JPS59107070A - Corrosion preventing method - Google Patents

Corrosion preventing method

Info

Publication number
JPS59107070A
JPS59107070A JP21667982A JP21667982A JPS59107070A JP S59107070 A JPS59107070 A JP S59107070A JP 21667982 A JP21667982 A JP 21667982A JP 21667982 A JP21667982 A JP 21667982A JP S59107070 A JPS59107070 A JP S59107070A
Authority
JP
Japan
Prior art keywords
layer
corrosion
mixture
test
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21667982A
Other languages
Japanese (ja)
Inventor
Takayori Shinohara
篠原 孝順
Toshio Anzai
安斉 利男
Yutaka Kida
喜田 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP21667982A priority Critical patent/JPS59107070A/en
Publication of JPS59107070A publication Critical patent/JPS59107070A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Abstract

PURPOSE:To prevent the corrosion of a metal to be exposed to high temp. gas contg. HCl by spraying a mixture contg. Cr and Ni at a specific rate on the surface of the metal and further forming a corrosion resistant layer having the compsn. different from said compsn. by spraying. CONSTITUTION:The 1st layer of a mixture I contg. Cr and Ni at 2/8-8/2 by weight of Cr/Ni and the 2nd layer having the compsn. different from the compsn. of the 1st layer thereon are formed respectively by spraying on the surface of a metal such as a structural material or the like to be exposed to high temp. gas, such as combustion gas, contg. HCl, whereby the corrosion of the metal is prevented and the heat energy of the high temp. gas is made utilizable. The above-mentioned 2nd layer consists preferably of 30-70wt% the mixture I and 70-30% at least 1 kind of alkaline material or ceramics, or the substantially equal effect of corrosion resistance is obtd. as well by using said layer consisting substantially of ceramics 70-30% ceramics and 30-70% alkaline material.

Description

【発明の詳細な説明】 この発明はHCJを含有する、燃焼ガス等の高温カスに
さらされる金属の腐食を防止づるための方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing corrosion of metals containing HCJ and exposed to high temperature residues such as combustion gases.

近年、家庭や工業設備からの塩化物を含む廃棄物、例え
ば、塩ビなどのプラスチックを含むゴミ類はその里が飛
躍的に増大しその処理法が問題となっている。現在、一
般的な処理法としては埋立て法と焼却法があるが埋立用
地の枯渇により焼却法の比率が増加している。この廃棄
物のり的な増大とともに、廃棄物に含まれるプラスチッ
ク量の増加から廃棄物のもつエネルギーも高くなりその
有効的な回収が切火な問題となっCいる。このような観
点から、塩化物を含む物質、例えば上記廃棄物などが燃
焼させられ、発生りる高温燃焼ガスの熱量を有効に利用
づる装置が近年種々研究開発され一部は既に実用化され
−Cいる。これ・らの装置においては高温燃焼ガス中に
HCJ 、C10、SOxなどの腐食性ガスが存在する
とともに未燃焼物質および燃焼の結果生じるアルカリ金
属塩、重金属塩その他の固体物質などからなる灰が必然
的に共存Jる。
In recent years, the amount of waste containing chloride from households and industrial facilities, such as garbage containing plastics such as vinyl chloride, has increased dramatically, and how to dispose of it has become a problem. Currently, there are two common disposal methods: landfilling and incineration, but the proportion of incineration is increasing due to the depletion of land for landfill. As the amount of waste increases, the amount of plastic contained in the waste also increases, and the energy contained in the waste increases, making effective recovery of the waste an urgent problem. From this point of view, in recent years, various devices have been researched and developed that effectively utilize the calorific value of the high-temperature combustion gas generated when chloride-containing substances, such as the above-mentioned wastes, are combusted, and some of them have already been put into practical use. There is C. In these devices, corrosive gases such as HCJ, C10, and SOx are present in the high-temperature combustion gas, and ash consisting of unburned substances and alkali metal salts, heavy metal salts, and other solid substances produced as a result of combustion is inevitable. coexist with each other.

このような高温燃焼ガスにさらされる金属は、その表面
に灰が(q@Lかつ金属のさらされる雰囲気中にl−I
 CJが共存するとその腐食(高温旧食)が非常に激し
くなり、又高度の上昇とともにその腐食速度が大きくな
ることが知られている。即ち、金属の表面温度が300
℃を越えるど高温腐食が発生し、400℃を越えると腐
食は特に激しくなり市販されている実用金属月利の中で
はごく一部の特殊高級金属材料以外は、この高温腐食に
耐えうるちのはない。
Metals exposed to such high-temperature combustion gas have ash on their surface (q@L and l-I in the atmosphere to which the metal is exposed).
It is known that when CJ coexists, the corrosion (high-temperature old corrosion) becomes extremely severe, and the corrosion rate increases as the altitude increases. That is, the surface temperature of the metal is 300
When the temperature exceeds ℃, high-temperature corrosion occurs, and when the temperature exceeds 400℃, corrosion becomes especially severe. Among the commercially available practical metal materials, only a few special high-grade metal materials can withstand this high-temperature corrosion. do not have.

従来、この種の高温腐食から燃料炉の金属材1]に関し
てはこれを守るために次の二つの方法がとられてきた。
Conventionally, the following two methods have been used to protect metal materials 1 of fuel reactors from this type of high-temperature corrosion.

一つは、燃焼中に発生する酸性の腐食性ガスを炭酸ソー
ダ等のアルカリ性物質と反応させて中和する、あるいは
塩ビなとの1(C1を光生づる廃棄物の燃焼に際してア
ルノJり性物質を廃棄物と共に炉内に供給づる、いわゆ
る中和剤を燃焼雰囲気中に使う方法がある。
One is to neutralize the acidic corrosive gas generated during combustion by reacting with an alkaline substance such as soda carbonate, or to neutralize the acidic corrosive gas generated during combustion with an alkaline substance such as PVC. There is a method of using a so-called neutralizing agent in the combustion atmosphere, which is supplied into the furnace together with the waste.

しかし、これらの方法はいずれも主として燃焼カス中の
腐食性カスの処理には、有効であるが、金属表面に灰が
イ]@シかつ雰囲気ガス中にHCjか共存する時に発生
づる高温腐食に対しての防食方法としては不十分であっ
た。即ち、炉内構造と高温腐食が発生覆る金属表面との
幾何学的関係、燃焼カスの流動状態および腐食性ガスと
中和剤との混合接触状態などの諸要因により炭酸塩等が
高温腐食を発生する金属表面に防食に充分な垣に達しな
い部分が生じるためである。
However, although these methods are mainly effective for treating corrosive debris in combustion scum, they are not effective against high-temperature corrosion that occurs when ash is present on the metal surface and HCj coexists in the atmospheric gas. However, this method was insufficient as a corrosion prevention method. In other words, carbonates, etc. cause high-temperature corrosion due to various factors such as the geometrical relationship between the furnace internal structure and the metal surface on which high-temperature corrosion occurs, the flow state of combustion residue, and the mixed contact state of corrosive gas and neutralizing agent. This is because there are parts of the metal surface that do not reach a sufficient barrier for corrosion protection.

もう一つの方法としては、燃焼炉内の金属材料の温度を
低くする方法である。即ち、この高温腐食は金属表面温
度が400℃を越えるとその進行が激しくなるのぐ、金
属表面温度を400℃以下に保つ。従って、廃棄物の燃
焼熱をボイラー、廃熱ボイラーなどでスチームとして回
収−リ゛る場合にはボイラーの伝熱管管壁温度を400
″C以下1.l維持せねばならず、その結果発生スチー
ムは設計値で20 ka / cイ、300℃以下、実
用装置の運転条件で16〜20 kq/ cゴG、20
0℃程度になってしまう。このような中圧スヂーIX’
C’は、例えば最も一般的なものとしてエネルギーを電
気にする場合、発電効率は最新の重油焚き火力発電に比
べかなり低く発電コストも高くなる。
Another method is to lower the temperature of the metal material in the combustion furnace. That is, this high-temperature corrosion progresses more rapidly when the metal surface temperature exceeds 400°C, but the metal surface temperature is kept below 400°C. Therefore, when the combustion heat of waste is recovered and recycled as steam in a boiler, waste heat boiler, etc., the temperature of the heat transfer tube wall of the boiler must be increased to 400°C.
As a result, the generated steam must be maintained at a design value of 20 ka/c, 300°C or less, and 16 to 20 kq/c under the operating conditions of practical equipment.
The temperature will be around 0℃. This kind of medium pressure Suji IX'
For example, in the most common case of C', when energy is converted into electricity, the power generation efficiency is considerably lower than that of the latest heavy oil-fired thermal power generation, and the power generation cost is also high.

この発明は上記の高温腐食を防ぎ、その1つの結果とし
て高圧スチームを経済的に得ることを可能と覆る方法を
提供するものである。
The present invention provides a method for preventing the above-mentioned high-temperature corrosion and, as one result, making it possible to obtain high-pressure steam economically.

この発明では、必要な耐熱性に応じて例えば炭素鋼から
耐熱合金までの広範な各種金属材料により作られた焼却
炉部材等の、HCj、ガスに曝される金属表面をクロム
とニッケルをクロム/ニッケル重橿比2/8〜8/2で
含む混合物(i)の第1層を溶射によりまず被覆し次い
で第1層とは異る組成の第2層をこの上に溶射により被
覆する。
In this invention, metal surfaces exposed to HCj and gases, such as incinerator members made of a wide variety of metal materials from carbon steel to heat-resistant alloys, are coated with chromium and nickel depending on the required heat resistance. A first layer of mixture (i) containing nickel in a ratio of 2/8 to 8/2 is first coated by thermal spraying, and then a second layer having a composition different from the first layer is coated thereon by thermal spraying.

燃焼炉部材は必要に応じ通常各種ti4材、鉄基合金、
ニッケルークロム系合金等により作られるので、この発
明ではこれらの材料に充分親和性の強いかつ耐熱性良好
な上記ニッケル−クロ11系混合物の第1層を焼却炉部
材の表面に溶射により形成する。混合物(I)はニッケ
ルとクロムのみから成るか、又は両者合;1に対し3%
以下の他元素を含んで成る。混合物(1)のクロム/ニ
ッケル比が20/80〜80/20とされるのは、母料
との接着の加熱→ノイクルに対する耐久性がよいからで
ある。ブラスマ溶側て多く用いられるのは20/80で
あるが耐食性をより高めるには上記範囲内で例えば50
150などの様にクロムを多くするとよい。また他元素
は両者の混合物の特性を生かして更に強度、耐酸性、耐
酸化性等の向上を図る為に加えられ、二AI、タンタル
、モリブデン、タングステン、アルミ、ケイ素等が代表
的である。
Combustion furnace components are usually made of various Ti4 materials, iron-based alloys,
Since it is made of nickel-chromium alloys, etc., in this invention, the first layer of the nickel-chromium 11-based mixture, which has a sufficiently strong affinity for these materials and has good heat resistance, is formed on the surface of the incinerator member by thermal spraying. . Mixture (I) consists of nickel and chromium alone or both; 3% to 1
Contains the following other elements. The reason why the chromium/nickel ratio of the mixture (1) is set to 20/80 to 80/20 is that the adhesion with the base material has good durability against heating → noise. 20/80 is often used on the blasting side, but to further improve corrosion resistance, for example 50/50 is used within the above range.
It is better to increase the amount of chromium, such as 150. Further, other elements are added to take advantage of the characteristics of the mixture of the two to further improve strength, acid resistance, oxidation resistance, etc., and typical examples include di-AI, tantalum, molybdenum, tungsten, aluminum, and silicon.

混合物(1〉の第1層では1−IC)に曝される燃焼炉
部材としては耐食性が充分でないので、この究明では第
゛1層に対して充分親和性がありfi′4食性のよりよ
い第2層を第1層の上に形成する。
Since the first layer of the mixture (1) does not have sufficient corrosion resistance as a combustion furnace member exposed to 1-IC, this study found that the first layer of the mixture (1) has sufficient affinity for the first layer and has better fi'4 corrosion resistance. A second layer is formed over the first layer.

1つの第2層は重量比で混合物(I>30〜70%及び
アルカリ金属及びアルカリ土類金属の炭酸塩層くとも1
種(以下「炭酸塩」と総称りる。)又はセラミックス7
0〜30%から形成される。第2層中の混合物(I)は
30%以上でないと第2層の第1層に対する親和性が不
足しC第1層第2層間の剥離が生じやすくまた安定な第
2層の形成が困難なことも多い。一方炭酸塩又はセラミ
ックスが3096 JJ上でないと第2層の耐良性が一
般に不充分である。
One second layer contains a mixture by weight (I>30-70% and at least one carbonate layer of alkali metals and alkaline earth metals).
Seeds (hereinafter collectively referred to as "carbonates") or ceramics 7
Formed from 0 to 30%. If the mixture (I) in the second layer is not 30% or more, the affinity of the second layer to the first layer will be insufficient, and peeling between the first layer and the second layer will easily occur, and it will be difficult to form a stable second layer. There are many things. On the other hand, unless the carbonate or ceramic is above 3096 JJ, the durability of the second layer is generally insufficient.

