記のように第4図及び第5図の測定結果からも明ら
かな如くフィンの構造を上述した設定値にしておけば、
熱貫流量及び放熱率も必要十分なものとなるのであるが
、自動車の小型軽量化が進むと、薄形で放熱性能のさら
に高いものが望捷れてくる。
As is clear from the measurement results in Figures 4 and 5 as described in Section 2, if the fin structure is set to the above-mentioned values,
The amount of heat transmission and the rate of heat dissipation are both necessary and sufficient, but as automobiles become smaller and lighter, thinner devices with even higher heat dissipation performance are desired.

そこで、この発明は一ルーバ角度θを325°〜40°
の範囲に設定すれば、放熱率、即ちコアの放熱性能をよ
逆向上できるのである。以下、その理由を実験結果に基
づいて説明する。
Therefore, this invention sets one louver angle θ to 325° to 40°.
If it is set within this range, the heat dissipation rate, that is, the heat dissipation performance of the core can be improved. The reason for this will be explained below based on experimental results.

第7図は第1図に示すコア1の寸法11.  t2をそ
れぞれ268咽、  330Mとし、かつフィンピッチ
P f= 1.1 rrrm、フィン高さHf−7m1
冷却空気の流速■α= i 0 m / sとしたとき
の熱貫流率にとルーバ角度θとの実験結果を示すもので
ある。
FIG. 7 shows the dimensions 11 of the core 1 shown in FIG. t2 is 268 m and 330 m, respectively, fin pitch P f = 1.1 rrrm, and fin height Hf - 7 m1
It shows the experimental results of the heat transmission coefficient and the louver angle θ when the cooling air flow velocity ■α=i 0 m/s.

この第7図において、特性曲線■はルーバピッチLw=
08、特性曲線■はルーバピッチL w =10、特性
曲線■はルーバピッチL w = 1.3に設定したと
きのもので、ルーバ角度θを漸次増力口させると、熱貫
流率には大きくなり、そしてルーバ角度θが30°附近
から上昇率が急に大きくなり、400附近まで急昇カー
ブとなることが認められ辷、また、第8図はコアサイズ
を268X330、フィンピッチP f= 1. i■
、フィン高さHf−7咽、冷却空気の流速V a = 
10 m / sとしたときの放熱率Hとルーバ角度θ
との実験結果を表わしたものである。同図において、特
性曲線■はルーバピッチLw−08、特性曲線Xはルー
バピッチL w−1,0%特性曲線XはルーバピッチL
w=13としたときの特性図であって、これら特性曲線
からも明らかなように、ルーバ角度θを変化させると、
放熱率Hはルーバ角度θが30°附近から40°附近の
範囲において急上昇していることが認められる3゜ さらにまた、第9図はコアサイズを268X330、 
 フィンピッチP f−1,1% フィン高さHf=7
胴、ルーバピッチL w = 1.0 %冷却空気の流
速V a : 10 m / sとしたときの゛空気損
失△Pαとルーバ角度θとの関係を実験結果から得だも
のであり、同図からも明らかなようにルーバ角度θを漸
次増加させると、コアの空気損失△PcLはルーバ角度
θが40°附近から急速に上昇し、それ以下では空気損
失△Pa、の変化率は比較的小さくゆるやかになってい
ることが認められた。
In this FIG. 7, the characteristic curve ■ is louver pitch Lw=
08. The characteristic curve ■ is when the louver pitch L w = 10, and the characteristic curve ■ is when the louver pitch L w = 1.3. As the louver angle θ is gradually increased, the thermal transmission coefficient increases, and It was observed that the rate of rise suddenly increases when the louver angle θ is around 30°, and it becomes a steep rising curve until it reaches around 400°.Furthermore, FIG. i ■
, fin height Hf-7, cooling air flow rate V a =
Heat radiation rate H and louver angle θ when set to 10 m/s
This shows the experimental results. In the same figure, characteristic curve ■ is louver pitch Lw-08, characteristic curve X is louver pitch L w-1,0% characteristic curve X is louver pitch L
This is a characteristic diagram when w=13, and as is clear from these characteristic curves, when the louver angle θ is changed,
It is observed that the heat dissipation rate H increases rapidly when the louver angle θ is in the range from around 30° to around 40°.Furthermore, FIG.
Fin pitch P f-1,1% Fin height Hf=7
The relationship between the air loss △Pα and the louver angle θ when the shell and louver pitch L w = 1.0% and the cooling air flow velocity Va: 10 m/s is obtained from the experimental results, and from the same figure. As is clear from the above, when the louver angle θ is gradually increased, the core air loss ΔPcL increases rapidly when the louver angle θ is around 40°, and below that, the rate of change in the air loss ΔPa is relatively small and gradual. It was recognized that .

