JPS5910646B2 - Method for separating trace amounts of vinyl chloride monomer from wet vinyl chloride polymer slurry - Google Patents

Method for separating trace amounts of vinyl chloride monomer from wet vinyl chloride polymer slurry

Info

Publication number
JPS5910646B2
JPS5910646B2 JP3167776A JP3167776A JPS5910646B2 JP S5910646 B2 JPS5910646 B2 JP S5910646B2 JP 3167776 A JP3167776 A JP 3167776A JP 3167776 A JP3167776 A JP 3167776A JP S5910646 B2 JPS5910646 B2 JP S5910646B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
slurry
wet
pvc
vcmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3167776A
Other languages
Japanese (ja)
Other versions
JPS52116404A (en
Inventor
克彦 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP3167776A priority Critical patent/JPS5910646B2/en
Publication of JPS52116404A publication Critical patent/JPS52116404A/en
Publication of JPS5910646B2 publication Critical patent/JPS5910646B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、湿潤塩化ビーニル重合体スラリー又は乳濁液
から含有する微量の塩化ビニル単量体を分離する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating trace amounts of vinyl chloride monomer from a wet vinyl chloride polymer slurry or emulsion.

塩化ビニル単量体(以下VCMRということがある)を
水性媒体中で懸濁重合させ、又は乳化重合させて夫々塩
化ビニル重合体(以下PVCということがある)のスラ
リー又は乳濁液を得る方法は公知である。
A method of obtaining a slurry or emulsion of vinyl chloride polymer (hereinafter sometimes referred to as PVC) by suspension polymerization or emulsion polymerization of vinyl chloride monomer (hereinafter sometimes referred to as VCMR) in an aqueous medium. is publicly known.

かかるスラリー又は乳濁液中には、通常の分離方法、乾
燥方法では分離できない微量のCVMRが含まれる。前
記通常の分離方法とは、該スラリー又は乳濁液中に残存
するVCMRを常圧又は減圧下に70℃以下多くは65
℃以下に加熱し、必要ならばその際適量の不活性ガスを
吹込む方法である。該分離方法によつてpVC中の残存
VCMR分は1000〜20000ppm程度(乾燥p
VC基準)に減少する。また前記通常の乾燥方法とは、
前記分離方法によつて残存VCMR分を1000〜20
000ppm程度にしたPVCスラリー又はPVC乳濁
液を公知方法で脱水し、減圧若しくは常圧でバッチ式、
流動式若しくはフラッシュ乾燥等を行う方法である。該
乾燥方法によつてPVC中の残存VCMR分は100〜
2000ppm程度(乾燥PVC基準)に減少する。本
発明が解決しようとする技術問題は、1前記通常の分離
方法の不充分さの解決と、2該分離方法の結果物たる残
存VCMR分を1000〜20000ppm含有するP
VCスラリー又はラテツクスを乾燥する際に乾燥用気体
と共に環境中に放出される微量のVCMRの発生防止、
3前記通常の乾燥方法によるPVC中の残存VCMRが
PVCの成型加工の際加工々場の雰囲気を染汚し、又は
該加工によるPVC成型品中になお残存する極く微量の
塩化ビニル単量体が該成型品中使用者の健康を害するお
それを防止するにある。
Such a slurry or emulsion contains a trace amount of CVMR that cannot be separated by conventional separation or drying methods. The above-mentioned conventional separation method means to separate the VCMR remaining in the slurry or emulsion under normal pressure or reduced pressure at 70°C or lower, often at 65°C.
This method involves heating the material to a temperature below °C and, if necessary, blowing in an appropriate amount of inert gas. Depending on the separation method, the residual VCMR content in pVC is approximately 1000 to 20000 ppm (dry pVC).
VC standard). Moreover, the above-mentioned normal drying method is
By using the above separation method, the remaining VCMR content can be reduced to 1000 to 20
PVC slurry or PVC emulsion with a concentration of about 000 ppm is dehydrated by a known method, and then batch-processed under reduced pressure or normal pressure.
This is a method using a fluidized method or flash drying. Depending on the drying method, the residual VCMR content in PVC is 100~
It decreases to about 2000 ppm (based on dry PVC). The technical problems to be solved by the present invention are as follows: 1. Solving the insufficiency of the conventional separation method, and 2.
Prevention of trace amounts of VCMR released into the environment together with drying gas when drying VC slurry or latex;
3. Residual VCMR in PVC from the above-mentioned normal drying method may contaminate the atmosphere of the processing plant during PVC molding, or trace amounts of vinyl chloride monomer still remaining in PVC molded products resulting from said processing may The aim is to prevent the molded product from harming the health of the user.

