JPS59105967A - Fuel supplying device for engine - Google Patents

Fuel supplying device for engine

Info

Publication number
JPS59105967A
JPS59105967A JP21386882A JP21386882A JPS59105967A JP S59105967 A JPS59105967 A JP S59105967A JP 21386882 A JP21386882 A JP 21386882A JP 21386882 A JP21386882 A JP 21386882A JP S59105967 A JPS59105967 A JP S59105967A
Authority
JP
Japan
Prior art keywords
fuel
compressor
engine
injection valve
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21386882A
Other languages
Japanese (ja)
Inventor
Mamoru Fujieda
藤枝 護
Takashige Ooyama
宜茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21386882A priority Critical patent/JPS59105967A/en
Publication of JPS59105967A publication Critical patent/JPS59105967A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/043Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit upstream of an air throttle valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To increase a suction pressure without reducing a compression ratio and improve the output of the engine by a method wherein the spray of a fuel injection valve is sprayed against a compression blade directly to cool suction air by utilizing the spray cooling effect of the fuel. CONSTITUTION:The fuel injection valve 42 is arranged in the upstream of a compressor 22 so as to include the blade of the compressor 22 within the injecting angle of the fuel injection valve 42. Accordingly, the fuel, injected from the fuel injection valve 42, collides against the blade of the compressor and vaporizes on the surface of the blade. According to this effect, not only the temperature of the compressor but also the same of suction air may be reduced. The temperature of the suction air is increased by condensation heat since the suction air is compressed by the compressor 22, however, the atomized particles of the fuel is sent into the engine together with the suction air by the compression blade, therefore, the atomized particles absorb the condensation heat as the vaporization heat thereof and the suction air may be cooled efficiently.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエンジンの燃料供給装置に係シ、特に過給器を
肩するエンジンの燃料供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel supply system for an engine, and more particularly to a fuel supply system for an engine that supports a supercharger.

〔従来技術〕[Prior art]

過信器付エンジンでは吸気通路での過給器による吸入空
気の圧縮のため、吸入空気の温匿が上昇し、シリンダ内
で圧縮された際の温度が過給器を有さないエンジンのシ
リンダ内圧縮温度よCMかに高くなる。このため、過給
器付エンジンはノッキング現象を起し易い欠点がある。
In an engine with a supercharger, the intake air is compressed by the supercharger in the intake passage, so the temperature of the intake air increases, and the temperature when compressed in the cylinder is higher than that in the cylinder of an engine without a supercharger. Compression temperature becomes much higher than CM. For this reason, supercharged engines have the disadvantage of being susceptible to knocking.

、141図と第2図を用いて吸気温度TSの上昇による
エンジンへの影響について説明する。同第1図と第2図
は、ある特定のエンジンにおいて得られたものであるが
、基本的傾向はどのエンジンにも現われる一般的な特性
と考えることができる。
, 141 and FIG. 2, the influence on the engine due to the increase in intake air temperature TS will be explained. Although Figures 1 and 2 were obtained for a specific engine, the basic trends can be considered to be general characteristics that appear in any engine.

第1図は、吸気温度T8とノッキング現象の現われる限
界の圧縮比との関係を吸気圧力PSをノくラメータとし
て表わしたものである。同ノックの発生条件は、点火時
期と空燃比により左右される。
FIG. 1 shows the relationship between the intake air temperature T8 and the limit compression ratio at which the knocking phenomenon occurs, using the intake air pressure PS as a parameter. The conditions under which this knock occurs are influenced by ignition timing and air-fuel ratio.

第1図はエンジン回転速腿がxooo[:r+m:lで
しかも点火時期と空燃比をエンジンの最大出力となる条
件に設定したときの特性を示す。
FIG. 1 shows the characteristics when the engine rotational speed is xooo[:r+m:l and the ignition timing and air-fuel ratio are set to the conditions that produce the maximum output of the engine.