したがって、上記第7図〜第9図の実験結果から云える
ことは、ルーバ角度θを325°〜40°に設定してお
けば、熱貫流率K及び放熱率Hを、空気損失△paにそ
れ程の影響を与えることなく増大させることができ、こ
のことはルーバ角度θを30°以下に設定したものより
もコアの放熱性能が向上し、かつコアの薄形化が容易と
なるのである。
Therefore, it can be said from the experimental results shown in Figures 7 to 9 above that if the louver angle θ is set to 325° to 40°, the heat transfer coefficient K and the heat radiation rate H can be adjusted to the air loss Δpa. The louver angle θ can be increased without much influence, and this improves the heat dissipation performance of the core compared to a case where the louver angle θ is set to 30° or less, and makes it easier to make the core thinner.

なお、ルーバピッチLWは小さく、ルーバの枚数が多い
程熱質流率Kを増大させることは理論的に証明されてい
るものであシ、その傾向は第7図。
Note that it has been theoretically proven that the smaller the louver pitch LW and the larger the number of louvers, the greater the heat mass flow rate K, and this tendency is shown in FIG.

第8図からも明らかである。しかし、ルーバピッチLW
を小さくすることは現状のフィン加工上制約があり、0
7瑞程度が限度である。したがって、より熱貫流率Kを
増大させようとするにはこの発明に述べた如くルーバ角
度θを325°〜40°に設定することが現段階で最も
効果的で、かつ実用的である。
This is also clear from Figure 8. However, the louver pitch LW
There are restrictions on current fin processing to reduce the size of 0.
The limit is about 7 Rui. Therefore, in order to further increase the heat transfer coefficient K, it is currently most effective and practical to set the louver angle θ to 325° to 40° as described in the present invention.