これらの問題解決の為に、最近数多く提案された方法と
しては、例えば、塩化ビニル重合体を含有するスラリー
を70℃〜125℃で加熱し(特開昭50−17288
号)、若しくは湿潤塩化ビニル重合体のケーキ(粉末の
集合体)を水蒸気と接触させ(特開昭51−17289
号)、又は湿潤塩化ビニル懸濁重合体に温度80〜15
0℃の水蒸気を貫流させる(特開昭51−18783号
)等の方法である。
In order to solve these problems, many methods have recently been proposed, such as heating a slurry containing a vinyl chloride polymer at 70°C to 125°C (Japanese Patent Application Laid-open No. 50-17288
No. 1), or by contacting a wet vinyl chloride polymer cake (powder aggregate) with water vapor (JP-A-51-17289).
), or wet vinyl chloride suspension polymer at a temperature of 80 to 15
This is a method such as passing water vapor at 0° C. (Japanese Patent Application Laid-open No. 18783/1983).

これらの方法は、いずれも水蒸気を使用する点とPVC
の熱安定性の見地からすると高温(70℃〜150℃)
を使用する(以下高温処理ということがある)点で共通
し、水蒸気と共に分離されたVCMRの回収が可能であ
り、乾燥PVC製品中のCMR量を10ppm以下にす
ることができる点で優れている。しかしながら、70℃
〜150℃のような高温を用いる為、PVC製品の熱安
定性が害される場合がおこり易く、従つて高温水蒸気処
理の最適適用条件が、同一重合処方の重合物であつても
その箇々のバツチによつてバラツクという欠点がある。
また、熱安定性は、PVC製品の加工時にのみ良好であ
ればよいのではなく、PvC加工製品の使用継続中に悪
化してはならない。以上の観点から、水蒸気処理はとも
かく高温処理は好ましくない。本発明者は、かかる高温
を使用することなく前記1〜3の技術問題を解決する方
法について研究し、湿潤塩化ビニル重合体中に含まれて
いるVCMRの脱着除去に25℃以上で気体である炭化
水素(以下不活性炭化水素ガスという)を使用すると7
0℃に満たない温度で処理した場合であつても充分に前
記のような公知方法に匹敵する結果が得られ、かつ被処
理PvC製品の熱安定性が前記公知の水蒸気処理品より
すぐれているという結果を得て本発明を完成した。
All of these methods use water vapor and PVC.
From the standpoint of thermal stability, the temperature is high (70°C to 150°C)
(hereinafter referred to as high-temperature treatment), it is possible to recover the VCMR separated along with the water vapor, and it is superior in that it is possible to reduce the amount of CMR in the dry PVC product to 10 ppm or less. . However, 70℃
Since high temperatures such as ~150°C are used, the thermal stability of PVC products is likely to be impaired. Therefore, the optimum application conditions for high-temperature steam treatment are based on individual batches of polymers even if they have the same polymerization recipe. The disadvantage is that there is variation depending on the
Furthermore, the thermal stability does not have to be good only during processing of the PVC product, but must not deteriorate during continued use of the PVC processed product. From the above point of view, high temperature treatment is not preferred, apart from steam treatment. The present inventor has researched a method for solving the technical problems 1 to 3 above without using such high temperatures, and has developed a method for desorbing and removing VCMR contained in a wet vinyl chloride polymer using a gas at 25°C or higher. When using hydrocarbons (hereinafter referred to as inert hydrocarbon gas), 7
Even when treated at temperatures below 0°C, results sufficiently comparable to the known methods described above can be obtained, and the thermal stability of the PvC product to be treated is superior to that of the known steam-treated products. With this result, the present invention was completed.

以上の記述から明らかなように本発明の目的は、第1に
新規なPVC製品中の微量のVCMRを除去する方法を
提供するにあり、第2に高温に加熱することの不要な従
つてPVC製品の熱安定性の良好なPVC製品の製法を
提供するにあり、第3に微量のVCMRを湿潤PVCか
ら有効に回収する方法を提供するにある。
As is clear from the above description, the purpose of the present invention is, firstly, to provide a new method for removing trace amounts of VCMR in PVC products, and secondly, to provide a method for removing trace amounts of VCMR from PVC products that does not require heating to high temperatures. The object of the present invention is to provide a method for producing a PVC product with good thermal stability, and a third object is to provide a method for effectively recovering trace amounts of VCMR from wet PVC.

其他の目的は、本発明の以下の記述から明らかにされる
。本発明は、(1)湿潤塩化ビニル重合体スラリーから
微量の塩化ビニル単量体を分離する方法において、25
℃以上で気体である炭化水素を25℃以下の該スラリー
に吹込むか、又は25℃以下の該スラリーに吹込んだ後
25℃以上に加熱することを特徴とする方法。
Other objects will become apparent from the following description of the invention. The present invention provides (1) a method for separating a trace amount of vinyl chloride monomer from a wet vinyl chloride polymer slurry;
A method characterized in that a hydrocarbon which is a gas at a temperature of 0.degree. C. or above is blown into the slurry at 25.degree. C. or below, or the slurry is blown into the slurry at 25.degree. C. or below and then heated to 25.degree.