過給器の付かない通常のエンジンで吸気圧力PaがIC
y−g/i)の条件での特性をaとして示す。この特性
aから吸気温度TSが上昇するとノック限界圧縮比が低
下するのがわかる。通常の工フランでは圧縮比を8.5
〜9.0に設定し、吸気温度TSが8ocでもノック限
界値以下となるように設計している。
In a normal engine without a supercharger, the intake pressure Pa is IC
The characteristics under the conditions of y-g/i) are shown as a. It can be seen from this characteristic a that as the intake air temperature TS increases, the knock limit compression ratio decreases. The compression ratio is 8.5 for normal factory flan.
~9.0, and is designed to be below the knock limit value even when the intake air temperature TS is 8oc.

過給器を取シ付けると吸気圧PSが上昇し、ノックを生
じ易い条件と彦る。第1図すは吸気圧力psが過給器に
ょシ上昇し、1.3 (Ky/ ad 、lとなったと
きの特性を示す。吸気圧力Psが上昇するにつれて空気
密度が大きくなるため、同一圧縮比でも圧縮時の圧力、
温度が高くなシ、ノックを生じ易くなる。従ってノック
限界圧縮比が減少する。
When a supercharger is installed, the intake pressure PS increases, creating conditions that are likely to cause knocking. Figure 1 shows the characteristics when the intake pressure ps increases to 1.3 (Ky/ad, l).As the intake pressure Ps increases, the air density increases, so the same The compression ratio also refers to the pressure during compression,
If the temperature is high, knocking is more likely to occur. Therefore, the knock limit compression ratio decreases.

このため過給器を付加したときはノックを防止するため
に、圧縮比を小さくする必要がある。
For this reason, when a supercharger is added, it is necessary to reduce the compression ratio to prevent knocking.

第2図は、吸気圧力PSとトルクの関係を吸気温度TS
をパラメータとして示したものである。
Figure 2 shows the relationship between intake pressure PS and torque at intake temperature TS.
is shown as a parameter.

吸気圧力PSが上昇するとトルクが増加する。これは空
気密度および燃料量の増加と、圧縮圧力の増加によシ熱
焼効率が向上する比めである。
As intake pressure PS increases, torque increases. This is compared to the increase in air density and fuel amount, as well as the increase in compression pressure, which improves the thermal sintering efficiency.

しかし、さらに吸気圧力Psが上昇するとノックにより
出力が低下してしまう。この影響は吸気温度T8が高い
程大きい。
However, if the intake pressure Ps further increases, the output will decrease due to knocking. This influence is greater as the intake air temperature T8 is higher.

このように吸気温度が上昇すると、ノックにょシ出力が
低下したシ、種々の不具合を生ずるため、圧縮比を低下
させたシ、吸気温7fTSを低下させ、ノックの発生を
防止することが必要である。圧縮比を低下させると燃料
の燃焼効率が低下するので望ましくない。一方、吸気温
度TSを低下させるため、インタークーラを使用するこ
とが行なわれているが、エンジンルームのスペースの小
さな小形車にはインタークーラは装着できない。このた
め、簡単な機構で吸気温度を下げる装置が要求されてい
た。
If the intake air temperature increases in this way, the knock output will decrease and various problems will occur, so it is necessary to lower the compression ratio and the intake air temperature (7fTS) to prevent the occurrence of knock. be. Lowering the compression ratio is undesirable because it lowers the fuel combustion efficiency. On the other hand, in order to lower the intake air temperature TS, an intercooler is used, but an intercooler cannot be installed in a small car with a small engine room space. For this reason, there has been a demand for a device that lowers the intake air temperature with a simple mechanism.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、過板気付エンジンの吸入空気温度の上
昇を防止できる燃料噴射装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel injection device that can prevent an increase in the intake air temperature of an overboard engine.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、燃料噴射弁から噴射された燃料が加給
器の圧縮羽根に衝突するように過給器の上流でしかも噴
射弁の噴射角内に過給器の圧縮羽根が位置するように燃
料噴射弁を配置したことである。燃料噴射弁から噴射さ
れた燃料の噴霧の一部あるいは全部が過給器の圧縮羽根
に衝突することによシ、噴霧により圧縮羽根が冷却され
、吸気温度の上昇を防止できる。
A feature of the present invention is that the compression vanes of the supercharger are positioned upstream of the supercharger and within the injection angle of the injection valve so that the fuel injected from the fuel injection valve collides with the compression vanes of the supercharger. This is due to the placement of fuel injection valves. When part or all of the fuel spray injected from the fuel injection valve collides with the compression vanes of the supercharger, the compression vanes are cooled by the spray, and an increase in intake air temperature can be prevented.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の一実施例を示す。吸入空気は、エアク
リーナ12、空気流量計14、導管16を通して過給器
のコンプレッサ部22に導びがれる。
FIG. 3 shows an embodiment of the present invention. Intake air is led to a compressor section 22 of the supercharger through an air cleaner 12, an air flow meter 14, and a conduit 16.