本発明では上述のとおり、第゛1層の成分と耐食性のよ
りよい材料から成る第2層を第1N上に被覆さけること
から出発したが、本発明者の究明によれば、特に蒸気発
生型都市こみ焼却炉等の様に高々600℃程度までの耐
熱性があればよい場合には、驚くべきことに、上記とは
異る第2層としてアルミ太に代表されるセラミックス又
はこれに30%未満の第1層成分を含む実質的にセラミ
ックスからなる層を用いても剥離等の問題は生じず、上
述の2者との間に性能上の大差がないことが判明した。
As mentioned above, the present invention started from coating the first layer with the second layer made of the components of the first layer and a material with better corrosion resistance. Surprisingly, in cases where heat resistance up to about 600°C is required, such as in municipal waste incinerators, it is surprisingly possible to use ceramics such as thick aluminum or 30% of this as a second layer different from the above. It was found that problems such as peeling did not occur even when using a layer substantially made of ceramics containing a first layer component of less than 50%, and there was no significant difference in performance between the above-mentioned two materials.

但し全体又は部か的に例えば800〜1000℃の様な
にり高温での耐熱性を考慮すると、第2層が第1層成分
と耐食性vJ利との混合物からなる方が剥離等の生ずる
a5イれが少ない。また耐食性材料として最上層にセラ
ミックスを利用した場合、かかるより高温での耐食性を
満足づるには、第1層成分とセラミックスからなる第2
層の上にセラミックスから成る第3層を形成するとよい
However, considering the heat resistance of the whole or part at high temperatures such as 800 to 1000°C, peeling etc. may occur if the second layer is made of a mixture of the first layer components and corrosion resistance. There are few errors. Furthermore, when ceramics are used as the top layer as a corrosion-resistant material, in order to satisfy the corrosion resistance at higher temperatures, it is necessary to
Preferably, a third layer made of ceramic is formed on top of the layer.

この場合第2層中のセラミックスが30%以上でないと
第2唐と第3層の親和性が不足し両層間で熱脂肪により
剥離の生ずるおそれがある。
In this case, if the ceramic content in the second layer is not 30% or more, the affinity between the second layer and the third layer will be insufficient, and there is a risk of peeling between the two layers due to hot fat.

また両層間の良好な接合の為に、第2層と第3層に用い
られるセラミックスは実質的に同じであるのがよい。
Further, for good bonding between both layers, it is preferable that the ceramics used for the second layer and the third layer are substantially the same.

本発明で利用づる?8射は必要に応じ各種溶射方法が利
用できるか、とりねりブラスマ溶射が代表的であって耐
食上有益な緻密な被覆層の形成に石川である。なお。ブ
ラスマ溶射等で利用される不活性カスに水素を混入して
酸化被膜の還元を伴わせることもできる。
Can it be used in this invention? For 8-spraying, various thermal spraying methods can be used as required, and Torinari blaster thermal spraying is a typical method, and is suitable for forming a dense coating layer that is useful for corrosion resistance. In addition. It is also possible to reduce the oxide film by mixing hydrogen into the inert scum used in plasma spraying or the like.

この発明で利用でさるヒラミックスはケイ素、アルミニ
ウム、マグネシウム、カルシウム、ジルコニウム等の酸
化物、ケイ素、ホウ素、チタン等の炭化物、ケイ素、ホ
ウ素、アルミニウム等の窒化物等がありその少くとも1
種が用いられるが、酸化アルミニ「クムが極めて代表的
である。
The Hiramixes used in this invention include oxides of silicon, aluminum, magnesium, calcium, zirconium, etc., carbides of silicon, boron, titanium, etc., nitrides of silicon, boron, aluminum, etc., and at least one of them.
Seeds are used, with aluminum oxide 'cum' being very typical.

この発明で利用される各層は溶射の際に混合され充分一
様な層どなればよいが、勿論可能なものは所望により溶
射の前に合金等の均一な混合物としてお【ノばより一様
な層が臂られやすく一般に好ましい。
The layers used in this invention may be mixed during thermal spraying to form a sufficiently uniform layer, but it is of course possible to form a uniform mixture of alloys or the like before thermal spraying if desired. Generally, it is preferable because it is easy to coat layers.

本発明ではP4材と第2層の間に、また第3層がある場
合には第1豹と第3層の間に夫々中間的な組成の第1層
や第2層が介在するが、母料及び各層と中間的な組成の
層の間に更に中間的な盾を介在さUてもよく、このよう
にJれば一般に熱ザイクルに対する耐久性の向上が期待
できる。
In the present invention, a first layer and a second layer having an intermediate composition are interposed between the P4 material and the second layer, and when there is a third layer, between the first layer and the third layer, respectively. An intermediate shield may be interposed between the base material and each layer and a layer having an intermediate composition, and if this is done, it is generally expected that the durability against thermal cycles will be improved.

この究明の方法によれば例えば炉の運転開始どともにH
CJ iJ3よび灰分などが高温の金属表面に接近して
も、予め存在している充分Φの炭酸塩層の炭酸塩がHC
,iと反応して中性塩灰となって金属表面での高温腐食
を防止づることにより、あるいは予め金属表面に存在す
る実質的なセラミックスまたはセラミックスとクロム、
ニッケル等との混合物からなる被覆層が高温での酸化、
高温でのHCJによる腐食あるいは14CJとアルカリ
金N塩、重金属塩等の灰が共存した場合の厳しい高温腐
食に対して非常に優れた耐食性を発揮することにより母
材地金表面に至る高温腐食が発生しない。
According to this investigation method, for example, H
Even if CJ iJ3 and ash approach the high-temperature metal surface, the carbonate in the pre-existing carbonate layer of sufficient Φ will not react with HC.
, i to form neutral salt ash to prevent high-temperature corrosion on the metal surface, or substantially ceramics or ceramics and chromium already present on the metal surface.
The coating layer made of a mixture with nickel etc. is oxidized at high temperatures,
It exhibits extremely excellent corrosion resistance against corrosion caused by HCJ at high temperatures or severe high-temperature corrosion when 14CJ and ashes of alkali gold N salts, heavy metal salts, etc. coexist, thereby preventing high-temperature corrosion reaching the base metal surface. Does not occur.

上記アルカリ金属及びアルカリ土類金属の炭酸塩として
は、Na、K、Ca、あルイはIVHI等の炭酸塩の少
くとも1種が使用されるか、通畠1!/j食性能J5よ
び費用の観点から炭酸、?1〜リウl\が最適である。
As the carbonates of the alkali metals and alkaline earth metals, at least one carbonate such as IVHI is used for Na, K, Ca, and Al, or Torihata 1! /J Carbonic acid from the viewpoint of food performance J5 and cost? 1~RIU\\ is optimal.

上記では本発明の適用分野を代表的に燃焼炉により説明
したが勿論本発明はHCJを含む高温ガスに暉される各
種部材にも適用可能である。
In the above, the field of application of the present invention was typically explained using a combustion furnace, but it goes without saying that the present invention is also applicable to various members that are exposed to high-temperature gas including HCJ.

以下実施例にまり本発明を明らかにするが本発明はこれ
に限定されない。
The present invention will be clarified with reference to Examples below, but the present invention is not limited thereto.

実施例 りalx2.2%、モリブデン1%、0.15%以下の
炭素くいずれも重量%) J5よび残部が鉄よりなる合
金鋼(SCMV4)の圧延板より縦30n1m、横50
 mm、Wさ4mmの板状試験ハを多数切り出し、各試
験材お1に各種の方法による被覆を施した後耐食試験を
行った。
Example: Alx 2.2%, Molybdenum 1%, 0.15% or less carbon (weight%)
A large number of test plates with a width of 4 mm and a width of 4 mm were cut out, and each test material was coated with various methods and then subjected to a corrosion resistance test.

試験+J tlの被覆方法は市販のプラズマ溶DjJ機
を利用し噴射ガスとしてアルゴン60%、ヘリウム4O
%、(いずれも体積%〉の混合物を用い直流電圧40ホ
ル1へ、放電電流800アンペアの条件で使用し、試験
材の3 Qmmx 5 Qmmの面積をもつ一面に被覆
した。この被覆流の試験材料を試験片として使用し耐食
試験を行った。耐食試験は管状電気炉を用い被覆層か形
成された試験片表面に実際の塵芥焼Ml炉から採取した
灰を均一に東し管内に水蒸気30%、00210%、l
−I CJ 100011111m 、 SO2201
11)m  (イfhも休M%)残部空気の組成℃ある
高温雰囲気ガスが流れる管状電気炉の中に当該試験片を
置き試験片表面湿度を600℃に保持して行った。試験
片の試験される30X5Qmmの面積をもつ表面以外の
5つの面はアルミナの微粉a3よびH&維状状断熱剤よ
り腐食されないように保護した。なお、塵芥償却炉から
採取し試験片表面上にのせられた灰の組成はアルミニウ
ム7.1%、ナ1−リウム3.8%、カリウム2゜8%
、カリシラム14.5%、マグネシウム1゜5%、鉄6
.1%、ケイ素15.2%、塩素2.1%、全イオウ1
.1%、含水率0.1%(いずれも車量%)であり残部
は主(こ上記元素と結合しくいる酸素Cある。
The test + J tl coating method uses a commercially available plasma melting DJJ machine and uses 60% argon and helium 4O as the injection gas.
%, (all % by volume) was used under the conditions of a DC voltage of 40 holes and a discharge current of 800 amperes, and was coated on one surface of the test material with an area of 3 Q mm x 5 Q mm. This coating flow test A corrosion resistance test was conducted using the material as a test piece.For the corrosion resistance test, ash collected from an actual garbage incineration furnace was uniformly spread over the surface of the test piece on which a coating layer had been formed using a tubular electric furnace, and water vapor was heated at 30°C inside the pipe. %, 00210%, l
-I CJ 100011111m, SO2201
11)m (Ifh is also M%) Composition of remaining air The test piece was placed in a tubular electric furnace through which a high-temperature atmospheric gas flows, and the surface humidity of the test piece was maintained at 600°C. Five sides of the specimen other than the surface with an area of 30 x 5 Q mm to be tested were protected from corrosion by alumina fine powder A3 and H&fibular insulation. The composition of the ash collected from the garbage amortization furnace and placed on the surface of the test piece was 7.1% aluminum, 3.8% sodium, and 2.8% potassium.
, Calicilam 14.5%, Magnesium 1°5%, Iron 6
.. 1%, silicon 15.2%, chlorine 2.1%, total sulfur 1
.. 1%, water content 0.1% (all % by volume), and the remainder is mainly oxygen (C, which bonds with the above elements).

耐食試験は以1−に述べた条例で最良10目間まC7J
い比較のために被覆を流さないSCfl/l V 4も
試験に供した。試験片は耐食試験実施後管状電気炉内に
N2カスを完全にパージしてから電気炉より取り出し約
5 [1;>間室温/[5!冷後ノラツシングにより試
験片表面の灰を除去し更にインヒじターとして0.5%
のヘキサメチレンテトラミンを加えた塩酸水溶液(8重
量%l−1(1)に窄温−C30分間浸泊し試験片の腐
食生成物を取り除くいわゆるスクール除去処理を行い水
洗、乾燥後重量を測定し、耐食試験実施前に予め測定し
r d3いた試験片手量と比較し、いわゆる重り減を求
めた。第1図はこの耐食試験の結果を示1図であって横
軸が試験日数、縦軸が試験片の重量減(II1g/有効
表面積15Cイ)Cある。
Corrosion resistance test is best 10 times C7J according to the regulations mentioned in 1- below.
For comparison, SCfl/l V 4 without coating was also tested. After conducting the corrosion resistance test, the test piece was taken out from the electric furnace after completely purging the N2 scum in the tubular electric furnace and kept at room temperature/[5! After cooling, the ash on the surface of the test piece was removed by nolacing, and 0.5% was added as an inhibitor.
The test piece was immersed in a hydrochloric acid aqueous solution (8 wt% l-1 (1)) containing hexamethylenetetramine at a reduced temperature for 30 minutes to remove corrosion products from the test piece, followed by a so-called school removal process, washed with water, dried, and then weighed. The so-called weight loss was determined by comparing the test hand weight measured in advance and r d3 before conducting the corrosion resistance test.Figure 1 shows the results of this corrosion resistance test, where the horizontal axis is the number of test days and the vertical axis is There is a weight loss of the test piece (II 1 g/effective surface area 15 C).

また図中の線の番号は、試験片番号で同時に被覆層の内
容差を示し、各番号ごとに以下に記す構成の被覆層を使
用している。
In addition, the line numbers in the figure are the test piece numbers and also indicate the differences in the content of the coating layer, and a coating layer with the structure described below is used for each number.

試験片1:被覆層なしのSCMV4鋼月試験片2 : 
SCMV4鋼材の上に第1層クロム−ニッケル合金(2
0%Cr −80%Ni)第2層重2C0350%とク
ロ ム−ニッケル合金(20%Cr −80%N1)50%
の混合病をプラズマ溶 射により各々150μの厚さて被覆し lこ 。
Test piece 1: SCMV4 steel without coating layer Test piece 2:
The first layer of chromium-nickel alloy (2
0%Cr -80%Ni) second layer weight 2C0350% and chromium-nickel alloy (20%Cr -80%N1) 50%
The mixed disease was coated with a thickness of 150 μm each by plasma spraying.

