JPS59106863A - Manufacture of rotary electric machine - Google Patents

Manufacture of rotary electric machine

Info

Publication number
JPS59106863A
JPS59106863A JP21383582A JP21383582A JPS59106863A JP S59106863 A JPS59106863 A JP S59106863A JP 21383582 A JP21383582 A JP 21383582A JP 21383582 A JP21383582 A JP 21383582A JP S59106863 A JPS59106863 A JP S59106863A
Authority
JP
Japan
Prior art keywords
resin
insulating layer
impregnated
slot
aromatic polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21383582A
Other languages
Japanese (ja)
Inventor
Hideo Akahori
秀夫 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21383582A priority Critical patent/JPS59106863A/en
Publication of JPS59106863A publication Critical patent/JPS59106863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PURPOSE:To enhance the insulating reliability by facilitating the exfoliation of a protecting insulating layer for covering a non resin-impregnated ground insulating layer outside a coil conductor, thereby suppressing the thermal stress to be at an insulated coil to a low value. CONSTITUTION:An aromatic polyimide film is wound on the outer periphery of a coil conductor 1 to form a ground insulating layer 2. Further, aromatic polyamide paper and aromatic polyamide non-woven fabric are heat-press-bonded with silicone resin as a binder under the pressure of 5kg/cm<2> in an insulating tape, which is wound on the outer periphery to form a protecting insulating layer 3, and a non-resin-impregnated insulated coil 4 is manufactured. Two layers of the coil 4 are formed, the aromatic polyamide paper is enclosed as a slot liner 5, contained in the slot 7 of a core 6, a wedge 8 is hitted to the hole of the slot 7, heat resistant epoxy resin is fully impregnated, and thermoset.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は鉄心と共に樹脂を全含浸した絶縁線輪の熱伸び
に対する応力を軽減し、絶縁の信頼性を高めるようにし
た回転電機の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a rotating electrical machine that reduces stress due to thermal elongation of an insulated wire ring that is fully impregnated with resin together with an iron core, and improves insulation reliability. .

〔発明の技術的付置とその問題点〕[Technical placement of the invention and its problems]

回転電機用絶縁線輪の製造方法は大別するとレジンリッ
チ方法と真空加圧含浸方法であるが、近年は経済的およ
び品質的見地から真空加圧含浸方法が主流となってきた
、特に直流−,動機の′…:機子巻梅や巻版形訪導電動
機の回転子巻線等は回転体であるため、鉄心のスロット
に樹脂未含浸絶縁線輪を納めてから、鉄心と共に樹脂を
真空加圧含浸するいわゆる全含浸法が、線輪の振動を防
止するので好ましい。更にこの全含浸法によれば、冷却
効果や絶縁性能も向上するので、中、小形機から大形伝
への適用拡大が図られるようになった。しかし、大形機
でも鉄心長の長い場合は、絶縁線輪と鉄心とが含N 4
i1脂により強固に一体化されているため、運転温度が
高くなると、絶縁線輪と鉄心との熱地び差によシ、絶縁
層に大きな機砿的応力が加わり、絶縁耐力が急激に低下
することが分った。
The manufacturing methods for insulated wire rings for rotating electric machines can be roughly divided into the resin-rich method and the vacuum pressure impregnation method.In recent years, the vacuum pressure impregnation method has become mainstream from an economical and quality standpoint. , Motive's...: Since the rotor windings of rotor windings and roll-type conductive motors are rotating bodies, a non-resin-impregnated insulated wire ring is placed in the slot of the iron core, and then the resin is vacuumed together with the iron core. The so-called total impregnation method, which involves pressure impregnation, is preferred because it prevents vibration of the coil. Furthermore, this total impregnation method improves the cooling effect and insulation performance, so its application has been expanded from small to medium-sized machines to large-sized machines. However, even in large machines, if the core length is long, the insulated wire ring and core may contain N4
Because they are strongly integrated with i1 resin, when the operating temperature rises, the thermal difference between the insulated wire ring and the iron core causes large mechanical stress to be applied to the insulating layer, causing a rapid decrease in dielectric strength. I found out that I can.