この空気流量はスロットル弁18で制御され、その流量
は空気流量計14にょシ計測される。コンプレッサ部2
2で圧縮された空気は吸気管24をブrしてエンジン2
6に導入される。エンジン26よシ排出された排気は排
気管28を介してタービン30へ導ひかれ、タービン3
oに回転力を与える。
This air flow rate is controlled by a throttle valve 18, and the flow rate is measured by an air flow meter 14. Compressor section 2
The air compressed in 2 passes through the intake pipe 24 and flows into the engine 2.
6 will be introduced. Exhaust gas discharged from the engine 26 is guided to the turbine 30 via the exhaust pipe 28.
Apply rotational force to o.

上記空気流量計重4にょジエンジンの吸入空気流量が針
側され、コンピュータからなる制御回路40に入力され
る。制御回路4oで上記計測値およびエンジンの回転速
度に基づき供給すべき燃料量が算出され、この計算イ直
に基づき燃料噴射弁42よシ大気室52に燃料が噴射さ
れる。大気室52は燃料噴射弁42の噴射部を大気圧に
保つためのもので、燃料噴射弁42の噴射圧が吸入空気
圧に影響されないようにするためである。
The intake air flow rate of the engine is measured by the air flow meter and input into a control circuit 40 consisting of a computer. The control circuit 4o calculates the amount of fuel to be supplied based on the measured value and the rotational speed of the engine, and the fuel is injected into the atmospheric chamber 52 through the fuel injection valve 42 based on this calculation. The atmospheric chamber 52 is provided to maintain the injection portion of the fuel injection valve 42 at atmospheric pressure, and is intended to prevent the injection pressure of the fuel injection valve 42 from being influenced by intake air pressure.

大気室52の上部が絞シ弁18の上流に空気人口54と
して開口し、下部の開口部56には絞シ弁18の先端が
位置し、絞り弁開度が小さい時に開口部56の開口面積
を調整できるようにしている。絞シ弁開度が小さい時に
は、絞シ弁18の下流側に大きな負圧が生ずるため、空
気室52によシ絞シ弁18をバイパスして流れる空気量
が増加するが、絞シ弁によシ大気室18の下部の開口部
56の開口面積を小さくすることにより、空気流量を少
なくシ、アイドル回転数が上昇するのを防止する。
The upper part of the atmospheric chamber 52 opens upstream of the throttle valve 18 as an air population 54, the tip of the throttle valve 18 is located in the lower opening 56, and the opening area of the opening 56 increases when the throttle valve opening is small. can be adjusted. When the throttle valve opening degree is small, a large negative pressure is generated on the downstream side of the throttle valve 18, so the amount of air flowing into the air chamber 52 bypassing the throttle valve 18 increases. By reducing the opening area of the opening 56 at the bottom of the atmospheric chamber 18, the air flow rate is reduced and the idle speed is prevented from increasing.

また絞シ弁18の開度が大きくなシ、絞シ弁18が開口
部56を離れて開口部56の開口面積の調整範囲を超え
ても、大気室52の圧力を大気圧に保つようにするため
に、空気人口54の開口面積を開口部56の開口面積の
4倍程度にする。
In addition, even if the opening degree of the throttle valve 18 is large and the throttle valve 18 leaves the opening 56 and exceeds the adjustment range of the opening area of the opening 56, the pressure in the atmospheric chamber 52 is maintained at atmospheric pressure. In order to do this, the opening area of the air population 54 is made approximately four times the opening area of the opening 56.