試験片3:SCMV4鋼材の上に、試験材2どJiil
じ第1層を、第2層にアルミナ50%、りnムーニッケ
ル合金(20%0r− 80%N1)50%の混合層をプラズ マ)8射により各々100μの厚さで被覆 し lこ 
Test piece 3: Test material 2 on top of SCMV4 steel
The second layer was coated with a mixed layer of 50% alumina and 50% nickel alloy (20%0R-80%N1) to a thickness of 100μ each using plasma.
.

試験片4:SCMV4鋼材の上に、第1層、第2層は試
験片3と同じで、第3層にアル ミナをプラズマ溶射により50μの斤 さで被覆した。
Test piece 4: The first and second layers were the same as those for test piece 3, and the third layer was coated with alumina to a thickness of 50 μm by plasma spraying on the SCMV4 steel material.

試験片5:SCMV4鋼月の上に、試験J12と同じ第
1層を第2層にアルミナをプラス マ溶射により50μの厚さて被覆した。
Test piece 5: SCMV4 steel was coated with the same first layer as in test J12 and second layer of alumina to a thickness of 50 μm by plasma spraying.

試験I−1’ 6 : S CM V 4鋼材の上に、
第1層にクロム−ニッケル合金(50%cr−b。
Test I-1' 6: On top of S CM V 4 steel material,
The first layer is a chromium-nickel alloy (50% cr-b).

%N1)、第2層にアルミナ30%、 り「1ム一ニツケル台金く50%Cr −50%Nr>
7C%の混合物を各々1 00μの厚さで被覆した。
%N1), 30% alumina in the second layer, 50%Cr -50%Nr>
Each 7C% mixture was coated to a thickness of 100μ.

試験片7 : SCMV/l8i4祠の上に、第1層に
クロム−ニッケル合金(85%Cr−15 %N1 )、第2層にアルミナ30%、クロ11−ニッ
ケル合金(50%Cr −50%Ni )70%の混合
物をプラス7溶剣により各々100μの厚さで被 覆 し Iこ 。
Test piece 7: On top of the SCMV/l8i4 shrine, the first layer is a chromium-nickel alloy (85% Cr-15% N1), the second layer is alumina 30%, and a chromium-nickel alloy (50% Cr-50%). A mixture of 70% Ni) was coated with a plus 7 melting knife to a thickness of 100μ each.

試験片8 : SCMV4uA材の上に第1層にクロム
−ケイ素−ニッケル合金<20%Qr −10%5i−70%N1)、第2層 にアルミナ30%、クロム−ニッケル 合金(50%Cr−50%N1)70 %の混合物をプラ ズマ溶射により各 々100μの厚さで被覆した。
Test piece 8: Chromium-silicon-nickel alloy <20%Qr-10%5i-70%N1) on the SCMV4uA material in the first layer, 30% alumina, chromium-nickel alloy (50%Cr-) in the second layer A mixture of 50%N1) and 70% was coated by plasma spraying to a thickness of 100μ each.

第1図の線か示すように防食のための被覆を施していな
い試験Hでは重量減ずなりら腐食(iはI)間の経過と
ともに増大しこの線がこのままの状態で11F移覆ると
、最初の1年間の腐食速度は1.5〕l′I1m以」二
となる。
As shown by the line in Figure 1, in Test H without anti-corrosion coating, the weight did not decrease but increased as the corrosion progressed (i is I), and if this line remained as it was and moved to 11F, The corrosion rate during the first year is 1.5 l'I1m or more.

これにひきかえ、本発明を適用し防食の7jめに有効な
被覆層を形成した試験片線2.3,4,5゜6Cは重の
減少がほとんどなく測定回#、限界値以下である。言い
かえれば腐食がほどんどなく本発明の効果を立証しCい
る。また、線7が示づ試験片7ては第1層のクロム含有
料が本発明の範囲を越えで大きくなると被覆層の剥離が
生じ、同様に試験片8のように第1層にクロム、ニッケ
ル以外のケイ素の如き第3元素が10%もの多用入ると
被覆層の剥離を生し結果的には防食効果を示さなくなる
In contrast, the test piece wires 2.3, 4, and 5°6C, to which the present invention was applied and a coating layer effective for corrosion prevention was formed, showed almost no weight loss and were below the limit value for the number of measurements. In other words, there is almost no corrosion, proving the effectiveness of the present invention. In addition, in test piece 7 shown by line 7, if the chromium content in the first layer exceeds the range of the present invention, the coating layer will peel off. If a third element other than nickel, such as silicon, is used in an amount as high as 10%, the coating layer will peel off, resulting in no anticorrosion effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の結果を示すグラフである。 特許出願人  東洋エンジニアリング株式会社代理人 
       人   洲   明   峰書入 Q 
 @ &’j  (a) 手  続  補  正  書 昭和57年12月28日 1止′[庁長宮殿 1、事f’lの表示  昭和57年12月10日提出の
特訂願3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区霞が関3丁目2掛5号氏名   
 東洋エンジニアリング株式会社代表者  櫻 11 
 正 雄 4、代理人 住所 千葉県船橋市東船橋6丁目12fftlO号5、
補正命令の日イ4  自発につきありません6、補正に
より増加する発明の数  なし7、補正の対象 全  文  訂  正  明  m  書1、発明の名
称  防食方法 2、特許請求の範囲 1 )HC,、fを含有する高温ガスに曝される金属表
面上に、クロムとニッケルをクロム/ニッケル重用比2
/8〜8/2て含む混合物(1)の第1層を、その」−
に第1Fjと異る組成の第2層を夫々溶用により形成j
ることを特徴とする防食方法。 2)第2層か、重量比で混合物(I)30%〜70%と
アルカリ性物質の少くとも1種70%〜30%からなる
特許請求の範囲第1項記載の方法。 3)第2層が、重量比で混合物(I)30〜70%とセ
ラミックス70〜30%からなる特許請求の範囲第1項
記載の方法。 4)第2層が実質的にセラミックスからなる特許請求の
範囲第1項記載の方法。 5)第2層が、重量比で実質的なセラミックス70〜3
0%とアルカリ性物質30〜70%からなる特許請求の
範囲第1項記載の方法。 6)第2層の1−にセラミックスからなる第3層が形成
される特許請求の範囲第3項記載の方法。 7)混合物(1)がクロム、ニッケルの仙に3重用%以
下の他元素を含む特許請求の範囲第1〜5項記載の方法
。 8)溶銅がブラスマ溶割である特許請求の範囲第1〜6
項記載の方法。 3、発明の詳細な説明 この発明は1−ICノを含有する、燃焼ガス等の高温ガ
スにざらされる金属の腐食を防止づるための方法に関す
るものである。 近年、家庭や工業設備からの塩化物を含む廃棄物、例え
ば、塩ビなどのプラスチックを含むゴミ類はその川が飛
躍的に増大しその処理法が問題となっている。現在、一
般的な処理法としては埋立て法と焼却法があるが前者に
関しては土壌汚染等の公害問題もあって埋立用地の枯渇
により焼却法の比率が増加している。この廃棄物のω的
な増大とともに、廃棄物に含まれるプラスデック但の増
加から廃棄物のもつエネルギーも高くなりその有効的な
回収が切火な問題となっている。このような観点から、
塩化物を含む物質、例えば上記廃棄物などが燃焼させら
れ、発生する高温燃焼ガスの熱量を有効に利用する装置
が近年種々研究開発され一部は既に実用化されている。 これらの装置においては高温燃焼ガス中にHCJ、CJ
2 、S。 Xなどの腐食性ガスが存在するとともに未燃焼物質およ
び燃焼の結果生じるアルカリ金属塩、重金属塩その他の
固体物質などからなる灰が必然的に共存する。このよう
な高温燃焼ガスにさらされる金属は、その表面に灰が付
着しかつ金属のさらされる雰囲気中にHCJが共存する
とその腐食(高温腐食)が非常に激しくなり、又温度の
上昇とどもにそのM4食速度が大きくなることが知られ
ている。即ち、金属の表面温度が300℃を越えると高
温腐食が発生し、400℃を越えると腐食は特に激しく
なり市販されている実用金属材料の中ではごく一部の特
殊高級金属材料以外は、この高温腐食に耐えうるちのは
ない。 従来、この種の高温腐食から燃焼炉の金属材料に関しC
はこれを守るlこめに次の二つの方法がとられてぎた。 一つは、燃焼中に発生ずる酸性の腐食1(1カスを炭酸
ソータ等のアルカリ性物質と反応さUて中和する、ある
いは塩ビなどのl−I CJを発生ずる廃棄物の燃焼に
際してアルカリ性物質を廃棄物と)(に炉内に供給づる
、いわゆる中和剤を燃焼雰囲気中に使う方法がある。し
かし、これらの方法はいずれも主として燃焼ガス中の腐
食性カスの処理には、有効であるが、金属表面に灰が何
者しかつ雰囲気カス中にl−I Cjが共存する時に発
生りる高温腐食に対しての防食方法としCは不十分であ
った。即ち、炉内構造と高温腐食か発生する金属表面と
の幾何学的関係、燃焼ガスの流動状態おJ:び腐食性ガ
スと中和剤との混合接触状態なとの諸要因により、高温
腐食を発生する金属表面に炭酸塩等が防食に充分な伊に
達しない部分か生しるためである。 もう一つの方法としては、燃焼炉内の金属拐料の温度を
低くする方法である。即ち、この高温腐食は金属表面温
度が400℃を越えるとその進行か激しくなるので、金
属表面温度を400℃以下に保つ。従って、廃棄物の燃
焼熱をボイラー、廃熱ボイラーなどでスチームとして回
収ブる場合にはボイラーの伝P!筒筒型温度を400’
C以−Fに紐14けねばならず、そのII!i果光生ス
発生ムは設h1値で20kg/am、300℃以下、実
用装置の運転条イ′1て16〜20に9/cmG、20
0℃稈度に4つCしよう。このJ、うな中圧スチームで
は、例えば最も一般的なものとしてエネルギーを電気に
づる場合、斤電効牢は最新の重油焚″き火力発電に比べ
かなり低く発電」ス1へも高くなる。 この発明は上記の高温腐食を防き、その1つの結果とじ
て高圧スチームを経済的に17ることを可能とする方法
を提供づるものである。 この発明では、必要な耐熱性に応じて例えは炭素鋼から
耐熱合金よ−Cの広範な各種金属材籾により作られた焼
7jl炉部材等の、l−I CUガスに曝される金属表
面にクロムとニッケルをクロム/ニッケル重量比2/8
〜8/2で含む混合物< 1. )の第1層を溶射によ
りまず被覆し次いで第1層とは異る組成の第2層をこの
上に溶射により被覆Jる。 燃焼炉部材は必要に応じ通常各種鋼材、鉄基合金、ニッ
ケルークロム系合金等にJ、り作られるの(、この発明
ではこれらの44籾に充分親和性の強いカリM熱性良り
rな−1−記ニッヶルーク
FIG. 1 is a graph showing the results of Examples. Patent applicant Toyo Engineering Co., Ltd. Agent
Hitozu Akiramine Shoiri Q
@&'j (a) Procedures Amendment Written December 28, 1980, 1st stop' Relationship with the case of the person who filed the patent application Address of the patent applicant: 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo Name
Toyo Engineering Co., Ltd. Representative Sakura 11
Masao 4, Agent address: 6-12fftlO-5, Higashifunabashi, Funabashi City, Chiba Prefecture.
Date of amendment order 4 Not voluntary 6, Number of inventions increased by amendment None 7, Full text subject to amendment Correction M Book 1, Title of invention Corrosion prevention method 2, Claims 1) HC,, f Chromium and nickel are added to metal surfaces exposed to high-temperature gases containing
The first layer of the mixture (1) containing from /8 to 8/2, the "-
A second layer having a composition different from that of the first Fj is formed by dissolving the two layers respectively.
A corrosion prevention method characterized by: 2) The method according to claim 1, wherein the second layer comprises, by weight, 30% to 70% of mixture (I) and 70% to 30% of at least one alkaline substance. 3) The method according to claim 1, wherein the second layer consists of 30-70% mixture (I) and 70-30% ceramics by weight. 4) The method according to claim 1, wherein the second layer consists essentially of ceramics. 5) The second layer is substantially ceramic by weight ratio of 70 to 3
The method according to claim 1, comprising 0% and 30-70% of alkaline substances. 6) The method according to claim 3, wherein a third layer made of ceramic is formed on the second layer 1-. 7) The method according to any one of claims 1 to 5, wherein the mixture (1) contains less than 3% of other elements than chromium and nickel. 8) Claims 1 to 6 in which the molten copper is brass melted.
The method described in section. 3. Detailed Description of the Invention The present invention relates to a method for preventing corrosion of metals containing 1-IC and exposed to high-temperature gases such as combustion gases. In recent years, the amount of waste containing chloride from households and industrial facilities, such as garbage containing plastics such as vinyl chloride, has increased dramatically, and how to dispose of it has become a problem. Currently, there are two common disposal methods: landfilling and incineration, but the former is increasing in proportion due to the depletion of land for landfills due to pollution problems such as soil contamination. Along with this exponential increase in waste, the amount of plus deck contained in the waste also increases, and the energy contained in the waste also increases, making its effective recovery an urgent issue. From this perspective,
In recent years, various research and development have been conducted on devices that effectively utilize the calorific value of high-temperature combustion gas generated when chloride-containing substances, such as the above-mentioned wastes, are combusted, and some of them have already been put into practical use. In these devices, HCJ and CJ are contained in high temperature combustion gas.
2, S. In addition to the presence of corrosive gases such as Metals exposed to such high-temperature combustion gas will undergo extremely severe corrosion (high-temperature corrosion) if ash adheres to the surface and HCJ coexists in the atmosphere to which the metal is exposed, and as the temperature rises. It is known that the M4 eating rate increases. In other words, high-temperature corrosion occurs when the surface temperature of metal exceeds 300°C, and corrosion becomes particularly severe when the surface temperature exceeds 400°C. There is no material that can withstand high temperature corrosion. Conventionally, C
The following two methods have been used to protect this. One is the acidic corrosion that occurs during combustion (the scum is neutralized by reacting with an alkaline substance such as a carbonate sorter, or the alkaline substance is used when burning waste such as PVC that generates l-I CJ). There is a method of using a so-called neutralizing agent in the combustion atmosphere, which is supplied into the furnace to remove waste and However, C was insufficient as a corrosion prevention method for high-temperature corrosion that occurs when there is some ash on the metal surface and l-I Cj coexists in the atmosphere. Due to various factors such as the geometric relationship with the metal surface where corrosion occurs, the flow state of the combustion gas, and the mixed contact state of the corrosive gas and the neutralizing agent, carbon dioxide may be applied to the metal surface where high temperature corrosion occurs. This is because salt, etc., forms in areas where the corrosion resistance does not reach a sufficient temperature.Another method is to lower the temperature of the metal filler in the combustion furnace.In other words, this high-temperature corrosion If the surface temperature exceeds 400 degrees Celsius, the progress will become more intense, so keep the metal surface temperature below 400 degrees Celsius.Therefore, if the combustion heat of waste is recovered as steam in a boiler, waste heat boiler, etc. Den P!Cylinder type temperature 400'
There must be 14 strings from C to F, and II! i The photogenic gas generation rate is 20 kg/am at the design h1 value, 300°C or less, and the operating condition of the practical equipment is 16-209/cmG, 20
Let's heat 4C to 0℃ culm degree. With this medium-pressure steam, for example, when the energy is converted into electricity, which is the most common method, the electric power generation rate is considerably lower than that of the latest heavy oil-fired thermal power generation, and the power generation rate is also high. The present invention provides a method for preventing the above-mentioned high-temperature corrosion and, as one result, making it possible to use high-pressure steam economically. In this invention, metal surfaces exposed to l-I CU gas, such as baked 7JL furnace members made from a wide variety of metal materials, from carbon steel to heat-resistant alloys, depending on the required heat resistance. chromium and nickel at a chromium/nickel weight ratio of 2/8
~Mixture containing 8/2<1. ) is first coated by thermal spraying, and then a second layer having a composition different from the first layer is coated thereon by thermal spraying. Combustion furnace members are usually made of various steel materials, iron-based alloys, nickel-chromium alloys, etc., as necessary (in this invention, we use potassium chloride, which has a sufficient affinity for rice, and has good thermal properties). -1- Nikka Luke