(2)湿潤塩化ビニル重合体スラリーから微量の塩化ビ
ニル単量体を分離する方法において、該塩化ビニル重合
体スラリーを70℃以上110℃以下に1分以上30分
以下加熱した後、70℃未満迄冷却し、25℃以上で気
体である炭化水素を25℃以上の該スラリーに吹込むか
、又は25℃以下の該スラリーに吹込んだ後25℃以上
に加熱することを特徴とする方法。
(2) In a method for separating a trace amount of vinyl chloride monomer from a wet vinyl chloride polymer slurry, the vinyl chloride polymer slurry is heated to a temperature of 70°C or more and 110°C or less for 1 minute or more and 30 minutes or less, and then the temperature is lower than 70°C. A method characterized by blowing a hydrocarbon which is a gas at 25°C or higher into the slurry at 25°C or higher, or blowing into the slurry at 25°C or lower and then heating it to 25°C or higher.

である。以下前言α1)を本発明の第1の発明と前記(
2)を本発明の第2の発明という。本発明において、湿
潤塩化ビニル重合体スラリーとは、懸濁重合法によつて
製造した塩化ビニル単独重合体若しくは塩化ビニル分を
50重量%以上含む塩化ビニルと他のエチレン性不飽和
結合を有する単量体との共重合体の湿潤粉末若しくは乳
濁粒子であつて水性媒体に懸濁させ若しくは乳濁させた
ものをいう。
It is. Hereinafter, the preceding statement α1) is defined as the first invention of the present invention and the above (α1).
2) is referred to as the second invention of the present invention. In the present invention, wet vinyl chloride polymer slurry refers to a vinyl chloride homopolymer produced by a suspension polymerization method or a monopolymer containing vinyl chloride containing 50% by weight or more of vinyl chloride and other monomers having ethylenically unsaturated bonds. It refers to wet powder or emulsion particles of a copolymer with a copolymer, which is suspended or emulsified in an aqueous medium.

かかるスラリーは塩化ビニル又は塩化ビニルとエチレン
性不飽和結合を有する単量体を水性媒体に懸濁させつつ
重合して得られることは公知であり、若しくは、かかる
スラリーから一旦乾燥粉末として収得したPVC(共重
合体を含む)を再度水性媒体に分散させたものでもよい
。ここにエチレン性不飽和結合を有する単量体とは、例
えばエチレン、プロピレンのような低級α−オレフイン
、酢酸ビニル、塩化ビニリデンのようないわゆるビニル
単量体、アクリル酸エステル、アクリルニトリルのよう
なアクリレート、其他の共重合可能な単量体をいう。ま
た、水性媒体とは、水、水と懸濁安定剤、乳化剤、其他
同等の効果を有する界面活性剤、其他必要な添加剤を溶
解させ若しくは均一に配合した媒体をいう。微量の塩化
ビニル単量体は、該スラリー中においてその大部分が湿
潤PVC粉末若しくは乳濁粒子に含まれているのであつ
て、PVCはCMRには溶解しないから、その含まれて
いる状態は吸着であると解される。次に本発明に於て使
用する25℃以上で気体である炭化水素とは、例えばメ
タン、エタン、プロパン、ブタンのような飽和脂肪族炭
化水素、エチレン、プロピレン、ブチレンのような脂肪
族不飽和炭化水素をいう。
It is known that such a slurry can be obtained by polymerizing vinyl chloride or a monomer having vinyl chloride and an ethylenically unsaturated bond while suspending it in an aqueous medium, or PVC obtained once as a dry powder from such a slurry. (including copolymers) may be dispersed again in an aqueous medium. Monomers having ethylenically unsaturated bonds include, for example, lower α-olefins such as ethylene and propylene, so-called vinyl monomers such as vinyl acetate and vinylidene chloride, acrylic acid esters, and acrylonitrile. Refers to acrylates and other copolymerizable monomers. In addition, the aqueous medium refers to water, a medium in which water and a suspension stabilizer, an emulsifier, a surfactant having an equivalent effect, and other necessary additives are dissolved or uniformly blended. The trace amount of vinyl chloride monomer is mostly contained in the wet PVC powder or emulsion particles in the slurry, and since PVC does not dissolve in CMR, the state in which it is contained is due to adsorption. It is understood that Next, the hydrocarbons that are gaseous at temperatures above 25°C used in the present invention include saturated aliphatic hydrocarbons such as methane, ethane, propane, and butane, and aliphatic unsaturated hydrocarbons such as ethylene, propylene, and butylene. Refers to hydrocarbons.