このことにより空気入口14での空気流速が開口部56
の空気流速の4分の1程度になり、大気室52の圧力変
動を少なくできる。
This reduces the air flow velocity at the air inlet 14 to the opening 56.
The air flow rate is approximately one-fourth of that of the air flow rate, and pressure fluctuations in the atmospheric chamber 52 can be reduced.

大気室52の上流側には連通管58があシ、大気室52
と過給器の軸受け60を連通している。
There is a communication pipe 58 on the upstream side of the atmospheric chamber 52.
and a bearing 60 of the supercharger.

これによシ軸受け60が大気圧となり、過給器のコンプ
レッサ22の圧力が負圧になっても鵬受け60の油がコ
ンプレッサ22に浸入するのを防止できる。
Thereby, even if the pressure of the shaft bearing 60 becomes atmospheric pressure and the pressure of the compressor 22 of the supercharger becomes negative pressure, it is possible to prevent the oil in the bearing 60 from entering the compressor 22.

エンジン26の排気は連通管28を介して過給器のター
ビン30を回転させ、排気管62よシ排出される。連通
管28には、タービン30をバイパスして排気v62に
排気を流すウェストゲート弁64が設けられている。タ
ービン回転進度が所定値よシ尚くなったシ、あるいは過
給器22による圧胤圧力が所定値より高くなると、上記
ウェストゲート弁64の開度を大きくシ、タービンへ導
かれる排気量を減少させ、コンプレッサ22の過給圧力
を所定値に保つ。
The exhaust gas from the engine 26 rotates the turbine 30 of the supercharger through the communication pipe 28 and is discharged through the exhaust pipe 62. The communication pipe 28 is provided with a wastegate valve 64 that bypasses the turbine 30 and allows exhaust gas to flow into the exhaust gas v62. When the turbine rotation speed becomes higher than a predetermined value, or when the pressure generated by the supercharger 22 becomes higher than a predetermined value, the opening degree of the waste gate valve 64 is increased to reduce the amount of exhaust gas guided to the turbine. and maintain the supercharging pressure of the compressor 22 at a predetermined value.

コンプレッサ部22はチェック弁66を介して大気室5
6に導管68により連通し、コンプレッサの出力圧力が
大気圧以上になると、チェック弁66を囲き、大気室1
8に空気を送る。これによシ大気室の圧力は大気に維持
きれる。導管68は大気室52に偏心して取シ付けられ
ているため、導管68を通って来た空気は、大気室52
の壁面に添って流れ、旋回流となる。このためコンプレ
ッサ22より圧送される空気は、その圧力が回転方向の
速度成分に変換されるため、コンプレッサの吐出圧が1
.3 kv/ crl程度であれば、大気室18の空気
旋回流の中心辺くはほとんど大気圧力となり、噴射弁5
の流量特性は実用上圧力変動の影響を受けなくなる。
The compressor section 22 is connected to the atmospheric chamber 5 through a check valve 66.
6 through a conduit 68, and when the output pressure of the compressor exceeds atmospheric pressure, it surrounds the check valve 66 and opens the atmospheric chamber 1.
Send air to 8. This allows the pressure in the atmospheric chamber to be maintained at atmospheric pressure. Since the conduit 68 is eccentrically attached to the atmospheric chamber 52, the air that has passed through the conduit 68 is attached to the atmospheric chamber 52.
It flows along the wall of the wall, forming a swirling flow. For this reason, the pressure of the air pumped from the compressor 22 is converted into a speed component in the rotational direction, so the discharge pressure of the compressor is 1
.. If it is about 3 kv/crl, the center of the swirling air flow in the atmospheric chamber 18 will be almost atmospheric pressure, and the injection valve 5 will be at almost atmospheric pressure.
The flow rate characteristics are practically unaffected by pressure fluctuations.

第3図に示す如く、燃料噴射弁42がコンプレッサ22
の上流でしかも燃料噴射弁42の噴射角内にコンプレッ
サの羽根が入るように配置されている。このため燃料噴
射弁42から噴射された燃料はコンプレッサの羽根にあ
たシ、この羽根の表面で気化する。これによりコンプレ
ッサのミナラず吸入空気の温度を低下させることができ
る。
As shown in FIG. 3, the fuel injection valve 42 is connected to the compressor 22
The blades of the compressor are arranged upstream of the fuel injection valve 42 and within the injection angle of the fuel injection valve 42. Therefore, the fuel injected from the fuel injection valve 42 hits the blades of the compressor and vaporizes on the surfaces of the blades. As a result, the temperature of the intake air can be lowered without causing the compressor to swell.