【コム余沢合物の第1層を焼
7J1炉部材の表面にFIJにより形成づる。fbj合
物(1)はニッケルとり[コムのみから成るか、又は両
者合旧こ対し3%以下の他元素を含んC゛成る。混合物
(1)のクロム/ニッケル仕が20/80〜80/20
とされるのは、母材との接着の加熱リイクルに対する耐
久性がよいがら(゛ある。プラズマ溶射ひ多く用いられ
るのは2゜/80であるが混合物(I)を含む場合の第
2層等の耐食性をJこり高めるには上記範囲内で例えば
50 / 50などの様にクロムを多くするとよい。 また他元素は両者の混合物の特性を生がして更に強度、
耐酸性、耐n口化性等の向上を図る為に加えられ、二A
ブ、タンタル、モリブデン、タングステン、アルミ、ケ
イ素等が代表的である。 混合物(1)の第1層ではl−I CJに曝される燃焼
炉部材としては耐食性が充分でないので、この発明では
第1層に対して充分親和性があり耐食性のよりよい第2
層を第1層の上に形成する。 1つの第2層は重量比で混合物(I)30〜70%、及
びアルカリ性物質の少くども1種又はセラミックス70
〜30%から形成される。第2層中の混合物(I>は3
0%以上でないと第2唐の第1層に対づる親和性が不足
して第1層第2層間の剥離が生じやJくまた安定な第2
層の形成が困Paなことも多い。この傾向はとくにアル
カリ性物質(顕著である。一方アルカリ性物質又はセラ
ミックスが30%以上でないと第2層の#4食性が一般
に不充分である。 本発明では上述のとおり、第1層の成分と耐食性のより
よいU flから成る第2層を第1層上に被覆さけるこ
とから出発したが、本発明者の究明によれば、特に蒸気
発生型都市こみ焼却炉等の様に高々600℃程麿までの
耐熱性があればよい場合には、驚くべきことに、上記と
は異る第2層としてアルミナに代表されるセラミックス
又はこれに30%未満の第1層成分を含む実質的にセラ
ミックスからなる層を用いても剥11!1等の問題は生
じず、J: iaiの2者との間に性能上の大差がない
こと、またさらに、実質的なセラミックスとアルカリ性
物質どの重早比7:3〜3ニア好ましくは7:3〜5:
5の混合物を第2!Fjとしても同様であることが判明
した。但し全1本又は部分的に例えば800−= 10
00℃の様なより高温での耐熱性を考慮すると、第2層
が第1層成分と耐食性材料との混合物からなる方が剥#
f等の生ずるおそれが少ない。 また耐食性材わ1として最上層にセラミックスを利用し
た場合、かかるより高温でのm食性を満足りるには、第
1層成分とセラミックスからなる第2層の上にセラミッ
クスから成る第3層を形成するとよい。この場合第2層
中のセラミックスが30%以」−でないと第2層と第3
層の親和性が不足し両層間で熱Iiす歴により剥離の生
ずるおそれがある。 また両層間の良好な接合の為に、第2層と第3層に用い
られるセラミックスは実質的に同じであるのがJこい。 本発明で利用する溶射は必要に応じ各種溶用方法が利用
できるが、とりわけプラズマ溶射が代表的であって耐食
上有益な緻密な被覆層の形成に有用である。なお。プラ
ズマ溶射等で利用される不活竹刀スに水素を混入して酸
化被膜の還元を伴わせることもできる。 このlU明で利用できるセラミックスはケイ素、アルミ
ニウム、マグネシウム、カルシウム、ジルコニウム等の
酸化物、ケイ素、ホウ素、チタン秀の炭化物、ケイ素、
ホウ素、アルミニウム等の窒化物等がありその少くとも
1種が用いられるが、酸化アルミニウムが極めて代表的
である。 この発明で利用される各層は溶用の際に混合され充分一
様な層となればよいが、勿論可能なものは所望により溶
射の前に合金等の均一な混合物としてお【フばより一様
な層が得られつすく一般tこ好ましい。 本発明では母材と第2層の間に、また第3Fがある場合
には第1層と第3層の間に夫々中間的な組成の第1層や
第2航が介在するが、母材及び各層と中1.CI的な組
成の層の11!υに更に中間的な層を介在させてもよく
、このようにすれば一般に熱サイクルに対する耐久性の
向上が期待C2!る。 この発明の方法によれば例えば炉の運転開始とどもにt
l CJ d5よび灰分などが高)最の金属表面に1g
近しでも、予め存在している充分mのアルカリスリ、物
質を含む層のアルカリ性物質がIICノと反応しC中性
塩灰どなって金属表面での高温腐食を防止することによ
り、あるいは予め金属表面に存在する実質的なセラミッ
クス、またはセラミックスとクロム、ニッケル等どの混
合物からなる被覆層が高温Cのll々化、高温Cの)−
I C、/による腐食あるいはLI CJどアル7Jり
金属塩、重金属塩等の灰が共存した場合の厳しい高温腐
食に対して非常に優れた耐食性を発揮することにより、
また実質的なセラミックスとアルカリ性物質との混合物
り目らなる被覆層の場合にはこの層が中性塩灰の形成と
耐食性の発揮の双方の効果を発現することにより心材地
金表面に至る高温腐食が発生し’(Tい。 上記アルカリ性物質は」1記の効果を充分発揮でさるも
のは全て用いることができその少くとも一種を用いるが
、なかでもアルカリ金属及びアルカリ土類金属の炭酸塩
やケイ酸アルカリが代表的であり、アルカリ金属及びア
ルカリ土類金属の炭酸塩としては、Na 、に、Ca 
、あるいはMg等の炭酸塩の少くとfl>11f!が使
用され通常防食性能および費用の観点から炭酸す]ヘリ
ウムが最適であり、またケイ酸アルカリはケイ酸プ用−
リウムまた(まカリウムないしリヂウムが代表的である
。る。 上記では本発明の適用分野を代表的に燃焼炉により説明
したが勿論本発明はl−I CJを含む高温カスに1屋
される各種部材等にも適用可能である。 以下実施例により本発明を明らかにす−るが本発明はこ
れに限定さ4″tない。 実施例 り[jム2.2%、モリブデン1%、0.15%以下の
炭素くいずれも重墾%)および残部が鉄にりなる合金鋼
(SCMV4>の圧延板より縦30mm、横50mm、
厚さ4mmの板状試験片を多数切り出し、各試験材料に
各種の方法による被覆を施した後耐食試験を行った。 試験材料の被覆方法は市販のゾラスマ溶射機を利用し噴
射カスとしCアルゴン60%、ヘリウム/10%、(い
ずれも体積%)の混合物を用い直流電圧/IOポルl−
、放電電流800アンペアの条件で使用し、試験材の3
0m+nx50Hの面積をもつ一面に被覆した。この被
留済の試験材料を試験片として使用し耐食試験を11つ
だ。耐食試験は管状電気炉を用い被覆層が形成された試
験片表面に実際の塵芥焼II炉1)+ lう採取した灰
を均一(ごのせ、管内に水蒸気330%、CO210%
、lIcJloooppm 、 502201111m
  (いずれも体積%)残部空気の組成C′ある高温雰
囲気ガスが流れる管状電気炉の中に当該試験ハを置き試
験片表面温度を600 ’Cに保持して行った。試験片
の試験される30x50mmの面積をbつ表面以外の5
つの而はアルミノの微T5) 13よび繊維状断熱剤に
より腐食されないように保護した。なお、塵芥焼fdl
炉から採取し試験片表面上にのせられた灰の組成はアル
ミニウム7.1%、プトリウム3.8%、カリウム2゜
8%、カルシウム115%、マグネシウム1゜5%、鉄
6.1%、ケイ素15.2%、塩素2゜1%、全イAつ
1.1%、含水率0.1%(いずれも中ω%)であり残
部は主に」ニ記元素と結合している酸素である。 耐食試験は以上に述へた条件で最長10日間まで行い比
較のために被覆を施さないSCMV/lも試験に供した
。試験片は耐食試験実施後管状電気炉内にN2カスを完
全にパージしてから電気炉より取り出し約5時間空温放
冷後ブラッシングにより試験片表面の灰を除去し更にイ
ンヒビターとして0.5%のへキサメチレンデトラミン
を加えた塩酸水溶液(8重量%HC))に室温で30分
間浸漬し試験、1″lの腐食生成物を取り除くいわゆる
スケール除去処理を行い水洗、乾燥後手用を測定し、耐
食試験実施前に予め測定しておいた試験ハ千吊と比較し
、いわゆる重り減を求めた。第1図はこの耐食試験の結
果を示す図であって横軸が試験11数、縦軸が試験片の
重量減(m(1/有効表面積15cTl?)である。 まだ図中の線のM号は、試験11番号CC一時に被覆層
の内容差を示し、各番号ことに以下に記す構成の被m層
を使用して−いる。 試ll@J11:被覆層なL(7)SCMVdm材試験
片2°SCMV4I!4祠の上に第1層クロム−ニッケ
ル合金(20%Cr −80%Ni)第2層重2CO3
50%どクロ ム−ニッケル合金(20%Cr−80 %N1)50%の混合層をブラスマ溶 射により各々150μの17さて被覆しlこ 。 試験J’F 3 : S OM V 4鋼祠の上に、試
験片2と同じ第1 E’fを、第2層にアルミナ50%
、クロム−ニッケル合金(20%Cr −80%N1)
50%の混合層をブラス マ溶用にJ、り各々100μの厚さで被茗了 し lこ
 。 試験ハ4:SCMV4鋼祠の上に、第1層、第2層は試
験片3と同じで、第3層にアル ミナをプラズマ溶射により50μの厚 さで被覆した。 試験片5 : SCMV4tll材の上に、試験片2と
同じ第1層を、また第2層にアルミノを プラスマ溶mにより50μの厚さて被 覆 し lこ 。 試験片(3:SCMV4鋼材の上に、第1層にり[−J
ムーニッケル合金(50%Cr −50%Ni)、第2
層にアルミナ30%、 クロム−ニッケル合金(50%0r− 50%N1)70%の混合物をプラス マ溶射により各々100μの厚さで被 覆した。 試験片7 : SCMV4鋼材の上に、第1層にクロム
−ニッケル合金く85%Cr−1Ei%Ni>、第2層
にアルミノ30%、 クロム−ニッケル合金(50%Cr −50%Ni>7
0%の混合物をブラス マ溶射により各々100μの厚さで被 覆 し Iこ 。 試験片8;SCMV4WA月の上に第1層にクロム−ケ
イ素−ニッケル合金(20%Cr −10%5r−70%N1〉、第2層 にノフルミノ30%、クロム−ニラクル合金(50%(
/I’  b O%N + ) 70%の混合物をプラ
 ズマ溶射により各 々100μの厚さで被覆した。 第1図の線が示りように防食のための被覆を施していな
い試験11では川(l減づなゎら腐食量は時間の杼過と
ともに増大しこの線がこのままの状態で推移すると、最
初の1年間の腐食速成は1.5mm以上となる。 これにひきかえ、ボッと明を適用し防食のために41効
な被g1層を形成した試験片線2,3,4,5゜6rは
重量減少かはどんとなく測定可能限弄値以丁である。言
いかえれば腐食がほとんどなく本発明の効果を立証して
いる。また、線7が示す試験片7では第1層のクロム含
有量が本発明の範囲を越えて大きくなると被覆層の剥離
が生じ、同様に試験片8のように第1FIkmクロム、
ニッケル以外のケイ素の如き第3元素が10%もの多量
入ると被覆層の剥離を生じ結果的には防食効果を示さな
くなる。 ざらに、試験片2にa−3いてNa2Co:+の代りに
Na 2 sL 03を用いて得た試験片9 J3よび
試験片5においてアルミナの代りにアルミノとtJa2
cO3の中用比1:1の混合物を用いて4!また試験ハ
10により同様の耐蝕試験を行ったところ試験片2や試
験片5ど同様の結果が(qられた。 1う5′[出願人  東洋1ンジニアリング株式会社代
理人     大  洲  明  峰1、事1′1の表
示 昭和57年特KF願第216679月2、発明の名
称 防食り法 3.7■正をする名 4、代理人 千葉県船橋市東船橋61目12番10号5、補正命令の
日付 昭和58年3J]29B66補正の対象 明■1d(全文d5よび代理権を証明するp?而の欄7
、補j−の内容 明細内を別紙のとおり補正し委任状1通を提出づる。 1、事件の表示 昭和57汗特許願第216679号2
、発明の名称 防食方法 3、補正をりる召 4、代理人 千菓県船橋市東口()橋6丁目12番10号5、補正命
令の日付 なしく自発補正)6.711L[の2バ! 明細用全文 7、?lIi正の内容 明OImを別紙のとd3り補j[プる。 全  文  訂  止  明  細  占1、発明の名
称  防食方法 2、特許請求の範囲 1)IC,i!を含有づる高温カスに直される金属表面
上に、クロムとニッケルをクロ18/ニッケル重量比2
7′B・−8/2て含む混合物<i)の第1層を、その
上に第1層と異る組成の第2層を夫々溶用により形成づ
ることを特徴とする防食方法。 2)第2層が、重バl比で混合物(I)30%〜70%
どノノルカリ性物質の少くとも1種70%〜30%から
なる特許請求の範囲第1項記載の方法。 3)第2層が、重量比で混合物(I)30〜70%とセ
ラミックス70〜30%からなる特許請求の範囲第1項
記載の方法。 4)第2層が実質的にセラミックスからなる1)許請求
の範囲第1項記載の方法。 5)第2層が、重量比で実質的なセラミックス70〜3
0%とアルカリ性物質30〜70%からなる特許請求の
範囲第1項記載の方法。 6)第2層の上にセラミックスからなる第3層か形成さ
れる特許請求の範囲第3項記載の方法。 7)温合物(I)がクロム、ニッケルの他に3重量%以
下の他元素を含む特許請求の範囲第1へ・5 Jn記載
の方法。 8)溶用がプラズマ溶剛である特許請求の範囲第1〜6
項記載の方法。 3、発明の詳細な説明 この発明(よIC)を含有する、燃焼ガス等の高温カス
にさらされる金属の腐食を防止するための乃ン去に関づ
るものである。 近イ[、家庭亡工業設備からの塩化物を含む廃棄物、例
えば、塩ビなどのプラスチックを含むゴミ類はその量が
飛躍的(こ増大しその処理法が問題となっている。現在
、一般的な処理法どしては埋立て法と焼却法があるが前
者に関しては土壌汚染等の公害問題もあって埋立用地の
枯渇により焼却法の比率が増加しくいる。この廃棄物の
量的な増大とどもに、廃棄物に含まれるプラスチックΦ
の増加から廃棄物のもつエネルギーも高くなりその有効
的な回収が切火な問題となっている。このような観点か
ら、塩化物を含む物質、例えば上記廃棄物などが燃焼さ
けられ、発生りる高温燃焼カスの熱量を右動に利用づる
装置が近年種々研究開発され一部は既に実用化されてい
る。これらの装置にJ5い−では高温燃焼カス中にHC
J 、 CJ 2 、 S。 Xなどの腐食性カスが存在づるとともに未燃焼物質d5
よび燃焼の結果生じるアルカリ金属塩、千金、冗塩その
他の固体物質などからなる仄か必然的に共存りる。この
ような高温燃焼カスにさらされる金属は、ぞの表面に灰
が付着しかつ金属のさらされる雰囲気中にl−I CJ
!が共存づるどその腐食(高温腐食)が非常に激しくな
り、又温噴の上譬とともにその腐食速度が大きくなるこ
とが知られている。即ら、金属の表面温度が300℃を
越えると高温腐食が発生し、400℃を越えると腐食は
特に激しくなり市販されている実用金a IJ利の中で
はごく一部の特殊高級金B材ね以外は、この高温腐食に
耐えうるちのはない。 従来、この種の高温腐食から燃焼炉の金属材料に関して
はこれを守るために次の二つの方法がとられてきた。一
つは、燃焼中に発生覆る酸性の腐食性カスを炭酸ソーダ
等のアルカリ性物質と反応させて中和覆る、あるいは塩
ビなとのHCjを花生づる廃棄物の燃焼に際してアルカ
リ性物質を廃棄物と共に炉内に供給する、いわゆる中和
剤を燃焼雰囲気中に使う1〕法がある。しかし、これら
の方法はいずれも主どじで燃焼ガス中の1呂食性カスの
処哩には、右動Cあるが、金属表面に灰がイ」着しかつ
雰囲気カス中にHCJが共存する時に発生する高温1出
食に対しての防食方法としCは不十分てあった。即ら、
炉内構造と高温腐食が発生づる金属表面との幾何学的関
係、燃焼ガスの流動状態および腐食性カスと中和剤との
混合接触状態などの諸要因により、高温腐食を発生する
金属表面に炭酸塩等が防食に充分な量に達しない部分が
生しるためである。 もう一つの方法としては、燃焼炉内の金属月利の温度を
低くする方法である。即ち、この高温腐食は金属表面温
度が400℃を越えるとその進行が激しくなるので、金
属表面温度を400″C以下に保つ。従っζ、廃棄物の
燃焼熱をボイラー、廃熱ボイラーなどCスチームとして
回収ブる場合にはボイラーの伝熱管管壁温度を400 
’C以下に糾持せねばならず、その結果発生スチームは
設ルl値’t:” 20 kg / ci、300’C
以下、実用gFlの運転条イ’lテ16−20 kg/
cnG、200℃稈11ニなッcしよう。このような中
圧スチームでは、例えば最も一般的なものとしてエネル
キーを電気にづる場合、発電効率は最新の重油焚き火力
光電に比べがなり低く光電コス1〜も昌くなる。 この発明は上記の高温腐食を防ぎ、その1つの結果とし
て高圧スチームを好演的に1jることを司能とりるプj
’ rhを提供するもの乙゛ある。 この発明では、必要な耐熱性に応じて例えば炭素鋼から
耐熱合金まCの広範な各秤金属月料により作られた焼却
炉部材等の、HCJガスに曝される金属表面にクロムと
ニッケルをクロム/ニッケル重量比2/8〜8/2で含
む混合物(I)の第1層を溶剛によりまず被覆し次いで
第1層とは異る組成の第2層をこの上に溶剛により被覆
する。 燃焼炉部材は必要に応じ通常各種鋼材、鉄基合金、ニッ
グルークUム系合金等により作られるので、この発明で
はこれらの材料に充分親和性の強いかつ耐熱性良好な上
記ニッケルークロム系混合物の第1層を焼却炉部材の表
面に溶射により形成する。混合物(I)はニッケルとク
ロムのみから成るか、又(J両者合計に対し3%以下の
他元素を含/Vて成る。混合物(I)のクロム/ニッケ
ル比が20/80〜8.0/20とされるのは、母材ど
の接谷の加熱サイクルに対する耐久性がよいからである
。ノラズマ溶射で多く用いられるのは20/80である
が混合物(I)を含む場合の第2層等の耐食性をより高
めるには上記範囲内で例えば50150などの球にクロ
ムを多くするとよい。 また他元素は両者の混合物の特性を生がして更に強度、
耐酸性、耐酸化性等の向上を図る為に加えられ、ニオブ
、タンタル、モリブデン、タングステン、アルミ、ケイ
素等が代表的である。 混合物(I)の第1層、ではHC、、eに曝きれる燃焼
炉部材とし−(は耐食性が充分でないの−c1この発明
C′は第1層に対して充分親和性があり耐食性のよりよ
い第2層を第1層の上に形成する。 1つの第2層は重量比で混合物(i)30〜70%、及
びアルカリ性物質の少くとも1種又はしラミックスフ0
〜30%から形成される。第2層中の混合物(I)は3
096以上ひないと第2層の第1層に対Jる親和性が不
足して第1層第2層間の剥Mが/A=しやりくまた安定
な第2層の形成が困難なことも多い。この傾向はどくに
アルカリ性物費C顕著である。一方アルカリ性物質又は
セラミックスが30%以上でないと第2層の耐食性が一
般に不充分である。 本発明では上jホのどおり、第1層の成分と耐食性のに
りよい材料から成る第2層を第1層上に被覆させること
から出発したが、本発明者の究明によれば、特に蒸気発
生型都市こみ焼却炉等の様に高々600℃程度までの耐
熱性があればよい場合(ごは、驚くぺぎことに、上記と
は異る第2層としCアルミプに代表されるセラミックス
又はこれに30%未渦の第1層成分を含む実質的にセラ
ミックスからなる層を用いても剥離等の問題は生じず、
上述の2者との間に性能上の大差がないこと、またさら
に、実質的なセラミックスとアルカリ性物質との重量比
7:3〜3ニア好ましくは7:3〜5:5の混合物を第
2層としても同様Cあることが判明した。但し全体又は
部分的に例えば800〜1000’Cの様なより高温で
の耐熱性を考慮すると、第2層か第1層成分と耐食性月
利との混合物からなる方が剥削等の生ずるd5それが少
ない。 五た耐食性U ItとしC最上層にセラミックスを利用
した場合、かかるより高温での耐食性を満足り゛るには
、第1層成分とけラミックスからなる第2層の上にセラ
ミックスから成る第3層を形成づるとよい。この場合!
’!2tFf中のセラミックスが30%以上でないと第
2層と第3層の親和性が不足し両層間で熱履歴により剥
離の生ずるおそれがある。 また両層間の良好な接合の為に、第2層と第3暦に用い
られるセラミックスは実質的に同じCあるのがよい。 木5で明で利用する溶射は必要に応じ各種溶射り法が利
用できるか、どりわ(ノプラスマ溶射が代表的であって
耐食十石益な緻密な被覆層の形成に有用である。なJ3
゜シラス゛マ溶躬等C利用される不活性カスに水素を混
入しC酸化被膜の)…元を(’l’わぜることもCきる
。 この5と明で利用できるしラミックスはケイ素、アルミ
ニウム、マグネシウム、カルシウム、ジルコニウム等の
酸化物、ケイ素、ホウ素、チタン等の炭化物、ケイ素、
ホウ素、アルミニウム等の窒化物等がありその少くとも
1種が用いられるか、酸化アルミニウムが極め−C代表
的である。 この弁明て利用される各層は溶射の際に混合され充分一
様な層となればよいが、勿論可能なものは所望により溶
射の前に合金等の均一な混合物として、Aハjばより一
様な層がI+7られや導く一般に好ましい。 本発明では母材と第2層の間に、また第3層がある場合
には第1府と第3層の間に夫々中間的な組成の第1層や
第2層が介在するが、母材及び各層と中間的な組成の層
の間に更に中間的な層を介在させてもよく、このように
すれば一般に熱サイクルに対する耐久性の向」−が期待
−(きる。 この発明の方法によれば例えば炉の運転開始とともに1
lcJJ3よび灰分などが高温の金属表面に接近しても
、予め存在している充分璧のアルカリ性物質を含む層の
アルノJり性物質がI C、j、と反応して中性塩灰と
なって金属表面での高温腐食を防止づることにJ−リ、
あるいは予め金属表面に存在する実質的なセラミックス
、またはセラミックスどりI]ム、ニッケル等との混合
物からなる被覆層か高温(の酸化、高温でのHCjによ
る腐食あるいはHC)とアルカリ企屈塩、重金属塩等の
灰がバ存した場合の厳しい高温腐食に;l=I l、て
卯花に優れた耐食性を発揮づることにより、また実質的
なセラミックスとアルカリ性物質との混合物からなる被
覆層の場合にはこの層が中性塩灰の形成と耐食性の発揮
の双方の効果を発現することにより母材地金表面に至る
高温腐食が発生しない。 上記アルカリ性物質は上記の効果を充分発揮できるもの
は全−C用いることができその少くとも一種を用いるが
、なかCもアルカリ金属及びアルカリ上5:「1金屈の
炭酸塩やケイ酸アル/Jりか代表的であり、アルカリ金
属及びアルカリ土類金属の炭酸塩どしては、Na 、に
、Ca 、あるいはMg等の炭酸塩の少くども1種が使
用され通常防食性能および費用の観点から炭酸ナトリウ
ムが最適であり、またケイ酸アルノJりはケイ酸ナトリ
ウムまたはノjリウムないしリヂウムが代表的である。 る。 十″、Cは本発明の適用分野を代表的に燃焼炉により説
′1nシたが勿論本弁明はI」CJを含む高温ガスに1
1さ゛る各種部拐等にも適用可能である。 以下実施例に−l:り本発明を明らかにリ−るが本弁明
はこれに限定されない。 実施例 クロム2.2%、モリブデン1%、0.15%以下の炭
素くいずれも重量%)および残部が鉄よりなる台金m 
(SCMV4 )の圧延板より縦30mm、横5Qmm
、厚さ4+++mの板状試験片を多数切り出し、各試験
材料に各種の方法による被覆を施した後耐食試験を行っ
た。 試駆材料の被覆方法は市販のブラスマ溶射別を利用し噴
射ガスとしくアルゴン60%、ヘリウム40%、くいず
れも体積%)の混合物を用い直流型In40ボルト、放
電電流800アンペアの条件で使用し、試験材の30m
mx 5 Qmmの面積をもつ一面に被覆した。この被
覆層の試験材籾を試験J′1として使用し耐食試験を行
った。耐食試験は管状電気炉を用い被覆層か形成された
試験11表面に実際の塵芥焼却炉から採取した灰を均一
にのゼ、管内に水蒸気30%、CO210%、H(、f
looollllm 、 SO220ppm  (いず
れも体積%)残部空気の組成である高温雰囲気カスが流
れる管状電気炉の中に当該試験ハを置き試験片表面温度
を600℃に保持し0行つた。試験Hの試験される30
x50mmの面積をもつ表面以外の5つの面はアルミナ
の微粉および繊維状断熱剤により腐食されないように保
進した。なd5、塵芥焼却炉から採取し試験片表面上に
のせられた灰の組成はアルミニウム7.1%、ナトリウ
ム3.8%、カリウム2゜8%、カルシウム14.5%
、マグネシウム1゜5%、鉄6.1%、ケイ素15.2
%、塩素2゜′196、仝イAつ1.1%、含水率0.
1%(いずれも中1a%)で゛あり残部は主に上記】L
素と結合しCいる酸系Cある。 耐食試験は以下に述へた条件で最長10口間よrbい比
較のために被覆を施さないSCM4b試験に供した。試
験ハは耐食試験実施後管状電気炉内にN2ガスを完全に
パージしCから電気炉より取り出し約5時間室濡敢冷後
ブラッシングにより試験片表面の灰を除去し更にインヒ
ビターどじで0.5%のベヤ4ノメヂレンデ1−ラミン
を加えた塩酸水溶液(8重量%l−I C! )に室温
(・30分間浸漬し試験片の腐食生成物を取り除くいわ
ゆるスケール除去処理を行い水洗、乾燥後重量を測定し
、耐食試験実施前に予め測定しておいた試験片N量と比
較し、いわゆるff1ffl減を求めた。第1図はこの
耐食試験の結果を示す図ひあつ−C横軸が試験日数、縦
軸が試験[1の重量減(m(1/右有効面h’115C
イ)である。 また図中の線の番号は、試験片番号で同旧に被覆層の内
容差を示し、各番号ごとに以下に記づ構成の被覆層を使
用しηいる。 試験片1:被覆層なしのS CM V 4 ’4’A 
4J試験Ji2:SCMV4鋼祠の上に第1層クロム−
ニッケル合金(20%Cr −80%[N1)iir’
!2fFJffi2CO350%とクロム−ニッケル合
金(20%Cr −80%N1)50%の混合層をプラ
ズマ溶 削により各々150μの厚さで被覆し ノこ 。 試験G3:SCMV/l鋼材の上に、試験片2と同し第
1層を、第2層にアルミナ50%、り[」ムーニッケル
合金(20%Cr −80%N1)50%の混合層をブ
ラス マ溶射により各々100μの厚さで被 刊1  し tこ 。 試験片’I:SCMV4鋼材の上に、第1層、第2層は
試験片3と同じで、第3層にアル ミナをプラズマ溶射にJ:す50μのJ7さで被覆した
。 試Jli’fl−!+ 5 : SCMV4m材の1に
、試験j42と同じ第1層を、また第2層にアルミナを プラスマ溶射により50(1の厚さで被)fi  シ1
.:。 試験ハロ°S CM V 4鋼祠の上に、第1層にクロ
ム−ニッケル合金(50%Cr−50 %N1)、第2層にアルミナ30%、 り[Jムーニッケル合金(50%C「−50%N1)7
0%の混合物をブラス マ溶用により各々100μの厚さC被 α1  し lこ 。 試験片7 : SCMV4flli!材の上に、第1層
にクロム−ニッケル合金(85%Cr−15 %Ni>、第2層にアルミナ30%、 クロム−ニッケル合金(50%Cr −50%N1)7
0%の混合物をプラス′マ溶削により各々100μの厚
さC被 覆 し Iご 。 試験ハ8:SCMV4鋼材の上に第1層にクロム−ケイ
素−ニッケル合金(20%0r −10%Si −70%N1)、第2層にアルミJ’ 
30%、り[Jムーニツクル合金(50%Cr−50%
N1)70 %の混合物をブラ スマ溶射により各 々100μの厚さで゛被覆した。 第1図の線が承りように防食のための被覆を流していな
い試験片−Cは重量減すむわら腐食量は8N間の経過と
ともに増大しこの線がこのままの状態で(■移Jると、
最初の1年間の腐食速度は1.5mm以上どなる。 これにひきかえ、本発明を適用し防食のために有効な被
覆層を形成した試験H線2.3./1.5゜6ては重量
減少がほとんどなく測定nJ能限界値以下である。言い
かえれば腐食がほとんどなく本発明の効果を立証してい
る。また、線7が示す試験片7’c゛は第1層のクロム
含有量が本発明の範囲を越えて大きくなると被覆層の剥
離が生じ、同様に試験片8のように第1層にクロム、ニ
ッケル以外のケイ素の如き第3元素が10%らの多早入
ると被覆層の剥離を生じ結果的には防食効果を示さなく
なる。 さらに、試験J12においUNa2CO3の代りにjも
23L03を用い(17だ試験片9 Jjよひ試験片5
におい−Cアルミナの代りにアルミノ−とNa2CO3
の手−141比1:1の混合物を用いCI″?た試験g
10にJ、り同様の耐蝕試験を行ったところ試験片2や
試験)’+ !’)と同様の結果が1qられた。 4、図面の簡単な説明 第1図は実施例の結果を承りグラフである。
[The first layer of com-residue compound is formed on the surface of the 7J1 furnace member by FIJ. The fbj compound (1) consists of only nickel and comb, or contains 3% or less of other elements based on the combination of both. The chromium/nickel finish of mixture (1) is 20/80 to 80/20
This is because the adhesive with the base material has good durability against heat recycling. Plasma spraying is often used for 2°/80, but the second layer when containing mixture (I) is In order to increase the corrosion resistance of steel, it is recommended to increase the amount of chromium within the above range, such as 50/50.Additionally, other elements can be used to bring out the characteristics of a mixture of the two, further increasing the strength and strength.
Added to improve acid resistance, corrosion resistance, etc.
Typical examples include tantalum, molybdenum, tungsten, aluminum, and silicon. Since the first layer of mixture (1) does not have sufficient corrosion resistance as a combustion furnace member exposed to l-I CJ, the present invention uses a second layer that has sufficient affinity for the first layer and has better corrosion resistance.
A layer is formed over the first layer. One second layer contains 30 to 70% by weight of mixture (I) and at least one alkaline substance or 70% of ceramics.
Formed from ~30%. The mixture in the second layer (I> is 3
If it is not more than 0%, the affinity of the second layer to the first layer will be insufficient and peeling between the first layer and the second layer will occur.
It is often difficult to form layers. This tendency is particularly noticeable for alkaline substances. On the other hand, unless the alkaline substance or ceramics is 30% or more, #4 corrosion resistance of the second layer is generally insufficient. The invention started by coating the first layer with a second layer consisting of a better Ufl, but according to the investigation of the present inventors, it has been found that in particular, in steam-generating municipal waste incinerators, temperatures of up to 600°C Surprisingly, when heat resistance up to There is no problem of peeling such as 11!1 even when using a layer of :3 to 3 near, preferably 7:3 to 5:
2nd mixture of 5! It was found that the same applies to Fj. However, for example 800 - = 10 in total or in part
Considering heat resistance at higher temperatures such as 00°C, it is easier to peel if the second layer is made of a mixture of the first layer components and a corrosion-resistant material.