このため、従来は絶縁線輪を包むスロットライナと鉄心
との間にテフロン等の離型材料を介在させることも試み
られたが、材料が高価であること、および薄膜フィルム
であるため機械的強度が不十分であること、さらには、
テフロンの両面の空隙部に含浸働脂が局部的に付着し、
絶縁層を損傷する場合もあることが分り、実用には到っ
ていない。
For this reason, conventional attempts have been made to interpose a release material such as Teflon between the slot liner that wraps the insulated wire ring and the iron core, but the material is expensive and because it is a thin film, it has poor mechanical strength. In addition,
The impregnated working fat locally adheres to the voids on both sides of the Teflon.
It has been found that this method may damage the insulating layer, so it has not been put to practical use.

この他には、スロットライナと鉄心との間に離型剤を塗
って、離型性を持たせる試みも行なわれたが、離型剤が
含浸樹脂に溶解し、離型効果が失なわれ、これも実用に
は到っていない。
Another attempt was made to apply a mold release agent between the slot liner and the iron core to provide mold release properties, but the mold release agent dissolved in the impregnated resin and the mold release effect was lost. , this also has not been put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明は鉄心長の長い回転′隠棲に全含浸法を適用しな
がらも、絶縁線輪に発生しようとする熱応力を低く抑え
、絶縁信頼性の高い回転電機を容易に製造する方法を提
供することを目的とする。
The present invention provides a method for easily manufacturing a rotating electrical machine with high insulation reliability by suppressing thermal stress generated in an insulated wire ring while applying the total impregnation method to a rotating machine with a long core length. The purpose is to

〔発明の概皆〕[Overview of the invention]

本発明においては、線輪導体に切崩未含浸対地絶縁層を
設け、この対地絶縁層の外側に保護絶縁層を設けて樹脂
未含浸絶縁線輪を形成し、これをスロットライナで包ん
で回転電機鉄心のスロットに納めた佼、その鉄心と共に
樹脂中に入れて(&J 1lttを含浸し、その俊切脂
中から取出して含浸4話11財イ便化処理を行なう回転
′−機の製造方法において、保護絶縁層はシリコーン樹
脂をバインダーにして2枚の耐熱性繊維基杓を貼漸して
製造した絶縁テープf:対地絶縁層の外側に巻回するこ
とによって形成する。これによって絶縁線輪と鉄心とが
温IW上昇による熱延び走を生じた時、シリコーン位(
脂をバインダーにして貼宥した2枚の耐熱性憶維基材間
に剥離を生じさせ、この部分にて熱延び差を逃がし、対
地絶縁層に損傷を与えないようにするものである。
In the present invention, an unimpregnated ground insulating layer is provided on the wire conductor, a protective insulating layer is provided on the outside of this ground insulating layer to form an unimpregnated insulated wire ring, and this is wrapped in a slot liner and rotated. A method for manufacturing a rotary machine in which a can placed in a slot of an electrical iron core is impregnated with resin (&J 1ltt) together with the iron core, and is taken out from the resin and subjected to impregnation treatment. In the above, the protective insulating layer is formed by winding the insulating tape f, which is manufactured by pasting two heat-resistant fiber base ladle with silicone resin as a binder, on the outside of the ground insulating layer. When the iron core and the iron core undergo hot elongation due to an increase in temperature IW, the silicone level (
Peeling is caused between two heat-resistant memory fiber base materials bonded using fat as a binder, and the difference in heat elongation is released in this area to prevent damage to the ground insulating layer.