第4図は第3図の実施例の絞シ弁18近くの拡大図であ
る。絞り弁の先端72を厚くして、絞シ弁18の開度に
よる大気室52の開口部56の開口面積の調整機能を大
きくしている。コンプレッサ22とスロットルチャンバ
74との間に断熱材76が間挿されている。
FIG. 4 is an enlarged view of the vicinity of the throttle valve 18 of the embodiment shown in FIG. The tip 72 of the throttle valve is thickened to increase the ability to adjust the opening area of the opening 56 of the atmospheric chamber 52 by adjusting the opening degree of the throttle valve 18. A heat insulating material 76 is interposed between the compressor 22 and the throttle chamber 74.

大気連通管58のコンプレッサ22側にチャンバ78が
設けられ、チャンバ78とコンプレッサ22のケーシン
グとの隙間80を小さくシ、ラビリンス効果によシ空気
シールを行なう。シャフト82のチャンバ78内の一部
に円板84を設け、軸受60側よりのもれ油を振シ切夛
、戻し管24よシ油だめ(図示せず)に戻している。導
管16の絞シ弁下流部のボア径と過給器のコンプレッサ
22の入口径が略同じ大きさに設定しである。
A chamber 78 is provided on the compressor 22 side of the atmosphere communication pipe 58, and a gap 80 between the chamber 78 and the casing of the compressor 22 is reduced to provide air sealing by a labyrinth effect. A disk 84 is provided in a part of the chamber 78 of the shaft 82 to shake out leaked oil from the bearing 60 side and return it through the return pipe 24 to an oil sump (not shown). The bore diameter of the conduit 16 downstream of the throttle valve and the inlet diameter of the compressor 22 of the supercharger are set to be approximately the same size.

噴射弁42は噴射角内にコンプレッサ22の圧縮羽根8
6の入る位置に設けられているため、噴射弁42ぶりの
燃料噴霧は圧縮羽根86に直接衝突し、噴霧冷却効果に
よシ効率的に吸入空気を冷却スる。コンプレッサ22で
は吸入空気を圧縮するため、吸入空気は凝縮熱により温
度が上昇するが、圧縮羽根86により吸入空気といっし
ょに燃料噴霧粒子が送シ込まれるため、噴霧粒子が凝縮
熱を気化熱として吸収し効率よく吸入空気を冷却できる
The injection valve 42 has compression vanes 8 of the compressor 22 within the injection angle.
6, the fuel spray from the injection valve 42 directly collides with the compression vane 86, and the intake air is efficiently cooled by the spray cooling effect. Since the compressor 22 compresses the intake air, the temperature of the intake air increases due to the heat of condensation.However, since fuel spray particles are sent together with the intake air by the compression vanes 86, the spray particles convert the heat of condensation into heat of vaporization. It absorbs and efficiently cools intake air.

コンプレッサ22の圧縮羽根22のシュラウド面に断面
スペーサを配置し、冷却効果の促進を図ることができる
。第5図を用いて説明する。第5図(a)はコンプレッ
サ22の断面図であり、そのb−b断面図を第5図(b
)に示す。断熱スペーサ92がシュラウド面に配置され
ている。給気温度は従来の方式では600〜80C程度
に上昇したものが本実施例では40C程度の低い値とな
る。尚。
A cross-sectional spacer can be arranged on the shroud surface of the compression vane 22 of the compressor 22 to promote the cooling effect. This will be explained using FIG. FIG. 5(a) is a cross-sectional view of the compressor 22, and FIG.
). A thermal insulating spacer 92 is located on the shroud surface. In the conventional system, the supply air temperature rises to about 600 to 80C, but in this embodiment, it becomes a low value of about 40C. still.

この実施値は吸気圧力1.3 Ky / crti s
エンジン回転速度3000(fFl]で行なわれたもの
である。
This actual value is an intake pressure of 1.3 Ky/crti s.
The test was conducted at an engine rotational speed of 3000 (fFl).