There is little risk of occurrence of f. In addition, when ceramics are used as the top layer as the corrosion-resistant material 1, in order to satisfy the corrosion resistance at higher temperatures, a third layer made of ceramics is formed on the first layer components and a second layer made of ceramics. It's good to do that. In this case, if the ceramic content in the second layer is not more than 30%, the second and third layers
There is a risk that the layers may not have sufficient affinity and peeling may occur due to the heat history between the two layers. Furthermore, for good bonding between both layers, the ceramics used for the second and third layers are preferably substantially the same. Various methods can be used for the thermal spraying used in the present invention as required, but plasma spraying is particularly representative and is useful for forming a dense coating layer that is useful for corrosion resistance. In addition. It is also possible to reduce the oxide film by mixing hydrogen into the inert Shinai bamboo used in plasma spraying and the like. Ceramics that can be used with this product include oxides of silicon, aluminum, magnesium, calcium, and zirconium, carbides of silicon, boron, and titanium, silicon,
There are nitrides such as boron and aluminum, and at least one of them is used, but aluminum oxide is extremely typical. It is sufficient that each layer used in this invention is mixed at the time of melting to form a sufficiently uniform layer, but it is of course possible to prepare a uniform mixture of alloys etc. before thermal spraying if desired. In general, this is preferable because it allows a layer of various types to be obtained. In the present invention, a first layer and a second layer having an intermediate composition are interposed between the base material and the second layer, or between the first layer and the third layer if there is a third layer. Material and each layer and inside 1. 11 of layers with CI-like composition! An intermediate layer may be further interposed in υ, and in this way, it is generally expected that the durability against thermal cycles will be improved C2! Ru. According to the method of this invention, for example, when the furnace starts operating, t
l CJ d5 and high ash content) 1g on the highest metal surface
Even if there is a sufficient amount of alkaline sludge already present, the alkaline substance in the layer containing the substance reacts with IIC to form C neutral salt ash, preventing high temperature corrosion on the metal surface, or by preventing high temperature corrosion on the metal surface. The coating layer consisting of substantial ceramics existing on the metal surface, or a mixture of ceramics and chromium, nickel, etc., is exposed to high temperature C, and high temperature C)-
By exhibiting extremely excellent corrosion resistance against corrosion caused by IC, / or severe high temperature corrosion when ash such as LI CJ doal 7J coexists with metal salts and heavy metal salts,
In addition, in the case of a coating layer that is essentially a mixture of ceramics and alkaline substances, this layer has the effects of both forming neutral salt ash and exhibiting corrosion resistance, resulting in high temperatures reaching the surface of the core material. Corrosion occurs. All of the alkaline substances that fully exhibit the effects described in 1 above can be used, and at least one of them is used, but carbonates of alkali metals and alkaline earth metals are particularly suitable. Typical examples are alkali metals and alkali silicates, and carbonates of alkali metals and alkaline earth metals include Na, Ca, and
, or with a small amount of carbonate such as Mg, fl>11f! Helium carbonate is usually used from the viewpoint of anticorrosion performance and cost, and alkali silicate is the most suitable for silicic acid salts.
Typical examples include lithium, potassium, and lidium. In the above, the field of application of the present invention was typically explained using a combustion furnace. It can also be applied to members, etc. The present invention will be clarified by examples below, but the present invention is not limited thereto. .Alloy steel with 15% or less carbon content (%) and the balance being iron (30 mm long and 50 mm wide from a rolled plate of SCMV4>,
A large number of plate-shaped test pieces with a thickness of 4 mm were cut out, each test material was coated with various methods, and then a corrosion resistance test was conducted. The test material was coated using a commercially available Zoramas spraying machine, using a mixture of 60% C argon, 10% helium (both by volume) as a spray sludge, and applying a DC voltage/IO pol l-
, used at a discharge current of 800 amperes, and the test material 3
One surface with an area of 0m+nx50H was coated. Eleven corrosion resistance tests were conducted using this test material as test pieces. The corrosion resistance test was carried out using a tubular electric furnace.The surface of the test piece on which the coating layer had been formed was uniformly coated with the collected ash from an actual waste incineration II furnace (1) + 330% water vapor and 10% CO2 inside the tube.
, lIcJlooooppm , 502201111m
(All percentages by volume) The test was carried out by placing the test piece in a tubular electric furnace through which a high-temperature atmospheric gas with a composition C' of the remaining air was flowing and maintaining the surface temperature of the test piece at 600'C. The area of 30x50mm to be tested of the specimen is
The material was protected from corrosion by aluminium fine T5) 13 and fibrous heat insulating material. In addition, Jinkayaki fdl
The composition of the ash collected from the furnace and placed on the surface of the test piece was 7.1% aluminum, 3.8% puttrium, 2.8% potassium, 115% calcium, 1.5% magnesium, 6.1% iron. Silicon: 15.2%, chlorine: 2.1%, total A: 1.1%, water content: 0.1% (both medium ω%), and the remainder is mainly oxygen bonded to elements listed in 2. It is. The corrosion resistance test was carried out under the conditions described above for a maximum of 10 days, and for comparison, SCMV/l without coating was also subjected to the test. After conducting the corrosion resistance test, the test piece was completely purged of N2 scum in the tubular electric furnace, taken out from the electric furnace, left to cool in the air for about 5 hours, and then brushed to remove ash on the surface of the test piece, and then treated with 0.5% inhibitor. The specimen was tested by immersing it in an aqueous hydrochloric acid solution (8% by weight HC) containing hexamethylene detramine at room temperature for 30 minutes, followed by a so-called descaling treatment to remove 1"l of corrosion products, washing with water, drying, and then measuring the results manually. The so-called weight loss was determined by comparing the test weights measured in advance before conducting the corrosion resistance test.Figure 1 shows the results of this corrosion resistance test. The axis is the weight loss (m (1/effective surface area 15 cTl?) of the test piece.The M number of the line in the figure still indicates the difference in the content of the coating layer at Test No. 11 CC, and each number is shown below. A covering layer with the following configuration was used. Test II @ J11: A first layer of chromium-nickel alloy (20% Cr - 80% Ni) 2nd layer weight 2CO3
A mixed layer of 50% chromium-nickel alloy (20% Cr-80% N1) of 150 μm each was coated by plasma spraying. Test J'F 3: On top of SOM V4 steel, the same 1st E'f as test piece 2 and 50% alumina in the 2nd layer.
, chromium-nickel alloy (20%Cr -80%N1)
The 50% mixed layer was coated with a blastema solution to a thickness of 100 μm each. Test C4: The first and second layers were the same as those for test piece 3, and the third layer was coated with alumina to a thickness of 50 μm by plasma spraying on the SCMV4 steel shrine. Test piece 5: On top of the SCMV4tll material, the same first layer as test piece 2 was applied, and the second layer was coated with alumino to a thickness of 50 μm using plasma melting. Test piece (3: The first layer was applied on top of the SCMV4 steel [-J
Munickel alloy (50%Cr-50%Ni), 2nd
The layers were coated with a mixture of 30% alumina and 70% chromium-nickel alloy (50% OR-50% N1) to a thickness of 100 microns each by plasma spraying. Test piece 7: On SCMV4 steel, the first layer is chromium-nickel alloy (85%Cr-1Ei%Ni>), the second layer is 30% alumino, chromium-nickel alloy (50%Cr-50%Ni>7)
0% mixture was coated with a thickness of 100 μm each by blaster spraying. Test piece 8; SCMV4WA on top of the first layer of chromium-silicon-nickel alloy (20%Cr-10%5r-70%N1), second layer of Noflumino 30%, chromium-Niracle alloy (50%)
/I' b O%N + ) 70% mixture was coated with a thickness of 100 μm each by plasma spraying. As shown by the line in Figure 1, in Test 11 where no anti-corrosion coating was applied, the amount of corrosion increased with time; The corrosion rate for one year is 1.5 mm or more.In contrast, the test piece wires 2, 3, 4, 5゜6r, which were coated with a 41-effective g1 layer for corrosion prevention by applying bright light, have a weight of The reduction is at least within the measurable limit.In other words, there is almost no corrosion, proving the effectiveness of the present invention.Also, in the test specimen 7 indicated by line 7, the chromium content in the first layer is If the size exceeds the scope of the present invention, the coating layer will peel off, and similarly as in test piece 8, the first FIkm chromium,
If a third element other than nickel, such as silicon, is contained in an amount as large as 10%, the coating layer will peel off, resulting in no corrosion-preventing effect. Roughly speaking, test piece 9 J3 was obtained by using a-3 in test piece 2, and Na2sL03 was used instead of Na2Co: +, and alumino and tJa2 were obtained in place of alumina in test piece 5.
4 using a 1:1 mixture of cO3 medium! In addition, when similar corrosion resistance tests were conducted using Test C10, similar results were obtained for Test Pieces 2 and 5. , Indication of matter 1'1, Special KF Application No. 216679, September 2, 1982, Title of invention: Corrosion Prevention Law 3.7 ■Name to correct 4, Agent 61-12-10-5, Higashi-Funabashi, Funabashi City, Chiba Prefecture, Amendment Date of order: 3J, 1982] 29B66 Subject of amendment 1d (Full text d5 and p to certify power of attorney, Column 7
, amend the contents of Supplement J- as shown in the attached sheet and submit one power of attorney. 1. Indication of the incident 1982 Sweat Patent Application No. 216679 2
, Title of the invention: Corrosion prevention method 3, Amendment request 4, Agent: 6-12-10-5, Higashiguchi () Bridge, Funabashi City, Chika Prefecture, Date of amendment order: Voluntary amendment) 6.711L ! Full text for details 7? lIi Correct content statement OIm as per the attached sheet d3 Correction j[Pull. Full text Revised details 1, Title of invention Corrosion prevention method 2, Claims 1) IC, i! Chromium and nickel are added to the metal surface to be reduced to high-temperature scum containing
A method for preventing corrosion, comprising forming a first layer of a mixture <i) containing 7'B. 2) The second layer contains mixture (I) 30% to 70% by weight ratio
The method according to claim 1, comprising 70% to 30% of at least one nonorkaline substance. 3) The method according to claim 1, wherein the second layer consists of 30-70% mixture (I) and 70-30% ceramics by weight. 4) The method according to claim 1, wherein the second layer consists essentially of ceramics. 5) The second layer is substantially ceramic by weight ratio of 70 to 3
The method according to claim 1, comprising 0% and 30-70% of alkaline substances. 6) The method according to claim 3, wherein a third layer made of ceramic is formed on the second layer. 7) The method according to claim 1 and 5, in which the warm mixture (I) contains 3% by weight or less of other elements in addition to chromium and nickel. 8) Claims 1 to 6 in which the melting is plasma melting
The method described in section. 3. Detailed Description of the Invention This invention relates to a method for preventing corrosion of metals exposed to high-temperature residues such as combustion gases, which contain the present invention (IC). Recently, the amount of waste containing chloride from abandoned industrial facilities at home, such as garbage containing plastics such as PVC, has increased dramatically, and how to dispose of it has become a problem. There are two types of disposal methods: landfilling and incineration, but with the former, the proportion of incineration seems to be increasing due to the depletion of land for landfills due to pollution problems such as soil contamination. Plastic Φ contained in waste is increasing
Due to the increase in the amount of energy contained in waste, the energy content of waste is also increasing, making effective collection of waste a pressing issue. From this point of view, in recent years various research and development have been carried out on devices that utilize the heat of the high-temperature combustion residue generated when chloride-containing substances, such as the above-mentioned wastes, are incinerated, and some of them have already been put into practical use. ing. In these devices, J5 contains HC in the high-temperature combustion residue.
J, CJ2, S. Corrosive residue such as X is present, and unburnt material d5
There is also the inevitable coexistence of alkali metal salts, ferrous metals, redundant salts, and other solid substances produced as a result of combustion. Metals exposed to such high-temperature combustion residue have ash attached to their surfaces and l-I CJ in the atmosphere to which the metal is exposed.
! It is known that the corrosion (high-temperature corrosion) becomes extremely severe when these coexist, and the rate of corrosion increases along with the analogy of hot jets. In other words, high-temperature corrosion occurs when the surface temperature of the metal exceeds 300°C, and corrosion becomes particularly severe when the surface temperature exceeds 400°C. There is no other material that can withstand this high temperature corrosion. Conventionally, the following two methods have been used to protect the metal materials of combustion furnaces from this type of high-temperature corrosion. One is to neutralize and neutralize the acidic and corrosive scum generated during combustion with an alkaline substance such as soda carbonate, or to incinerate the alkaline substance together with the waste when burning waste that produces HCJ such as PVC. There is a method 1] in which a so-called neutralizing agent is supplied into the combustion atmosphere. However, all of these methods mainly involve right-handed movement in the disposal of erodible debris in the combustion gas, but when ash is deposited on the metal surface and HCJ coexists in the atmospheric debris, C was considered insufficient as a corrosion prevention method against the high-temperature corrosion that occurs. In other words,