以上の記述で明らかなように使用する炭化水素は25℃
未満では、気体であつても、液体であつてもよい。これ
らのガスは湿潤PVC粉末の表面に吸着されているVC
MRに代つて吸着されてCMRの一部を脱着し、若しく
は被吸着VCMRの水性媒体への溶出を速め、また溶出
VCMRを溶解して系外に運び出す働きをする。かかる
脱着ないしは被吸着CMR除去機能は、空気窒素、アル
ゴン等の常用の不活性ガスを使用した場合は70℃未満
では殆んど効果がないか又は極めて不充分な効果しか得
られない。また水蒸気を70℃未満50℃以上で使用す
る場合は相当の効果が得られるが、減圧で行う必要があ
り、除去回収すべきVCMR量当り本発明で使用する炭
化水素に比較して大量の水蒸気を必要とする。また50
℃未満では殆んど効果がない。これに対し、本発明では
、吹込温度に制限なく、25℃以上で気体である炭化水
素を25℃以上の湿潤塩化ビニル重合体スラリーに吹込
んでVCMR除去効果をあげることができる。ただし、
7『C以上殊に80℃以上の該処理は、被処理PVCの
熱安定性を害するので、本発明の第2の発明の要件とし
て炭化水素処理と別途に実施する場合を除き好ましくな
い。25℃未満の湿潤塩化ビニル重合体スラリーに25
℃以上で気体である炭化水素を吹込む場合であつても本
発明のVCMR分離方法は効果を有する。
As is clear from the above description, the hydrocarbon used is at 25°C.
If it is less than that, it may be a gas or a liquid. These gases are VC adsorbed on the surface of wet PVC powder.
It functions to desorb a part of CMR that is adsorbed instead of MR, or to speed up the elution of adsorbed VCMR into an aqueous medium, and to dissolve and transport the eluted VCMR out of the system. Such desorption or adsorption CMR removal function has little or no effect at temperatures below 70° C. when a commonly used inert gas such as air nitrogen or argon is used. In addition, considerable effects can be obtained when water vapor is used at temperatures below 70°C and above 50°C, but it must be carried out under reduced pressure, and a large amount of water vapor is used per amount of VCMR to be removed and recovered compared to the hydrocarbons used in the present invention. Requires. 50 again
There is almost no effect below ℃. On the other hand, in the present invention, the VCMR removal effect can be achieved by blowing hydrocarbons that are gaseous at 25° C. or higher into a wet vinyl chloride polymer slurry at 25° C. or higher without any restriction on the blowing temperature. however,
Such treatment at a temperature of 7'C or higher, particularly 80C or higher, impairs the thermal stability of the PVC to be treated, and is therefore not preferred unless it is carried out separately from the hydrocarbon treatment as a requirement of the second aspect of the present invention. 25 to a wet vinyl chloride polymer slurry below 25°C.
The VCMR separation method of the present invention is effective even when gaseous hydrocarbons are blown at temperatures above .degree.

従つて、該スラリーが凍結しないで液状を保つ温度であ
れば、実施可能であるが、該処理に使用する炭化水素が
液体であつたり、若しくは該炭化水素のスラリーを構成
する水性媒体溶解量が比較的多量となる場合があるので
、その場合は25℃未満の前記処理後に該スラリーを2
5℃以上に加熱して該炭化水素を蒸発分離させることが
望ましい。25℃以上で気体である炭化水素に代えて不
活性ガス若しくは水蒸気を使用する方法は、前記した欠
点があり、70℃以上で気体であるような炭化水素は結
局70℃以上の処理温度を用いるか又は減圧処理を必要
とする。
Therefore, it is possible to carry out the treatment as long as the slurry remains in a liquid state without freezing, but if the hydrocarbon used in the treatment is liquid or the amount of hydrocarbon dissolved in the aqueous medium constituting the slurry is Since the amount may be relatively large, in that case, the slurry may be
It is desirable to evaporate and separate the hydrocarbons by heating to 5° C. or higher. The method of using an inert gas or water vapor instead of hydrocarbons that are gaseous at temperatures above 25°C has the drawbacks mentioned above, and hydrocarbons that are gaseous at temperatures above 70°C cannot be treated at a treatment temperature of 70°C or above. or require depressurization.

また、他の低沸点有機化合物例えばペンタン、ベンゼン
、ヘキサン、ヘキセンのような炭化水素を用いると最終
的にCMR又はこれらの炭化水素であつて湿潤PVCに
吸着されたものを除去するため湿潤PVCスラリーを7
0℃以上の温度で一定時間処理しなければならず、被処
理PVCの熱安定性を害するおそれが増大する。
Additionally, other low boiling point organic compounds such as hydrocarbons such as pentane, benzene, hexane, hexene can be used in the final CMR or wet PVC slurry to remove these hydrocarbons adsorbed on the wet PVC. 7
The treatment must be carried out at a temperature of 0° C. or higher for a certain period of time, which increases the risk of damaging the thermal stability of the PVC to be treated.

また、極性基を有する低沸点有機化合物は湿潤PVCに
吸着され易く、脱着が困難でPVC中の微量の存在は環
境保全上有害である。本発明に使用する25℃以上で液
体である炭化水素を使用する場合はこれらの欠点が、殆
んどあるいは全くない。吹込み方法は所定温度で所定時
間湿潤塩化ビニル重合体スラリーを撹拌下若しくは攪拌
なしで25℃以下で気体である炭化水素を吹込み、以後
は公知方法と同様に該スラリーを脱水し乾燥する。
In addition, low-boiling organic compounds having polar groups are easily adsorbed to wet PVC and are difficult to desorb, and their presence in PVC in trace amounts is harmful in terms of environmental protection. The use of hydrocarbons that are liquid at temperatures above 25° C., as used in the present invention, has little or no of these drawbacks. The blowing method is to blow a gaseous hydrocarbon into a wet vinyl chloride polymer slurry at a predetermined temperature for a predetermined time at 25° C. or lower with or without stirring, and then dehydrate and dry the slurry in the same manner as in a known method.

