JPS59105884A - Method and apparatus for desalination of sea water - Google Patents

Method and apparatus for desalination of sea water

Info

Publication number
JPS59105884A
JPS59105884A JP57217475A JP21747582A JPS59105884A JP S59105884 A JPS59105884 A JP S59105884A JP 57217475 A JP57217475 A JP 57217475A JP 21747582 A JP21747582 A JP 21747582A JP S59105884 A JPS59105884 A JP S59105884A
Authority
JP
Japan
Prior art keywords
water
water storage
storage tank
heat exchanger
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57217475A
Other languages
Japanese (ja)
Inventor
Akihisa Harada
明久 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Original Assignee
Nippon Jiryoku Senko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP57217475A priority Critical patent/JPS59105884A/en
Publication of JPS59105884A publication Critical patent/JPS59105884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PURPOSE:To obtain plain water from sea water while performing the efficient absorption and circulation of heat, by separating sea water into an evaporated part and a remaining part inside an evaporator, bringing said evaporated part into indirect contact with sea water in a condenser to obtain plain water, and heat exchanging said remaining part with sea water. CONSTITUTION:By driving a draw pump 1, sea water of 25 deg.C flowing through water feed pipes 18, 19, 20 is preheated with plain water and a conc. liquid in reservoir tanks A, B and sent to a heat exchanger 2. In the heat exchanger 2, the sea water is heated up to 40 deg.C by heat exchange with plain water liquefied in a condenser 3 and let flow through a water conduit 5 and a conc. liquid remaining without being evaporated in an evaporator 6 and flowing through another water conduit 8. On the other hand, the plain water and the conc. liquid after the heat exchange are heated up to 41 deg.C and 42 deg.C, respectively, let flow through water conduits 9, 10 and reserved in water tanks A and B, respectively.

Description

【発明の詳細な説明】 り淡水を得る方法及びその装!i’fにαJするもので
ある。
[Detailed Description of the Invention] Method for obtaining fresh water and apparatus thereof! This is to add αJ to i'f.

従来から行なわれている海水°の淡水化法としては、種
々の方法が開発され実用化されているが、このうち多段
フラッジ−法が最も多く、この方法は伝熱管、加熱管を
通った海水を蒸発室でフランシー蒸発させ、発生した蒸
気を凝縮器で凝縮して淡水を得るもので、この方法は加
熱に相当の燃料を必要として問題がある。
Various conventional seawater desalination methods have been developed and put into practical use, but the multi-stage flood method is the most common method. is evaporated in an evaporation chamber, and the generated steam is condensed in a condenser to obtain fresh water, but this method requires a considerable amount of fuel for heating, which poses a problem.

本発明はこの点を改善して蒸気が液体に戻る際に放出す
る潜熱及び濃縮された液体のもつ然を効果的に利用して
、海水から淡水を得る方法及び装置を提供せんとするも
のであり、その要旨とするところは、海水を貯水タンク
囚、貯水タンク(I3)、熱交換器及び凝縮器の順で送
り、更に加熱器内へ尋人し加熱した後、蒸発器門番こ於
いて蒸発部分と残留部分とに分け、同蒸発部分は上記凝
縮器内へ導入しそこを導通する海水と間接的に接怨させ
る小により淡水に凝縮せしめ、該淡水をその後上記熱交
換器を経て上記貯水タンク囚に貯め、この熱交換器及び
貯水タンク(4)内で共に該淡水と上記導入海水との間
で熱交換を起こさせ、一方残留部分は上記熱交換器を経
て上記貯水タンク(B)に貯め、この熱交換器及び貯水
タンクの)内で共に該残留部分と上記導入海水との間で
熱交換を起こさせることを特徴とする海水の淡水化方法
及び、貯水タンク(5)、貯水タンク(I3)、熱交換
器、及−び・凝縮器、加熱器及び蒸発器をこの順序に海
水力CjQ人される如く連通し、上記加熱器内で加熱さ
れ上記蒸発器内で蒸発した蒸発81車分を上記凝縮器及
びひ交換器を経て上記貯水タンク囚へ送る如くこれら蒸
発器、凝縮器、熱交換器及び貯水タンク(Nの順で連通
せしめ、一方上記薄発器内での残留部分を上記熱交換8
:)を経て上記貯水タンク(13)へ送る如くこれら蒸
発器、熱交換器(及び貯水タンク■3)の順で連通せし
めたことを持aとするが1水の淡水化装置である。
The present invention aims to improve this point and provide a method and apparatus for obtaining fresh water from seawater by effectively utilizing the latent heat released when vapor returns to liquid and the nature of concentrated liquid. Yes, the gist of this is that seawater is sent to the water storage tank, water storage tank (I3), heat exchanger, and condenser in that order, and after being heated in the heater, it is heated at the evaporator gate. It is divided into an evaporated portion and a residual portion, and the evaporated portion is introduced into the condenser and condensed into fresh water by indirectly contacting the seawater flowing therethrough, and the fresh water is then passed through the heat exchanger to the above. The fresh water is stored in the water storage tank (4), and heat exchange occurs between the fresh water and the introduced seawater in this heat exchanger and the water storage tank (4), while the remaining portion is transferred to the water storage tank (B) through the heat exchanger. ) of the heat exchanger and the water storage tank, and heat exchange is caused between the residual portion and the introduced seawater in the heat exchanger and the water storage tank (5); A water storage tank (I3), a heat exchanger, a condenser, a heater, and an evaporator are connected in this order as described above, and the water is heated in the heater and evaporated in the evaporator. The evaporator, condenser, heat exchanger, and water storage tank (N are connected in this order) so that 81 cars worth of evaporation is sent to the water storage tank via the condenser and exchanger. The remaining portion was heat exchanged as described above 8.
The evaporator and the heat exchanger (and the water storage tank (13)) are connected in this order so that the water is sent to the water storage tank (13) via the water storage tank (13).