Due to various factors such as the geometric relationship between the furnace internal structure and the metal surface where high-temperature corrosion occurs, the flow state of the combustion gas, and the mixed contact state of the corrosive residue and the neutralizing agent, the metal surface where high-temperature corrosion occurs This is because there are parts where carbonate and the like do not reach a sufficient amount for corrosion protection. Another method is to lower the temperature of the metal in the combustion furnace. In other words, this high-temperature corrosion accelerates when the metal surface temperature exceeds 400°C, so keep the metal surface temperature below 400°C. In case of recovery, the boiler heat exchanger tube wall temperature is
The resulting steam must be kept at a temperature below 20 kg/ci, 300'C.
The following is a practical gFl operating condition of 16-20 kg/
cnG, 200℃ culm 11 days. In such medium-pressure steam, for example, when energy is generated as electricity, which is the most common method, the power generation efficiency is lower than that of the latest heavy oil-fired photovoltaic power generation, and the photoelectric cost is 1~1. This invention prevents the above-mentioned high-temperature corrosion, and as one of its results, it is possible to effectively use high-pressure steam.
'There are some that provide rh. In this invention, chromium and nickel are applied to metal surfaces exposed to HCJ gas, such as incinerator parts made from a wide range of metal materials, from carbon steel to heat-resistant alloys, depending on the required heat resistance. A first layer of the mixture (I) containing chromium/nickel in a weight ratio of 2/8 to 8/2 is first coated with a hot melt, and then a second layer having a composition different from the first layer is coated thereon with a hot hot coat. do. Combustion furnace members are usually made of various steel materials, iron-based alloys, nickel-chromium alloys, etc., as required, so the present invention uses the above-mentioned nickel-chromium mixture, which has a sufficiently strong affinity for these materials and has good heat resistance. A first layer is formed on the surface of the incinerator member by thermal spraying. The mixture (I) consists only of nickel and chromium, or (contains 3% or less of other elements based on the total of both J).The chromium/nickel ratio of the mixture (I) is 20/80 to 8.0. /20 is selected because it has good durability against heating cycles of the base material. 20/80 is often used in Norasma thermal spraying, but the second layer when containing mixture (I) In order to further increase the corrosion resistance of 50150 balls, etc., it is recommended to increase the amount of chromium within the above range.Additionally, other elements can be used to bring out the properties of a mixture of the two, further increasing the strength and strength.
It is added to improve acid resistance, oxidation resistance, etc., and typical examples include niobium, tantalum, molybdenum, tungsten, aluminum, and silicon. The first layer of mixture (I), which is a combustion furnace member exposed to HC, does not have sufficient corrosion resistance. A good second layer is formed on the first layer.One second layer is made of 30-70% by weight of mixture (i) and at least one alkaline substance or lamizulf.
Formed from ~30%. The mixture (I) in the second layer is 3
If the temperature is less than 096, the affinity of the second layer to the first layer is insufficient, and the peeling between the first layer and the second layer is difficult and it is difficult to form a stable second layer. There are also many. This tendency is particularly noticeable in alkaline materials. On the other hand, unless the content of alkaline substances or ceramics is 30% or more, the corrosion resistance of the second layer is generally insufficient. The present invention started by coating the first layer with a second layer made of the components of the first layer and a material with good corrosion resistance, as described in j-e above, but according to the investigation of the present inventors, in particular, In cases such as steam-generating municipal waste incinerators, where heat resistance up to at most 600°C is required (surprisingly, a second layer different from the above is made of ceramics such as C aluminum). Alternatively, even if a layer substantially made of ceramics containing 30% of the unvortexed first layer component is used, problems such as peeling will not occur.
There is no significant difference in performance between the two mentioned above, and furthermore, a mixture of substantial ceramics and an alkaline substance in a weight ratio of 7:3 to 3, preferably 7:3 to 5:5 is used as the second material. It was found that there was also C in the layer as well. However, considering the heat resistance of the whole or part at higher temperatures such as 800 to 1000'C, it is better to form the second layer or a mixture of the first layer components and the corrosion-resistant material as it may cause flaking etc. Less is. 5. Corrosion resistance When using ceramics as the top layer, in order to satisfy the corrosion resistance at higher temperatures, a third layer made of ceramics must be placed on top of the second layer made of ceramics. It is best to form layers. in this case!
'! If the ceramic content in 2tFf is not 30% or more, the affinity between the second layer and the third layer will be insufficient, and there is a risk of peeling between the two layers due to thermal history. Further, for good bonding between both layers, it is preferable that the ceramics used for the second layer and the third layer have substantially the same carbon content. For thermal spraying, various thermal spraying methods can be used as needed (noplasma thermal spraying is a typical example and is useful for forming a dense coating layer with excellent corrosion resistance.J3
It is also possible to mix hydrogen into the inert scum used in ゜shirasumama melting etc. and mix it with the ('l') element of the C oxide film. Oxides such as aluminum, magnesium, calcium, and zirconium, carbides such as silicon, boron, and titanium, silicon,
There are nitrides of boron, aluminum, etc., and at least one of them is used, or aluminum oxide is very representative of -C. It is sufficient that the layers used for this purpose are mixed at the time of thermal spraying to form a sufficiently uniform layer, but it is of course possible to prepare a homogeneous mixture of alloys, etc., before thermal spraying, if desired. A layer similar to I+7 is generally preferred. In the present invention, a first layer and a second layer of intermediate composition are interposed between the base material and the second layer, or between the first layer and the third layer if there is a third layer, respectively. An intermediate layer may be interposed between the base material and each layer and a layer having an intermediate composition, and in this way, it is generally expected that the durability against thermal cycles will be improved. According to the method, for example, 1
Even if lcJJ3 and ash approach the high-temperature metal surface, the pre-existing alkaline material in the layer containing a sufficient amount of alkaline material reacts with IC,j and becomes neutral salt ash. J-Ri, which prevents high-temperature corrosion on metal surfaces.
Alternatively, a coating layer consisting of a mixture of substantial ceramics or ceramics, nickel, etc. that already exists on the metal surface, or high temperature (oxidation, corrosion due to HCj or HC), alkali salts, heavy metals, etc. It can withstand severe high-temperature corrosion when ash such as salt is present; Since this layer has the effects of both forming neutral salt ash and exhibiting corrosion resistance, high-temperature corrosion that reaches the base metal surface does not occur. The above-mentioned alkaline substances can be all-C, as long as they can fully exhibit the above effects, and at least one of them is used, but also alkali metals and alkaline substances such as carbonates, alkaline silicates, etc. Among the carbonates of alkali metals and alkaline earth metals, at least one type of carbonate such as Na, Ca, Mg, etc. is typically used.From the viewpoint of anticorrosion performance and cost, Sodium carbonate is most suitable, and aluminum silicate is typically sodium silicate or sodium or lithium. 1n, but of course the present defense is
It can also be applied to various types of kidnappings. The following examples clearly illustrate the present invention, but the present invention is not limited thereto. Example Base metal m consisting of 2.2% chromium, 1% molybdenum, 0.15% or less carbon (all weight%) and the balance iron
(SCMV4) 30mm long and 5Qmm wide from the rolled plate
A large number of plate-shaped test pieces having a thickness of 4+++ m were cut out, and each test material was coated with various methods and then subjected to a corrosion resistance test. The coating method for the prototype material was to use a commercially available blaster sprayer, and use a mixture of 60% argon and 40% helium (both by volume) as the injection gas under the conditions of a DC type In of 40 volts and a discharge current of 800 amperes. 30m of test material
A single surface with an area of mx 5 Qmm was coated. A corrosion resistance test was conducted using the test material of rice coated with this coating layer as Test J'1. The corrosion resistance test was carried out using a tubular electric furnace.Ashes collected from an actual garbage incinerator were uniformly spread on the test 11 surface on which a coating layer had been formed, and the inside of the tube was heated with 30% water vapor, 10% CO2, and H(,f).
The test piece was placed in a tubular electric furnace in which a high-temperature atmosphere having a composition of 20 ppm (volume %) and the remaining air flowed, and the surface temperature of the test piece was maintained at 600°C. Test H tested 30
Five surfaces other than the surface with an area of x50 mm were protected from corrosion by fine alumina powder and fibrous heat insulating material. d5, the composition of the ash collected from the garbage incinerator and placed on the surface of the test piece was 7.1% aluminum, 3.8% sodium, 2.8% potassium, and 14.5% calcium.
, magnesium 1.5%, iron 6.1%, silicon 15.2
%, chlorine 2°'196, 1.1%, moisture content 0.
1% (both 1a%), and the rest is mainly above] L
There is an acid type C that combines with an element. The corrosion resistance test was carried out under the conditions described below for a maximum of 10 mouths.For comparison, the SCM4b test was conducted without coating. In test C, after carrying out the corrosion resistance test, N2 gas was completely purged in the tubular electric furnace, and the test piece was taken out from the electric furnace from C and left to cool in a room for about 5 hours, and then the ash on the surface of the test piece was removed by brushing, and the ash was further removed with an inhibitor of 0.5 The specimen was immersed for 30 minutes in a hydrochloric acid aqueous solution (8 wt. The so-called ff1ffl reduction was determined by comparing the amount of N in the test piece measured in advance before conducting the corrosion resistance test.Figure 1 shows the results of this corrosion resistance test. The number of days, the vertical axis is the test [1 weight loss (m (1/right effective surface h'115C
b). In addition, the line numbers in the figure are the test piece numbers and indicate the differences in the content of the coating layer between the old and the same test piece, and a coating layer having the structure described below was used for each number. Test piece 1: S CM V 4'4'A without coating layer
4J test Ji2: 1st layer chromium on top of SCMV4 steel
Nickel alloy (20%Cr -80%[N1)iir'
! A mixed layer of 50% 2fFJffi2CO3 and 50% chromium-nickel alloy (20%Cr-80%N1) was coated with a thickness of 150μ each by plasma cutting. Test G3: On top of the SCMV/l steel material, the first layer was the same as test specimen 2, and the second layer was a mixed layer of 50% alumina and 50% nickel alloy (20%Cr -80%N1). Each plate was coated with a thickness of 100μ by plasma spraying. Test piece 'I: On SCMV4 steel, the first and second layers were the same as test piece 3, and the third layer was coated with alumina by plasma spraying to a J7 thickness of 50 μm. Try Jli'fl-! + 5: SCMV4m material 1 was coated with the same first layer as in test j42, and the second layer was coated with alumina to a thickness of 50 (1) by plasma spraying.
.. :. The test halo ° S CM V 4 steel was coated with a chromium-nickel alloy (50% Cr-50% N1) in the first layer and 30% alumina in the second layer [J Moon nickel alloy (50% C)]. -50%N1)7
The 0% mixture was coated with a thickness of 100 μm each by blasting with a blaster. Test piece 7: SCMV4flli! On top of the material, the first layer is chromium-nickel alloy (85% Cr-15% Ni>, the second layer is 30% alumina, chromium-nickel alloy (50% Cr-50% N1)7
0% mixture was coated with a thickness of 100 μm each by plasma cutting. Test C8: Chromium-silicon-nickel alloy (20%0r-10%Si-70%N1) as the first layer on SCMV4 steel material, aluminum J' as the second layer
30%, Ri[J moonicle alloy (50%Cr-50%
A 70% mixture of N1) was coated with a thickness of 100 μm each by blaster spraying. As shown by the line in Figure 1, the weight of specimen-C, which has not been coated with anti-corrosion coating, decreases in weight, but the amount of corrosion increases with the passage of 8N. ,
The corrosion rate during the first year is 1.5 mm or more. In contrast, test H line 2.3 was applied to which the present invention was applied and a coating layer effective for corrosion prevention was formed. /1.5°6, there is almost no weight loss and it is below the measured nJ capability limit. In other words, there was almost no corrosion, proving the effectiveness of the present invention. In addition, when the chromium content of the first layer exceeds the range of the present invention, peeling of the coating layer occurs in test piece 7'c'' indicated by line 7; If a third element other than nickel, such as silicon, is added too quickly, such as 10%, the coating layer will peel off, resulting in no corrosion-preventing effect. Furthermore, in test J12, j also used 23L03 instead of UNa2CO3 (17 test piece 9, Jj Yohi test piece 5).
Smell - Alumino and Na2CO3 instead of C alumina
CI'' test using a mixture with a 1:1 ratio of 141
10, the same corrosion resistance test as J was conducted, and test piece 2 and test)'+! ') similar results were obtained for 1q. 4. Brief explanation of the drawings FIG. 1 is a graph showing the results of the example.