好ましい処理温度は25〜70℃未満であり、処理時間
は10分ないし300分である。高目の温度では一般に
比較的短時間の処理で目的を達成できる。該炭化水素の
排気は、圧縮液化して容易に塩化ビニル単量体を分離回
収できる。以上に説明した本発明(特に第1の発明)は
、前記公知方法に比較して次の効果を有する。
The preferred treatment temperature is from 25 to less than 70°C, and the treatment time is from 10 minutes to 300 minutes. Higher temperatures generally allow relatively short processing times to achieve the objective. The hydrocarbon exhaust gas can be compressed and liquefied to easily separate and recover vinyl chloride monomers. The present invention (especially the first invention) described above has the following effects compared to the known method.

1室温ないし、通常の重合温度である65℃以下でひき
つづき実施できるので、時間的損失がない。
Since the process can be carried out continuously at room temperature or below 65°C, which is the usual polymerization temperature, there is no time loss.

2水蒸気を使用しないので余分の水蒸気発生熱量又は処
理後の余分の冷却水を必要としない。
2.Since no steam is used, there is no need for extra steam generation heat or extra cooling water after treatment.

3湿潤状態の処理後のVCMR濃度は、100〜200
0ppmで公知の高温水蒸気処理の場合と差異がないが
、その後の公知方法による脱水乾燥によるVCMR除去
効果が高い。
3 VCMR concentration after wet treatment is 100-200
At 0 ppm, there is no difference from the known high-temperature steam treatment, but the subsequent dehydration and drying by the known method has a high VCMR removal effect.

425℃以下で気体の炭化水素が微量PVC製品中に残
存することがあつても、VCMRの吸着に較べて殆んど
あるいは全く毒性がない。
Even if trace amounts of gaseous hydrocarbons may remain in the PVC product below 425°C, there is little or no toxicity compared to VCMR adsorption.

5重合処方あるいはロッド間のバラツキを考慮してもな
お熱安定性不良のPVC製品が発生しない。
5 Even if variations in the polymerization recipe or between rods are taken into consideration, PVC products with poor thermal stability will not occur.

次に、本発明の第2の発明について、第1の発明と異る
点を説明する。
Next, the differences from the first invention regarding the second invention of the present invention will be explained.

この発明においては湿潤PVCスラリーを炭化水素処理
前に70℃以上〜110℃以下に1分以上30分加熱処
理する。この処理は直接VCMR除去を目的としたもの
でない。即ち、水蒸気を強いて発生させる必要はない。
これは湿潤PVC粒子の表面を軟化させて表面積を減少
させVCMRの吸着力を低下させる目的で行うのである
。従つて、特に80℃以上の場合予備試験により、熱安
定性に支障のない範囲に止めるべきである。これに反し
、70℃超80℃未満では30分実施しても大抵の場合
熱安定性に支障はない。しかし、25℃以上で気体であ
る炭化水素による処理後の湿潤PVCスラリー中のVC
MRは、特に著しく減少しないが、その後乾燥を得た製
品に於てよりVCMRの少い最終製品(PVC)が得ら
れる。従つて、例えば製品PVC中の残存VCMR量5
ppm以下非検出のように特にVCMRの残存量の少い
製品を得た場合に効果がある。
In this invention, the wet PVC slurry is heat-treated at 70° C. or higher and 110° C. or lower for 1 minute or more and 30 minutes before hydrocarbon treatment. This process is not intended for direct VCMR removal. That is, there is no need to forcefully generate water vapor.
This is done for the purpose of softening the surface of the wet PVC particles and reducing the surface area, thereby reducing the adsorption power of VCMR. Therefore, especially when the temperature is 80°C or higher, preliminary tests should be carried out to keep the temperature within a range that does not affect the thermal stability. On the other hand, at temperatures above 70°C and below 80°C, there is no problem with thermal stability in most cases even if the reaction is carried out for 30 minutes. However, VC in wet PVC slurry after treatment with hydrocarbons that are gaseous above 25°C
Although the MR is not particularly significantly reduced, a final product (PVC) with a lower VCMR is obtained in the product that is subsequently dried. Therefore, for example, the amount of residual VCMR in the product PVC is 5
This is particularly effective when obtaining a product with a small residual amount of VCMR, such as not detectable below ppm.

以下、実施例によつて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1〜5、比較例1〜3 懸濁重合法によつて製造し、未重合の単量体を65℃で
放出して、VCMR濃度11000ppm(乾燥PVC
量基準)の湿潤PVCスラリー(水性媒体700kg、
PVC3OOkg)を得た。
Examples 1 to 5, Comparative Examples 1 to 3 Produced by suspension polymerization method, unpolymerized monomers were released at 65°C, and the VCMR concentration was 11000 ppm (dry PVC
wet PVC slurry (700 kg of aqueous medium,
PVC3OOkg) was obtained.