以上述べた通りこの発明によれば、コルゲート7イン形
熱交換器において、コルゲートフィンの空気流と平行、
となる方向の幅Cを10〜20 mmとシ、カつコルゲ
ートフィンのルーバピッチL w ヲ07〜13とし、
これに加えてルーバ角度θを325°〜40°と設定し
たので、空気抵抗をそれ程増大させることなくルーバ角
度30°以下に設定したものに比し、コアの放熱性能を
大幅に向上でき、かつコアの薄形化もさらに促進できる
とともに、熱交換器の軽量化及び低コスト化も可能にな
る効果がある。
As described above, according to the present invention, in the corrugated 7-inch heat exchanger, the air flow parallel to the corrugated fin airflow,
The width C in the direction is 10 to 20 mm, and the louver pitch L of the corrugated fin is 07 to 13.
In addition, since the louver angle θ is set to 325° to 40°, the heat dissipation performance of the core can be significantly improved compared to a case where the louver angle is set to 30° or less without significantly increasing air resistance. This has the effect of further promoting thinning of the core, and also making it possible to reduce the weight and cost of the heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる熱交換器をラジェータに適用
した場合の一例を示す正面図、第2図はこの発明におけ
るコアの一部を示す斜視図、第3図はこの発明における
コルゲートフィンの断面図、第4図〜第6図はと9発明
における実験結果をグラフに表わしたもので、第4図は
熱貫流率とコア厚さとの関係を示す特性図、第5図は放
熱率とコア厚さとの関係を示す特性図、第6図は空気損
失とコアj阜さとの関係を示す特性図である。また、第
7図〜第9図はこの発明における実験結果をグラフに表
わしたもので、第7図は熱貫流率とルーバ角度との関係
を示す特性図、第8図は放熱率とルーバ角度との関係を
示す特性図、第9図は空気損失とルーバ角度との関係を
示す特性図である。 1・ コア、1α・・・扁平チューブ、1b・コルゲー
トフィン、1G、1d・・・座板、2 ・入口タンク、
3 ・出口タンク、4 ・ルーバ。 特 許 出 願 人   日本ラヂヱーター株式会社、
1.ニア、、T−,1、 代 理 人 弁理士  古  谷  史  jJ%’ 
、””:j/9とニア′ 第2図 第3図 第 4 図 コア厚ごC(1先) コアlI−′:ICC会)
Fig. 1 is a front view showing an example of a case where the heat exchanger according to the present invention is applied to a radiator, Fig. 2 is a perspective view showing a part of the core according to the invention, and Fig. 3 is a corrugated fin according to the invention. Cross-sectional views, Figures 4 to 6 are graphical representations of the experimental results of the nine inventions. Figure 4 is a characteristic diagram showing the relationship between heat transmission coefficient and core thickness, and Figure 5 is a graph showing the relationship between heat transfer coefficient and core thickness. A characteristic diagram showing the relationship between the core thickness and FIG. 6 is a characteristic diagram showing the relationship between the air loss and the core height. In addition, Figures 7 to 9 are graphical representations of experimental results in this invention, with Figure 7 being a characteristic diagram showing the relationship between heat transmission coefficient and louver angle, and Figure 8 being a characteristic diagram showing the relationship between heat transfer coefficient and louver angle. FIG. 9 is a characteristic diagram showing the relationship between air loss and louver angle. 1. Core, 1α...Flat tube, 1b. Corrugated fin, 1G, 1d... Seat plate, 2. Inlet tank.
3. Outlet tank, 4. Louver. Patent applicant: Japan Radiator Co., Ltd.
1. Nia, T-, 1, Agent Patent Attorney Fumi Furuya jJ%'
,"":j/9 and near' Figure 2 Figure 3 Figure 4 Core thickness C (1 point) Core lI-': ICC meeting)

Claims (1)

【特許請求の範囲】[Claims] コア及び入口、出口タンクを有するコルゲートフィン形
熱交換器において、コアに対する空気流と平行になる方
向のコルゲートフィンの幅Cを10〜20間とし、かつ
上記コルゲートフィンに形成されだルーバのピンチLw
を07〜13覗とするとともに、上記ルーバの角度θを
32.5°〜40゜としたことを特徴とする熱交換器。
In a corrugated fin type heat exchanger having a core, an inlet, and an outlet tank, the width C of the corrugated fin in the direction parallel to the air flow to the core is between 10 and 20, and the pinch Lw of the louver formed in the corrugated fin is
A heat exchanger characterized in that the angle θ of the louver is 32.5° to 40°.
JP21750482A 1982-12-10 1982-12-10 Heat exchanger Pending JPS59107190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21750482A JPS59107190A (en) 1982-12-10 1982-12-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21750482A JPS59107190A (en) 1982-12-10 1982-12-10 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59107190A true JPS59107190A (en) 1984-06-21