Claims (1)

【特許請求の範囲】 1)I+(、eを含有りる8温ガスに曝される金属表面
」−に、クロ11とニッケルをクロム/ニッケル重量比
2/′8〜8 / 2 ’(含む混合物(I)の第1層
を、その上に第1層と異る組成の第2層を夫々溶q」に
より形・成づることを特徴とする防食Ij法。 2)第2層か、重か比で混合物(I>30%〜70%と
アルカリ金属及びアルカリ土類金属の炭M塩の少くとも
1種70%〜30%からなる特許請求の範囲第1項記載
の方γ去。 3)第2層が、小母比で混合物(i)30〜70%とセ
ラミックス70〜30%からなる特許1if3求の範(
IIIJ第1項記載の方法。 4)第2Mが実質的にセラミックスからなる特許請求の
範囲第1項記載の方法。 5)第2層の上にセラミックスからなる第3層が形成さ
れる特許請求の範囲第3項記載の方法。 6)混合物(I)がクロム、ニッケルの伯に3重量%以
下の他元素を含む特許請求の範囲第1〜5項記載の方法
。 7)溶用がプラスチックである特許請求の範囲第1〜6
項記載の方法。
[Claims] 1) Chromium 11 and nickel are added to the metal surface exposed to 8-temperature gas containing I+(, e) at a chromium/nickel weight ratio of 2/'8 to 8/2' (including The anticorrosion Ij method is characterized in that a first layer of mixture (I) is formed and a second layer having a composition different from the first layer is formed on top of the first layer by respectively melting q. 2) Is the second layer heavy? The method according to claim 1, consisting of a mixture (I > 30% to 70%) and at least 70% to 30% of at least one kind of alkali metal and alkaline earth metal carbonate salts. 3) The second layer consists of a mixture (i) of 30 to 70% and a ceramic of 70 to 30% in a small matrix ratio (see Patent 1if3).
The method described in Section 1 of IIIJ. 4) The method according to claim 1, wherein the second M consists essentially of ceramics. 5) The method according to claim 3, wherein a third layer made of ceramic is formed on the second layer. 6) The method according to claims 1 to 5, wherein the mixture (I) contains chromium, nickel, and 3% by weight or less of other elements. 7) Claims 1 to 6 in which the material is plastic
The method described in section.
JP21667982A 1982-12-10 1982-12-10 Corrosion preventing method Pending JPS59107070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21667982A JPS59107070A (en) 1982-12-10 1982-12-10 Corrosion preventing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21667982A JPS59107070A (en) 1982-12-10 1982-12-10 Corrosion preventing method