このスラリーを攪拌下所定温度に保ち、所定の炭化水素
ガス各15k9を均一な速度で所定時間内で吹込んだ。
その間該スラリー中のVCMR濃度を測定した。ついで
、該処理後のスラリーを遠心脱水し、70℃の窒素で1
時間流動乾燥して水分約0.5%の乾燥PVCの製品を
得た。一方、比較例においては、所定温度、所定時間の
水蒸気処理を行い、その後同様に脱水乾燥した。また処
理すみの炭化水素は、ガスホルダーに回収した。所定条
件と結果を第1表に示す。註1 熱安定性試験は下記の
方法で行つた。
This slurry was maintained at a predetermined temperature while stirring, and 15 k9 of each predetermined hydrocarbon gas was blown into the slurry at a uniform rate within a predetermined time.
During this time, the VCMR concentration in the slurry was measured. Then, the slurry after the treatment was centrifugally dehydrated and soaked with nitrogen at 70°C for 1 hour.
A dry PVC product with a water content of about 0.5% was obtained by time-flow drying. On the other hand, in the comparative example, steam treatment was performed at a predetermined temperature and for a predetermined time, and then dehydration and drying were performed in the same manner. Hydrocarbons at the end of the treatment were collected in a gas holder. The predetermined conditions and results are shown in Table 1. Note 1 The thermal stability test was conducted using the following method.

品質試験法(』 乾燥樹脂の色:肉眼判定で室内光線(
昼光色)下で塩化ビニル樹脂粉末として白度の最もすぐ
れているものを純白、次のランクで純白よりやや黄色味
の認められるものを微黄色とした。
Quality test method () Color of dry resin: Judgment with naked eye indoor light (
The one with the highest whiteness as a vinyl chloride resin powder under daylight (daylight color) was classified as pure white, and the one with the next highest rank of slightly yellowish tinge than pure white was classified as faint yellow.

(ロ)乾燥樹脂の熱安定性:塩化ビニル重合体100g
r.にジオクチルフタレート50gr)ステアリン酸バ
リウム0.3gr)ステアリン酸カドミウム0.5gr
.を加えて混合後、150℃のロールで20分間混練し
て1m771のシートとしてとり出し、得られた膜の透
明性と着色度合を次の基準で比較する。
(b) Thermal stability of dry resin: 100g of vinyl chloride polymer
r. Dioctyl phthalate 50 gr) Barium stearate 0.3 gr) Cadmium stearate 0.5 gr
.. After mixing, the mixture was kneaded with rolls at 150° C. for 20 minutes and taken out as a 1 m771 sheet, and the transparency and degree of coloring of the resulting film were compared using the following criteria.

第1表に明らかなように、本発明の炭化水素ガス処理後
の湿潤スラリー中のVCMR値は、比較各例のそれに比
較して概ね劣る値を示すが、このものを公知方法で脱水
乾燥後は、比較各例と同等若しくは上廻る結果を得てお
り、また、熱安定性は、比較例では着色傾向を示す場合
があるに対し、本発明(第1の発明)の方法で実施した
場合は凡て良好であつた。このことは、本発明の有効性
、実用性を示すものである。実施例7〜12、比較例4
〜6 実施例1で使用したものと同一の湿潤スラリー(水性媒
体700k9、PVC3OOk9)を撹拌下に80℃で
20分処理した。
As is clear from Table 1, the VCMR value of the wet slurry after the hydrocarbon gas treatment of the present invention is generally inferior to that of each comparative example, but after dehydration and drying using a known method. obtained results that were equal to or superior to those of the comparative examples, and in terms of thermal stability, whereas the comparative examples sometimes showed a tendency to color, the results obtained when carried out by the method of the present invention (first invention) All were in good condition. This shows the effectiveness and practicality of the present invention. Examples 7 to 12, Comparative Example 4
~6 The same wet slurry as used in Example 1 (aqueous medium 700k9, PVC3OOk9) was treated at 80° C. for 20 minutes with stirring.