し発明の実〃iq例〕 以下、本発明の一実施例について、第1図を参照して説
明する。線輪導体(1)の外周に芳香族ポリアミド紙・
イルム(カプトンと百5デュポン社前品名のものを用い
た)を巻回して対地絶縁層(2)全形成し、その外周に
、芳香族ポリアミド紙(Aティシュとぼう日本アロマ社
曲品名のものを用いた)と芳香族ポリアミド不織布(K
H3003CTという番号の日本バイリーン社製のもの
を用いた)とをシリコ・−ン樹脂(YR−3340と言
う東芝シリコーン社曲品名のものを用いた)をバインダ
ーとして圧力5kV′ctAで熱圧渚させた絶縁テープ
を巻回して保護絶縁層(3)を形成し、3m長さの樹脂
未含浸絶縁線輪(4)を製造する。この樹脂未含浸絶縁
線輪(4)を2層にして、芳香族ボリアばド紙(ノーメ
ックスと菖うデュポン社曲品名のものを用いた)をスロ
ットライナ(5)として包み込み、2m長さの鉄心(6
)のスロット(7)に納め、スロット(力量ロ部に楔(
8)を鉄心全長にわたって打ち込み、耐熱性エポキシ樹
脂で全含浸し、加熱硬化させた。これを6個作り試料A
と称することにする。
EMBODIMENT OF THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to FIG. Aromatic polyamide paper is placed around the outer circumference of the wire conductor (1).
The ground insulating layer (2) is completely formed by winding ilm (Kapton and 105 DuPont's product names), and aromatic polyamide paper (A tissue, product name of Japan Aroma Company) is wrapped around the outer periphery. ) and aromatic polyamide nonwoven fabric (K
H3003CT manufactured by Nippon Vilene Co., Ltd.) was used as a binder, and a silicone resin (YR-3340 manufactured by Toshiba Silicone Co., Ltd. was used) was used as a binder and heat-pressed at a pressure of 5 kV'ctA. A protective insulating layer (3) is formed by winding the insulating tape, and a 3 m long non-resin-impregnated insulating coil (4) is manufactured. This non-resin-impregnated insulating wire (4) was made into two layers, and aromatic boria oxide paper (made by DuPont Co., Ltd. under the name Nomex) was wrapped as a slot liner (5) to form a 2 m long Iron core (6
) into the slot (7), and insert the wedge (
8) was driven over the entire length of the core, completely impregnated with heat-resistant epoxy resin, and cured by heating. Make 6 of these and sample A
I will call it .

次に比較のために従来方法によるものとして、試料Aの
保醗絶縁層(3)ヲ、ガラステープを巻回した保護絶縁
層に置き換え、他は試料Aと同様にして試料Bf:6個
製造した。
Next, for comparison, as a conventional method, the protective insulating layer (3) of sample A was replaced with a protective insulating layer wrapped with glass tape, and the other things were the same as sample A. Sample Bf: 6 pieces were manufactured. did.

次に作用について説明する。Next, the effect will be explained.

本実施例による試料Aと従来例による試料Bとの作用効
果を比較するため、両者から2個ずつ選び、通電により
下限が50℃、上限が180℃の温度を繰返し印加する
ヒートサイクル試験を3000回実施した。ヒートサイ
クル試験完了後、鉄心端部のスロットライナ(5)から
外れた部分の絶縁層の観察を行なったところ、試料Aに
は試#aMの状態との変化は全く見られなかったが、試
料Bには微少なりラックが多数見られた。更に残った両
試料A、Hの4個を含め、2個ずつ1組にして、ヒート
サイクル試験を行なう前のものと、ヒートサイクル試験
を1500回行なったものと、前記ヒートサイクル試験
を3000回行なったものとについて、破壊電圧を求め
たところ、第2図に示すように明らかな差が見られた。
In order to compare the effects of sample A according to this example and sample B according to the conventional example, two samples were selected from each sample and subjected to a heat cycle test in which a lower limit of 50 degrees Celsius and an upper limit of 180 degrees Celsius were repeatedly applied by energization for 3000 degrees. Conducted twice. After the heat cycle test was completed, we observed the insulating layer at the part of the core end that had come off the slot liner (5), and found that there was no change in the state of sample A compared to sample #aM. In B, many small racks were observed. Furthermore, the remaining four samples A and H were combined into two sets, one before the heat cycle test, one after the heat cycle test 1,500 times, and the heat cycle test after the heat cycle test 3,000 times. When the breakdown voltage was determined for the two samples, a clear difference was found as shown in FIG.