第6図はエンジン回転速度を20001−から急激にス
ロットル全開にした場倉のタービン回転速度および吸気
圧力の上昇特性を示したものである。
FIG. 6 shows the rise characteristics of the turbine rotational speed and intake pressure when the engine rotational speed was suddenly increased from 20001- to fully open the throttle.

グラフaは本実施例であシ、グラフbとCは従来方式の
特性である。
Graph a is the characteristic of this embodiment, and graphs b and C are the characteristics of the conventional system.

タービン回転速度のグラフにおいて、エンジンが一定回
転時のタービン回転速度が、本実施例の方が他の装置に
比べて高いのは、絞シ弁18の下流にコンプレッサ22
があるために、空気密度の差によシ無負荷空転時の損失
が少なくなるためである。
In the graph of the turbine rotational speed, the reason why the turbine rotational speed when the engine rotates at a constant speed is higher in this embodiment than in other devices is because the compressor 22 is located downstream of the throttle valve 18.
This is because the loss during no-load idling is reduced due to the difference in air density.

本実施例ではコンプレッサ22の入口径を導管16の絞
シ弁下流の径と等しくしているため、導管33とコンプ
レッサの間に抵抗および拡張部がなく、絞り弁を急開す
ると音速に近い吸気がスムーズに流入し、コンプレッサ
22の圧縮羽根を回転させるため、ターボ効果の立上シ
特性が改善される。
In this embodiment, the inlet diameter of the compressor 22 is made equal to the diameter of the conduit 16 downstream of the throttle valve, so there is no resistance or expansion between the conduit 33 and the compressor, and when the throttle valve is suddenly opened, the intake air approaches the speed of sound. flows in smoothly and rotates the compression blades of the compressor 22, so the start-up characteristics of the turbo effect are improved.

第7図に本発明の他の実施例を示す。本実施例は燃料噴
射弁42を絞シ弁18の上流で、燃料噴射弁42と導管
16を同一軸線上に設けている。
FIG. 7 shows another embodiment of the present invention. In this embodiment, the fuel injection valve 42 is provided upstream of the throttle valve 18, and the fuel injection valve 42 and the conduit 16 are provided on the same axis.

吸気管よシ入シ、絞シ弁18を通ってコンプレッサ22
に入る。燃料は噴射弁42より供給される。
It enters the intake pipe and passes through the throttle valve 18 to the compressor 22.
to go into. Fuel is supplied from the injection valve 42.

過給器が仕事をして給気源が上昇するのは比較的絞シ弁
18の間圧が大きいときであるため、燃料は絞シ弁18
にあまり当たらず、コンプレッサ22の羽根22に大部
分は衝突し、冷却する。一方絞シ弁18の開度の少さい
ときは過給器による吸気温度の上昇はtlとんど問題に
ならない。燃料噴射弁42よシ噴射された噴霧は、絞シ
弁18に衝突し、燃料が2次微粒化され、一部は圧縮羽
根に行きつく前に気化し、一部は圧縮羽根に衝突し、噴
霧冷却を行う。
The supercharger does its work and the supply air source rises when the pressure between the throttle valve 18 is relatively large, so the fuel flows through the throttle valve 18.
Most of it hits the blades 22 of the compressor 22 and is cooled. On the other hand, when the opening degree of the throttle valve 18 is small, the increase in intake air temperature caused by the supercharger hardly becomes a problem. The spray injected from the fuel injection valve 42 collides with the throttle valve 18, where the fuel is atomized into secondary particles, some of which vaporizes before reaching the compression vane, and some of which collides with the compression vane, forming a spray. Perform cooling.