水蒸気の吹込みは行わず、従つて水蒸気の溜出はなかつ
た。その後65℃以下に冷却して攪拌下に所定温度、所
定の炭化水素ガス各15kgを均一な速度で所定時間で
吹込んだ。その間該スラリー中のVCMR濃度を測定し
た。ついで該スラリーを遠心脱水し、70℃の窒素で1
時間で流動乾燥して水分約0,5%の乾燥PVCの製品
を得た。一方、比較例4〜6においては、前記80℃、
20分の加熱処理後所定温度所定時間の水蒸気処理を行
い、その後同様に脱水乾燥した。所定条件と結果を第2
表に示す。第2表に明らかのように、本発明の第2の発
明にかかる予備加熱後炭化水素ガス処理後の湿潤スラリ
ー中のCMR値は、比較各例のそれに比較して概ね劣る
値を示すが、このものを公知方法で脱水乾燥後は、比較
各例と同等若しくは上廻る結果を得ており、また、対応
する第1表の実施例(本発明の第1の発明)と対比(実
施例1と実施例7以下同様)すれば、本発明の第2の発
明の効果は明らかである。また、熱安定性についても第
1表の場合同様、比較各例よりすぐれた結果を示す。実
施例13、比較例7 懸濁重合法によつて製造し、単量体を65℃で放出して
CMR濃度8500ppm(乾燥塩化ビニル酢酸ビニル
共重合体基準)の湿潤塩化ビニル酢酸ビニル共重合体ス
ラリー(水性媒体700k9、該共重合体300kg、
共重合体中の酢酸ビニル分10重量%)を得た。
No steam was blown in, so no steam was distilled off. Thereafter, the mixture was cooled to 65° C. or lower, and 15 kg each of a predetermined hydrocarbon gas at a predetermined temperature and a predetermined amount were blown into the reactor at a uniform speed for a predetermined time while stirring. During this time, the VCMR concentration in the slurry was measured. The slurry was then centrifugally dehydrated and dried with nitrogen at 70°C for 1 hour.
A dried PVC product having a moisture content of approximately 0.5% was obtained by fluidized drying for hours. On the other hand, in Comparative Examples 4 to 6, the 80°C,
After heat treatment for 20 minutes, steam treatment was performed at a predetermined temperature for a predetermined time, and then dehydrated and dried in the same manner. The predetermined conditions and results are
Shown in the table. As is clear from Table 2, the CMR values in the wet slurry after preheating and hydrocarbon gas treatment according to the second invention of the present invention are generally inferior to those of the comparative examples, but After dehydrating and drying this material by a known method, results were obtained that were equal to or superior to those of each comparative example, and in comparison with the corresponding example in Table 1 (first invention of the present invention) (Example 1). and Example 7 and the following), the effect of the second invention of the present invention is obvious. Furthermore, as in Table 1, the thermal stability also shows better results than the comparative examples. Example 13, Comparative Example 7 A wet vinyl chloride/vinyl acetate copolymer produced by a suspension polymerization method and having a CMR concentration of 8500 ppm (based on dry vinyl chloride/vinyl acetate copolymer) by releasing the monomer at 65°C. Slurry (aqueous medium 700k9, the copolymer 300kg,
A copolymer containing 10% by weight of vinyl acetate was obtained.

このスラリーを所定温度に保ち、プロピレンガス各20
kgを均一な速度で所定時間内に吹込んだ。その間該ス
ラリー中のVCMR濃度を測定した。ついで、該処理後
のスラリーを遠心脱水し、70℃の窒素で1時間流動乾
燥して水分約0.5%の乾燥PVCの製品を得た。
Keep this slurry at a predetermined temperature and use 200ml each of propylene gas
kg was injected at a uniform rate within a predetermined time. During this time, the VCMR concentration in the slurry was measured. Then, the slurry after the treatment was centrifugally dehydrated and fluidized for 1 hour with nitrogen at 70° C. to obtain a dry PVC product with a water content of about 0.5%.

一方比較例においてはプロピレンガスに代えて窒素ガス
を用い同様に処理し、その後脱水乾燥した。また、処理
すみのプロピレンはガスホルダーに回収した。所定条件
と結果を第3表に示す。第3表に明らかなように、本発
明の炭化水素ガス処理後の湿潤スラリー中のVCMR値
は、比較各例のそれに比較して概ね優れているがさらに
、このものを公知方法で脱水乾燥後&峠比較各例より著
しく優れた結果を得ている。
On the other hand, in a comparative example, the same treatment was performed using nitrogen gas instead of propylene gas, followed by dehydration and drying. In addition, the propylene at the end of the process was collected in a gas holder. Table 3 shows the predetermined conditions and results. As is clear from Table 3, the VCMR value of the wet slurry after hydrocarbon gas treatment of the present invention is generally superior to that of each comparative example; & Toge Comparative results have been obtained that are significantly superior to each example.

Claims (1)