Family

ID=16705267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21750482A Pending JPS59107190A (en) 1982-12-10 1982-12-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59107190A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399494A (en) * 1986-10-15 1988-04-30 Nippon Denso Co Ltd Heat exchanger
JPH03128266U (en) * 1990-03-30 1991-12-24
US5311935A (en) * 1992-01-17 1994-05-17 Nippondenso Co., Ltd. Corrugated fin type heat exchanger
US5350012A (en) * 1992-08-21 1994-09-27 Voss Manufacturing, Inc. Rotary fin machine
EP1195569A1 (en) * 1999-07-15 2002-04-10 Zexel Valeo Climate Control Corporation Serpentine type heat exchanger
KR20020075659A (en) * 2001-03-27 2002-10-05 한라공조주식회사 Corrugated fin of heat exchanger
FR2824895A1 (en) * 2001-05-18 2002-11-22 Air Liquide Undulating louver fin for plate heat exchanger comprises set of undulating legs connected alternately by undulating top and undulating base and provided with inclined flaps cut in legs
EP1832832A1 (en) * 2006-02-07 2007-09-12 Sanden Corporation Heat Exchanger
CN100373121C (en) * 2002-07-31 2008-03-05 贝洱两合公司 Flat pipe-shaped heat exchanger
CN102519293A (en) * 2011-09-26 2012-06-27 郑州大学 Novel shutter fin
EP2253921A3 (en) * 2009-05-13 2014-04-09 Behr GmbH & Co. KG Fin for a heat transferer
WO2015182782A1 (en) * 2014-05-27 2015-12-03 株式会社ティラド Heat exchanger core
JP2020060355A (en) * 2018-10-12 2020-04-16 株式会社ティラド Flat tube for heat exchanger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399494A (en) * 1986-10-15 1988-04-30 Nippon Denso Co Ltd Heat exchanger
JPH0565791B2 (en) * 1986-10-15 1993-09-20 Nippon Denso Co
JPH03128266U (en) * 1990-03-30 1991-12-24
US5311935A (en) * 1992-01-17 1994-05-17 Nippondenso Co., Ltd. Corrugated fin type heat exchanger
US5350012A (en) * 1992-08-21 1994-09-27 Voss Manufacturing, Inc. Rotary fin machine
EP1195569A1 (en) * 1999-07-15 2002-04-10 Zexel Valeo Climate Control Corporation Serpentine type heat exchanger
EP1195569A4 (en) * 1999-07-15 2005-06-08 Zexel Valeo Climate Contr Corp Serpentine type heat exchanger
KR20020075659A (en) * 2001-03-27 2002-10-05 한라공조주식회사 Corrugated fin of heat exchanger
WO2002095315A1 (en) * 2001-05-18 2002-11-28 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Louvered fins for heat exchanger
FR2824895A1 (en) * 2001-05-18 2002-11-22 Air Liquide Undulating louver fin for plate heat exchanger comprises set of undulating legs connected alternately by undulating top and undulating base and provided with inclined flaps cut in legs
CN100373121C (en) * 2002-07-31 2008-03-05 贝洱两合公司 Flat pipe-shaped heat exchanger
EP1832832A1 (en) * 2006-02-07 2007-09-12 Sanden Corporation Heat Exchanger
EP2253921A3 (en) * 2009-05-13 2014-04-09 Behr GmbH & Co. KG Fin for a heat transferer
CN102519293A (en) * 2011-09-26 2012-06-27 郑州大学 Novel shutter fin
WO2015182782A1 (en) * 2014-05-27 2015-12-03 株式会社ティラド Heat exchanger core
US10309729B2 (en) 2014-05-27 2019-06-04 T.Rad Co., Ltd. Heat exchanger core
JP2020060355A (en) * 2018-10-12 2020-04-16 株式会社ティラド Flat tube for heat exchanger

Similar Documents

Publication Publication Date Title
JP3459271B2 (en) Heater core of automotive air conditioner
US4332293A (en) Corrugated fin type heat exchanger
US7117933B2 (en) Core structure of integral heat-exchanger
JP4394002B2 (en) Heat exchanger fin with inclined lance
US6401809B1 (en) Continuous combination fin for a heat exchanger
JPS59107190A (en) Heat exchanger
JPH06123587A (en) Heat exchanger
JP4462877B2 (en) Heat sink with louver
CN215447562U (en) Radiating fin, radiator and vehicle
JP6559507B2 (en) Corrugated fin heat exchanger core
KR100363318B1 (en) Louver fin of heat exchanger
JP2003083690A (en) Corrugated fin heat-exchanger
KR100477480B1 (en) heat transmitter
JPH11223484A (en) Heat exchanger
JPH1123179A (en) Heat exchanger with fin
JPH11101459A (en) Air conditioner
JPS6152589A (en) Air-to-air heat exchanger
KR200143044Y1 (en) Evaporator in air conditioner
JP3133057B2 (en) Corrugated fin for heat exchanger
JP2000088476A (en) Heat exchanger
JPS5812058Y2 (en) Fins for heat exchanger
JPS63163785A (en) Heat exchanger
JP2000039282A (en) Heat exchanger including fin having louver
JPH04138568U (en) Corrugated fin for heat exchanger
JPH11257887A (en) Corrugation type fin for heat exchanger