第2図の曲線Aは試料Aの場合を示し、曲線Bは試料B
の場合を示し、横軸はヒートサイクル回数をとり、縦軸
は試料Bのヒートサイクル試験を行なわない場合の破壊
電圧を100チとして、他を相対値で示す相対破M電圧
をとった1、この第2図によって見れば不実施例による
試料Aの方がヒートサイクルに殆ど関係なく、従来例の
試料Bの初期値より約25%も良好な値を維持している
のに対し、従来例の試料Bはヒートサイクルにより破壊
電圧が半減するという、ひどい状態になることが分る。
Curve A in Figure 2 shows the case of sample A, and curve B shows the case of sample B.
The horizontal axis shows the number of heat cycles, and the vertical axis shows the relative breakdown M voltage, where the breakdown voltage when sample B is not subjected to the heat cycle test is set to 100, and the other values are shown as relative values. As shown in Fig. 2, Sample A according to the non-conventional example has almost no relation to the heat cycle and maintains a value about 25% better than the initial value of Sample B according to the conventional example, whereas the conventional example It can be seen that Sample B is in a terrible state, with its breakdown voltage reduced by half due to heat cycling.

そして絶縁破H場所は、試料、Aでは鉄心中央部、試料
Bでは鉄心端部に集中していたことも分っ*、 。
It was also found that insulation breakdown H was concentrated at the center of the core in sample A, and at the end of the core in sample B*.

上記の試験終了後、侯(8)をタガネで粉砕し除去した
後、鉄心(1)端部からテーバ状のタガネ全打込んで、
絶縁線輪と鉄心との固漕力を調べた。試料Aは鉄心から
絶縁線−を容易に分解することが出来た。その分解部分
は、保薩絶縁層(3)のシリコーン樹脂貼后部分の剥離
によっていた。一方、試料Bは固宥力か強く、メガネを
打込むと、対地絶縁層および保級絶縁層にクラックが生
じ、更に分解を進めると線輪導体内での剥離にまで進展
した。
After completing the above test, the Hou (8) was crushed and removed with a chisel, and then a tapered chisel was fully driven into the end of the core (1).
The stiffening force between the insulated wire ring and the iron core was investigated. In sample A, the insulated wire could be easily disassembled from the iron core. The decomposition part was due to peeling of the silicone resin adhesive part of the protective insulation layer (3). On the other hand, sample B had a strong rigidity, and when the glasses were driven in, cracks occurred in the ground insulating layer and the grade insulating layer, and as the decomposition progressed further, this progressed to peeling within the wire conductor.

以−ヒを勘案すると、鉄心長が長く、鉄心と絶縁線輪と
の熱地び差が大きくなろうとする場合は、鉄心と杷縁蛛
輪との固層が強固な従来のものは、的に最も弱い絶縁層
でL6カ金受けるため、その絶縁層にクラックが発生す
るのである。これに対して、不実力山例のものは、絶縁
耐力に余り寄与しない保設絶縁層に機(成約弱点部を作
ることにより、第2図曲fHhに示すように耐ヒートサ
イクル特性の優れた回転電機を容易に製造することがで
きる。
Considering the following, when the core length is long and the difference in heat difference between the core and the insulated wire ring is going to be large, the conventional type with a strong solid layer between the core and the locomotive ring is not suitable for the purpose. Since L6 is the weakest insulating layer, cracks occur in that insulating layer. On the other hand, the unsatisfactory example has excellent heat cycle resistance characteristics, as shown in curve fHh in Figure 2, by creating a weak point in the storage insulating layer that does not contribute much to the dielectric strength. Rotating electric machines can be easily manufactured.