【特許請求の範囲】 1 湿潤塩化ビニル重合体スラリーから微量の塩化ビニ
ル単量体を分離する方法において、25℃以上で気体で
ある炭化水素を25℃以上の該スラリーに吹込むことを
特徴とする方法。 2 塩化ビニル重合体が塩化ビニル単独重合体若しくは
塩化ビニル分を50重量%以上含む塩化ビニルとエチレ
ン性不飽和化合物との共重合体である特許請求範囲1に
記載の方法。 3 使用する25℃以上で気体である炭化水素がメタン
、エタン、プロパン、ブタン、エチレン、プロピレン、
ブチレンから選ばれた1又は2以上の化合物である特許
請求の範囲1に記載の方法。 4 25℃以上で気体である炭化水素を湿潤塩化ビニル
重合体スラリーに吹込む温度が40℃以上70℃未満で
ある特許請求の範囲1に記載の方法。 5 湿潤塩化ビニル重合体スラリーから微量の塩化ビニ
ル単量体を分離する方法において、該塩化ビニル重合体
スラリーを70℃以上110℃以下に1分以上30分以
下加熱した後70℃未満迄冷却し、25℃以上で気体で
ある炭化水素を25℃以上の該スラリーに吹込むことを
特徴とする方法。 6 塩化ビニル重合体が塩化ビニル単独重合体若しくは
塩化ビニル分を50重量%以上含む塩化ビニルとエチレ
ン性不飽和化合物との共重合体である特許請求範囲5に
記載の方法。 7 使用する25℃以上で気体である炭化水素がメタン
、エタン、プロパン、ブタン、エチレン、プロピレン、
ブチレンから選ばれた1又は2以上の化合物である特許
請求の範囲5に記載の方法。 8 25℃以上で気体である炭化水素を湿潤塩化ビニル
重合体スラリーに吹込む温度が40℃以上70℃未満で
ある特許請求の範囲5に記載の方法。
[Claims] 1. A method for separating a trace amount of vinyl chloride monomer from a wet vinyl chloride polymer slurry, characterized by blowing a hydrocarbon that is a gas at 25°C or higher into the slurry at 25°C or higher. how to. 2. The method according to claim 1, wherein the vinyl chloride polymer is a vinyl chloride homopolymer or a copolymer of vinyl chloride and an ethylenically unsaturated compound containing 50% by weight or more of vinyl chloride. 3 Hydrocarbons that are gaseous at temperatures above 25°C are methane, ethane, propane, butane, ethylene, propylene,
The method according to claim 1, wherein the compound is one or more compounds selected from butylene. 4. The method according to claim 1, wherein the temperature at which the hydrocarbon, which is a gas at 25°C or higher, is blown into the wet vinyl chloride polymer slurry is 40°C or higher and lower than 70°C. 5 In a method for separating a trace amount of vinyl chloride monomer from a wet vinyl chloride polymer slurry, the vinyl chloride polymer slurry is heated to 70°C or more and 110°C or less for 1 minute or more and 30 minutes or less, and then cooled to less than 70°C. , a method characterized in that a hydrocarbon which is a gas at 25°C or higher is blown into the slurry at 25°C or higher. 6. The method according to claim 5, wherein the vinyl chloride polymer is a vinyl chloride homopolymer or a copolymer of vinyl chloride and an ethylenically unsaturated compound containing 50% by weight or more of vinyl chloride. 7 Hydrocarbons that are gaseous at temperatures above 25°C are methane, ethane, propane, butane, ethylene, propylene,
The method according to claim 5, wherein the compound is one or more compounds selected from butylene. 8. The method according to claim 5, wherein the temperature at which the hydrocarbon, which is a gas at 25°C or higher, is blown into the wet vinyl chloride polymer slurry is 40°C or higher and lower than 70°C.
JP3167776A 1976-03-23 1976-03-23 Method for separating trace amounts of vinyl chloride monomer from wet vinyl chloride polymer slurry Expired JPS5910646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3167776A JPS5910646B2 (en) 1976-03-23 1976-03-23 Method for separating trace amounts of vinyl chloride monomer from wet vinyl chloride polymer slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167776A JPS5910646B2 (en) 1976-03-23 1976-03-23 Method for separating trace amounts of vinyl chloride monomer from wet vinyl chloride polymer slurry

Publications (2)

Publication Number Publication Date
JPS52116404A JPS52116404A (en) 1977-09-29
JPS5910646B2 true JPS5910646B2 (en) 1984-03-10

Family

ID=12337731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3167776A Expired JPS5910646B2 (en) 1976-03-23 1976-03-23 Method for separating trace amounts of vinyl chloride monomer from wet vinyl chloride polymer slurry

Country Status (1)

Country Link
JP (1) JPS5910646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567453B2 (en) * 1987-04-30 1996-12-25 株式会社日本触媒 Method for producing water-soluble polymer and water-swellable polymer

Also Published As

Publication number Publication date
JPS52116404A (en) 1977-09-29

Similar Documents

Publication Publication Date Title
US2592763A (en) Chlorinated uncompacted polyethylene
US3066130A (en) Process for finishing polyolefins
US2748105A (en) Process for chlorinating ethylene polymers in solution
US4365057A (en) Method for drying polyolefins
US2695899A (en) Chlorination of ethylene polymers
US4042769A (en) Catalysts for the polymerization of ethylene
JPS5910646B2 (en) Method for separating trace amounts of vinyl chloride monomer from wet vinyl chloride polymer slurry
CA1094732A (en) Process for the removal of vinyl chloride from latexes containing polyvinyl chloride
US4424340A (en) Process for removing residual vinyl chlorine from the polymer
JPH0674296B2 (en) Rubber purification method
US3632848A (en) Post-chlorination of vinyl chloride resins in aqueous suspension
US2713043A (en) Process for improving the properties of polymerization products from styrene
CA1160794A (en) Process for the removal of vinyl chloride from aqueous dispersions of vinyl chloride resins
US2964512A (en) Solvent-
JPS6021128B2 (en) How to remove vinyl chloride from a gas stream
US4226976A (en) Process for the removal of vinyl chloride from polyvinyl chloride latexes and slurries with hydrocarbon compounds
US3098062A (en) Production of polymers of propylene
EP0374879B1 (en) Method for extraction of impurities in polymer
US3219641A (en) Process for modifying butyl rubber
US3004963A (en) Purifying polymerized olefins prepared with catalytic metal compounds and compositions thereby obtained
US3167536A (en) Process for the removal of atactic
US4053435A (en) Catalysts for the polymerization of ethylene
US3644319A (en) Aftertreatment of vinylidene fluoride polymers prepared in the presence of alkylperoxydicarbonate comprising heat treatment of the polymers with water
US2888498A (en) Production of colorless emulsion-polymerized polymers
US2385172A (en) Method of coagulating emulsion polymerizates