Publications (1)

Publication Number Publication Date
JPS59107070A true JPS59107070A (en) 1984-06-21

Family

ID=16692220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21667982A Pending JPS59107070A (en) 1982-12-10 1982-12-10 Corrosion preventing method

Country Status (1)

Country Link
JP (1) JPS59107070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189282A (en) * 2017-04-28 2018-11-29 三菱日立パワーシステムズ株式会社 Boiler and manufacturing method and repair method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189282A (en) * 2017-04-28 2018-11-29 三菱日立パワーシステムズ株式会社 Boiler and manufacturing method and repair method of the same

Similar Documents

Publication Publication Date Title
WO1998037253A1 (en) Heating tube for boilers and method of manufacturing the samme
JPH1088293A (en) Alloy having corrosion resistance in crude-fuel and waste-burning environment, steel tube using the same, and its production
JPH0925536A (en) Acid dew point corrosion resistant steel
JP3088652B2 (en) Vitreous sprayed material coated member having self-repairing action and method of manufacturing the same
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
JP4999042B2 (en) Hot-corrosion resistant metal member, manufacturing method of hot-corrosion resistant metal member
JPS59107070A (en) Corrosion preventing method
WO1995024512A1 (en) ALLOY AND MULTILAYER STEEL PIPE HAVING CORROSION RESISTANCE IN ENVIRONMENT FOR BURNING FUEL CONTAINING V, Na, S and Cl
Zhang et al. Effect of enamel coating on the hot corrosion of 304 stainless steel beneath KCl–ZnCl2 deposits at 450° C
JPH10274401A (en) High temperature resistant and corrosion resistant heat exchanger tube of waste incineration boiler and super heater
JPH0115764B2 (en)
KR100207864B1 (en) Steel for chimmey and flue excellent in pitting resistance
JPH07103438B2 (en) Alloys and multi-layer steel pipes that have corrosion resistance in combustion environments containing V, Na, S, and Cl
JP4127447B2 (en) Incinerator body with excellent high temperature corrosion resistance and incinerator facilities
Daniel et al. Furnace-wall corrosion in refuse-fired boilers
JPH0254423B2 (en)
USAMI et al. New S-TENTM1: An Innovative Acid-Resistant Low-Alloy Steel
Nakagawa et al. Effect of HCI on the corrosion of waterwall tubes in a waste incineration plant
JP2643709B2 (en) High corrosion resistant alloy for boiler heat transfer tubes
JP2005272927A (en) High temperature corrosion resistant material
JP3923163B2 (en) Waste incinerator
JP2007054887A (en) Heat resistant clad steel sheet
JPH07243792A (en) Coated steel pipe for boiler
JPH08219427A (en) Operating method of municipal waste incinerating plant
JPH09241667A (en) Anticorrosive additive for incineration plant for municipal waste and/or sludge and its use