そして、応力緩和部分がスロットライナ(5)より内狽
0にあるため、スロットライナ(5)と楔(8)および
鉄心(6)の固盾力は強固に保つことができ、絶縁線輪
の撮動を低く押えることができる。
Since the stress relaxation part is located at a lower level than the slot liner (5), the shielding force of the slot liner (5), wedge (8), and iron core (6) can be maintained strong, and the insulated wire ring Shooting can be kept low.

尚、本発明は上配し、かつ図面に示した実施例のみに限
定されるものではなく、例えば含浸樹脂はエポキシ樹脂
でない他の樹脂を使用してもよいし、医峡絶#、層(3
) f:形成する絶縁テープは芳香族ポリアミド紙と芳
香族ボリアミド不織布との組合せでない他の耐熱性繊維
基材2枚の組合せ貼着によるものにしてもよい等、その
要旨を変史しない範囲で、独々変形して実施できること
は勿論である。
It should be noted that the present invention is not limited to the embodiments shown above and shown in the drawings; for example, the impregnating resin may be other than epoxy resin, 3
) f: The insulating tape to be formed may be made by pasting a combination of two heat-resistant fiber base materials other than the combination of aromatic polyamide paper and aromatic polyamide nonwoven fabric, as long as the gist is not changed. , of course, can be implemented with individual modifications.

〔発明の匈果〕[The fruits of invention]

以上説明したように本発明によれば、保護絶縁層を剥離
し易くしたことにより、絶縁線輪を収める鉄心長の長い
大形回転電機を全含浸法で製造しても、耐ヒートサイク
ル特性が優れ、絶縁信頼性の高い回転電機を容易に製造
することか出来る。
As explained above, according to the present invention, by making the protective insulating layer easy to peel off, even if a large rotating electric machine with a long iron core containing insulated wire rings is manufactured by the full impregnation method, the heat cycle resistance is maintained. It is possible to easily manufacture a rotating electric machine with excellent insulation reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例で製造途中の回転電機
のスロット部周辺を示す横断面図、第2図は本発明の方
法の一実施例で製造した回転電機と従来方法で製造した
回転電機のヒートサイクルに対する絶縁破壊電圧特性を
比較して示す曲線図である。 1・・・線輪導体  2・・・樹脂未含浸対地絶縁層3
・・・保護絶縁層 4・・・樹脂未含浸絶縁線輪5・・
・スロットライナ 6・・・鉄心7・・・スロット 代理人 弁理士 井 上 −男
Fig. 1 is a cross-sectional view showing the vicinity of the slot portion of a rotating electrical machine that is being manufactured using an embodiment of the method of the present invention, and Fig. 2 shows a rotating electrical machine produced using an embodiment of the method of the present invention and a rotating electrical machine produced using a conventional method. FIG. 2 is a curve diagram showing a comparison of dielectric breakdown voltage characteristics with respect to heat cycles of rotating electrical machines. 1... Wire conductor 2... Resin-unimpregnated ground insulation layer 3
...Protective insulating layer 4...Resin-unimpregnated insulating wire 5...
・Slot liner 6... Tetsushin 7... Slot agent Patent attorney Inoue - Male

Claims (2)