エンジンの始動時はスロットルチャンバ74のボア壁面
に燃料が付着するが比較的燃料はチャンパフ4下面の壁
面を流れるため、あまシ問題とはならない。燃料の流動
を良くするためには、スロットルチャンバ74を下流が
下がるように傾斜させることも可能である。大気連通管
58は絞シ弁の上流のボア上面に開口しているので燃料
の流入は少なく、戻し管94よシ燃料が流入することは
ほとんどない。
When the engine is started, fuel adheres to the wall surface of the bore of the throttle chamber 74, but since the fuel relatively flows through the wall surface of the lower surface of the chamber puff 4, this does not pose a problem. In order to improve the flow of fuel, the throttle chamber 74 may be inclined so that the downstream side thereof is lowered. Since the atmospheric communication pipe 58 opens on the upper surface of the bore upstream of the throttle valve, there is little fuel flowing into the air communicating pipe 58, and almost no fuel flows into the return pipe 94.

このように本実施例によっても効率的に吸気温度を低下
させ、耐ノツク特性に優れたエンジン用燃料供給装置を
提供できる。
As described above, according to this embodiment as well, it is possible to provide an engine fuel supply system that efficiently lowers the intake air temperature and has excellent anti-knock characteristics.

本発明では、燃料噴射弁からの噴霧を直接圧縮羽根に当
て、燃料噴霧冷却効果を利用して吸気を冷却しているの
で、吸気の温度を吸気圧力の上昇にかかわらず、40C
以下に維持することができるので、圧縮比を低下するこ
となく、吸気圧力を高めることができ、出力が20%程
度向上できる効果がある。従来の公知例でも、インター
クーラを設けると、吸気の温度を低下することができる
が、エンジンルームが大きくなる。これに対し、本発明
では、エンジンルームを大きくする必要がなく、スペー
スの有効活用に効果的である。
In the present invention, the spray from the fuel injection valve is applied directly to the compression vane and the intake air is cooled using the fuel spray cooling effect, so the temperature of the intake air can be maintained at 40C regardless of the rise in intake pressure.
Since the intake pressure can be maintained below, the intake pressure can be increased without reducing the compression ratio, and the output can be improved by about 20%. Even in conventional known examples, if an intercooler is provided, the temperature of intake air can be lowered, but the engine room becomes larger. In contrast, in the present invention, there is no need to enlarge the engine room, and space can be effectively used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸気温度T8とノック限界圧縮比の関係を示す
図、第2図は吸気圧力P8とエンジンの軸トルクの関係
を示す図、第3図は本発明の一実施例を示す図、第4図
は第3図の実施例の絞シ弁付近の断面図、第5図は第4
図に示す実施例の改良例を示す図、第6図は第5図に示
す実施例の効果を示す図、第7図は本発明の他の実施例
を示す図である。 1・・・フィルタ、3・・・エンジン、4・・・軟9ヲ
f、  5・・・燃料噴射弁、6・・・吸気管、7・−
・過給器のコンプレッサ、8・・・過給器のタービン、
18・・・大気圧室、19・・・軸受け、22・・・圧
縮羽根、26・・・開口部。 第4回 第タロ (CL) (I7) 60 170 7Q  76      、!、!
FIG. 1 is a diagram showing the relationship between intake air temperature T8 and knock limit compression ratio, FIG. 2 is a diagram showing the relationship between intake pressure P8 and engine shaft torque, and FIG. 3 is a diagram showing an embodiment of the present invention. Fig. 4 is a cross-sectional view of the vicinity of the throttle valve of the embodiment shown in Fig. 3, and Fig.
FIG. 6 is a diagram showing the effect of the embodiment shown in FIG. 5, and FIG. 7 is a diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Filter, 3...Engine, 4...Soft 9wof, 5...Fuel injection valve, 6...Intake pipe, 7...
・Supercharger compressor, 8...supercharger turbine,
18... Atmospheric pressure chamber, 19... Bearing, 22... Compression vane, 26... Opening. 4th Taro (CL) (I7) 60 170 7Q 76,! ,!