【特許請求の範囲】[Claims] (1)線輪黒体に樹脂未含浸対地絶縁層を設け、この対
地絶縁層の外側に保護絶縁層を設けて樹脂未含浸絶縁線
輪を形成し、これをスロットライナで包んで回転電機鉄
心のスロットに納めた後、その鉄心と共に樹脂中に入れ
て樹脂を含浸し、その後11脂中から取出して含浸樹脂
硬化処理を行なう回転電愼の!!!!!造方法において
、保護絶縁層はシリコーン樹脂をバインダーにして2枚
の耐熱性繊維基材を貼着して製造した絶縁テープを対地
絶縁層の外側に巻回することによって形成したことを特
徴とする回転軍機の製造方法。
(1) A non-resin-impregnated ground insulating layer is provided on the wire ring black body, a protective insulating layer is provided on the outside of this ground insulating layer to form a non-resin-impregnated insulated wire ring, and this is wrapped with a slot liner to form a rotating electric machine core. After placing it in the slot of the rotary electric machine, it is placed in resin together with the iron core and impregnated with resin, and then taken out from the resin and subjected to hardening treatment of the impregnated resin! ! ! ! ! In the manufacturing method, the protective insulating layer is formed by wrapping an insulating tape produced by pasting two heat-resistant fiber base materials using silicone resin as a binder around the outside of the ground insulating layer. Manufacturing method of rotating military aircraft.
(2)2枚の耐熱性繊維基材は芳香族ポリアミド紙と芳
香族ボリアミド不織布としたことを特徴とする特許M水
の範囲第1項記載の回転電機の製造方法。
(2) The method for manufacturing a rotating electric machine according to the scope of Patent M, item 1, wherein the two heat-resistant fiber substrates are aromatic polyamide paper and aromatic polyamide nonwoven fabric.
JP21383582A 1982-12-08 1982-12-08 Manufacture of rotary electric machine Pending JPS59106863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21383582A JPS59106863A (en) 1982-12-08 1982-12-08 Manufacture of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21383582A JPS59106863A (en) 1982-12-08 1982-12-08 Manufacture of rotary electric machine

Publications (1)

Publication Number Publication Date
JPS59106863A true JPS59106863A (en) 1984-06-20

Family

ID=16645810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21383582A Pending JPS59106863A (en) 1982-12-08 1982-12-08 Manufacture of rotary electric machine

Country Status (1)

Country Link
JP (1) JPS59106863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130892A3 (en) * 2011-04-01 2013-04-25 Wobben Properties Gmbh Laminated core assembly
DE102010001991B4 (en) * 2010-02-16 2015-12-03 Siemens Aktiengesellschaft Flat conductor device with two braided insulating layers and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001991B4 (en) * 2010-02-16 2015-12-03 Siemens Aktiengesellschaft Flat conductor device with two braided insulating layers and manufacturing method
WO2012130892A3 (en) * 2011-04-01 2013-04-25 Wobben Properties Gmbh Laminated core assembly
RU2571095C2 (en) * 2011-04-01 2015-12-20 Воббен Пропертиз Гмбх Laminated stack assembly

Similar Documents

Publication Publication Date Title
JP2738572B2 (en) High voltage insulation of electrical machines
US4918801A (en) Insulation system method for multiturn coils of high voltage electrical rotating machines
US4038741A (en) Method of making electrical coils for dynamo-electric machines having band-formed insulation material
CN102185432B (en) Method for realizing insulation around a conductive bar
JPS59106863A (en) Manufacture of rotary electric machine
JPS5899249A (en) Manufacture of coil for rotary electric machinery
JPH06217484A (en) Insulated coil
JP3284593B2 (en) Stator coil of high voltage rotating electric machine
JP3156370B2 (en) Insulation method for field winding of rotating electric machine
JPH09149578A (en) High pressure rotating machine coil
JPH06225489A (en) Stator coil of high voltage rotary apparatus
JP3518128B2 (en) Stator winding of rotating electric machine
JPS624937B2 (en)
JPS6059948A (en) Coil insulating method of rotary electric machine
JPH0698492A (en) Method and apparatus for winding support of rotating electric machine
JPS6059951A (en) Coil insulating method of rotary electric machine
JPH0576148A (en) Electric rotating machine
JPH08163839A (en) Manufacture of insulated coil for high voltage electric rotating machine
JPS631350A (en) Manufacture of insulating coil
JPS59113747A (en) Insulating method for coil of rotary electric machine
JPH0311952A (en) Insulated coil
JPH03128637A (en) High voltage rotating machine coil
JPS6146143A (en) Coil insulating method of rotary electric machine
JP2005051862A (en) Stator coil of rotary electric machine, manufacturing method of stator coil, and rotary electric machine equipped with stator coil
JPS61293139A (en) Manufacture of insulating coil