Claims (1)

【特許請求の範囲】 1、エンジンへ空気を導く吸気通路と、該吸気通路に設
けられた過給気と、エンジンの状態に応じ燃料を供給す
る燃料噴射弁とを有するものにおいて、上記燃料噴射弁
を、上記過給器の上流でかつ、前記過給器の圧縮羽根の
少なくとも一部が前記燃料噴射弁の噴射角内になる位置
に配置したことを特色とするエンジンの燃料供給装置p
i。 2、喘’1fftfη求の郭囲第1項において、前記吸
気通路は、前記燃料噴射弁取付位置に、大気室を持つこ
とを%徴とするエンジンの燃料供給装置。
[Scope of Claims] 1. An intake passage that guides air to the engine, supercharging air provided in the intake passage, and a fuel injection valve that supplies fuel according to the state of the engine, wherein the fuel injection A fuel supply device for an engine, characterized in that a valve is disposed upstream of the supercharger and at a position where at least a portion of the compression vanes of the supercharger are within the injection angle of the fuel injection valve.
i. 2. The fuel supply system for an engine according to item 1, wherein the intake passage has an atmospheric chamber at the fuel injection valve mounting position.
JP21386882A 1982-12-08 1982-12-08 Fuel supplying device for engine Pending JPS59105967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21386882A JPS59105967A (en) 1982-12-08 1982-12-08 Fuel supplying device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21386882A JPS59105967A (en) 1982-12-08 1982-12-08 Fuel supplying device for engine

Publications (1)

Publication Number Publication Date
JPS59105967A true JPS59105967A (en) 1984-06-19

Family

ID=16646345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21386882A Pending JPS59105967A (en) 1982-12-08 1982-12-08 Fuel supplying device for engine

Country Status (1)

Country Link
JP (1) JPS59105967A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195450A (en) * 1986-02-20 1987-08-28 Mitsubishi Motors Corp Internal combustion engine with supercharger
JPH02218861A (en) * 1989-02-20 1990-08-31 Mitsubishi Motors Corp Fuel injection system of engine with supercharger
JPH02218847A (en) * 1989-02-20 1990-08-31 Mitsubishi Motors Corp V type engine with supercharger
US6145948A (en) * 1993-05-26 2000-11-14 Canon Kabushiki Kaisha Ink jet head and ink jet recording apparatus in which both preliminary heating and driving signals are supplied according to stored image data

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195450A (en) * 1986-02-20 1987-08-28 Mitsubishi Motors Corp Internal combustion engine with supercharger
JPH02218861A (en) * 1989-02-20 1990-08-31 Mitsubishi Motors Corp Fuel injection system of engine with supercharger
JPH02218847A (en) * 1989-02-20 1990-08-31 Mitsubishi Motors Corp V type engine with supercharger
US6145948A (en) * 1993-05-26 2000-11-14 Canon Kabushiki Kaisha Ink jet head and ink jet recording apparatus in which both preliminary heating and driving signals are supplied according to stored image data

Similar Documents

Publication Publication Date Title
US6625986B2 (en) IC engine-turbocharger unit for a motor vehicle, in particular an industrial vehicle, with turbine power control
KR910010170B1 (en) Changable turbo charger device in internal combustion engine
CA2348214A1 (en) Turbo-charged engine combustion chamber pressure protection apparatus and method
US6378305B1 (en) Internal combustion engine having an exhaust-gas turbocharger and a method for operating same
CN102906400B (en) IC engine running method and internal-combustion engine
US4679992A (en) Turbo-compound compressor system
JPS59105967A (en) Fuel supplying device for engine
EP1482128A1 (en) Supercharged Internal combustion engine
US4406125A (en) Variable flow rate turbocharger
JPS60128930A (en) Supercharging pressure controller for engine with supercharger
JP2001355453A (en) Intake air cooling device for internal combustion engine with supercharger
Watson Turbochargers for the 1980s–Current Trends and Future Prospects
US6282898B1 (en) Operation of forced induction internal combustion engines
US20230146605A1 (en) A turbocharged engine system and a method of controlling boost pressure
JP2762301B2 (en) Fuel supply device for internal combustion engine
Nancarrow Influence of Turbocharger Characteristics on Supply of Air for High Speed Diesel Engines
JPS58200031A (en) Internal-combustion engine supercharged by exhaust turbo
JPS62240427A (en) Engine with mechanical supercharger
JPH11343856A (en) Diesel engine
JPS626256Y2 (en)
KR100259655B1 (en) Waste gate for turbo-charger
JPH06185498A (en) Compressor
JPH053713Y2 (en)
Spraker et al. The effect of compressor and turbine specific speed on turbocharger efficiency and engine performance
JPS6311317Y2 (en)