なお上記した、凝縮器内に於いて蒸発部分と海水とを間
接的に接馴させるというのは、蒸発部分たる水蒸気かあ
るいは海水のいずれかをパイプ内に挿通せしめる小によ
り、それら両者を混合させないという串を意味する。
Note that the above-mentioned indirect mixing of the evaporated portion and seawater in the condenser means that either the evaporated portion of water vapor or the seawater is passed through the pipe, and the two are not mixed. It means a skewer.

又本発明装6.Hで貯水タンク囚、ωノをはじめとする
6器をそれぞれ連通ずる場合は当然乍ら海水、蒸発部分
、残留部分が不要に混同されない様に留意する必要があ
る。
Also, the present invention 6. Of course, when connecting six units including the water storage tank and ω at H, care must be taken to avoid unnecessary confusion of seawater, evaporated portion, and residual portion.

以下、本発明の実旋例を添付図面に基づき、かつ−実験
例で得たnη水等の温度を併記し乍ら説明する。
Hereinafter, practical examples of the present invention will be explained based on the accompanying drawings, and the temperatures of nη water etc. obtained in experimental examples are also described.

汲上げポンプfl+を駆動すると25℃の海水が送水0
7ノq1すCビ01 ta幹枠→を通りながら貯水タンク(A+、(Bl内の
淡水及び濃縮液により予熱され熱交換器(2)内に送ら
れる。この熱交換器(2)内に送られた海水は、?1.
′t &ll R+(3)で液化しポンプ(4)を経て
導水管(5)内を流れている淡水、及び蒸発器(6)で
蒸発せず残留しポンプ(7)を経て導°泳管(8)内を
流れているa糊液と該熱交換器(2)内で熱交換を行な
い40℃に昇温する。
When pump fl+ is operated, 25°C seawater is pumped to 0.
The water is preheated by the fresh water and concentrated liquid in the water storage tank (A+, (Bl) and sent to the heat exchanger (2). What about the seawater sent?1.
't &ll Freshwater is liquefied in R+ (3) and flows through the water conduit (5) via the pump (4), and the fresh water that remains without being evaporated in the evaporator (6) passes through the pump (7) and flows into the conduit (5). (8) Heat exchange is performed in the heat exchanger (2) with the a-glue flowing therein, and the temperature is raised to 40°C.

一方、前記熱交換器(2)内でだシ交換を行った淡水及
び濃縮液は、それぞれ41℃、42℃に降温し導水管+
91、Hを通り貯水タンク(5)及び03)にそれぞれ
貯水される。該貯水タンク(イ)、(6)内の淡水及び
f′!縮液糊液前記のように海水が貯水タンク(A+、
(B)内を通るためそれぞれ27℃、28℃の液温とな
る。
On the other hand, the temperature of the fresh water and concentrated liquid that underwent heat exchange in the heat exchanger (2) decreased to 41°C and 42°C, respectively, and the water pipe
91 and H and are stored in water storage tanks (5) and 03), respectively. The fresh water in the water storage tanks (a) and (6) and f'! As mentioned above, seawater is stored in a water storage tank (A+,
(B), the liquid temperature becomes 27°C and 28°C, respectively.

又、前記熱交換器(2)内で熱交換を行ない40℃に昇
温した海水は、送水?ユ(II+にあり乍ら凝縮器(3
)内を通り、蒸発器(6)で発生し配気性α2を通り凝
縮器(3)内に噴出した水蒸気を液化せしめ、その際に
水蒸気が放出する潜熱により70℃にf′#濡オる。
Also, is the seawater heated to 40 degrees Celsius by heat exchange in the heat exchanger (2) sent water? Condenser (3)
), the water vapor generated in the evaporator (6) and ejected into the condenser (3) through the air distribution α2 is liquefied, and the latent heat released by the water vapor at this time causes it to become wet to 70℃. .

なおこのX・:(発器内をllス圧せしめ蒸発を容易化
ならしめる竹の手段を用いる小もある。
In addition, there are some small units that use bamboo means to pressurize the inside of the generator and facilitate evaporation.

次いで70℃に昇温した海水は、送水r(0〜を通り加
熱23 Q41により加熱され80℃に昇温する。この
場合の加熱器としては各fil(燃料の燃焼方式をはじ
め太陽熱利用に拠るものであってもよい小は勿論である
。この柱にして80℃に!r温した海水は蒸発器(6)
に送られノズルへ05から賃状に噴射される。この弊−
発器(6)は多段ディスク型等適当な既知のタイプでよ
い。この霧状に噴射された海水より発生した水蒸気は、
配気管a2を通りだ縮器(3)で液化されポンプ(4)
を経て導水管(9)を通り貯水タンク囚に貯水される。
Next, the seawater heated to 70°C passes through the water supply r (0~) and is heated by heating 23 Q41, raising the temperature to 80°C. Of course, it can be small.This pillar will be heated to 80℃! The heated seawater will be transferred to the evaporator (6).
The liquid is sent to the nozzle and sprayed from 05 in a uniform manner. This evil-
The generator (6) may be of any suitable known type, such as a multi-stage disc type. The water vapor generated from this sprayed seawater is
Passes through the air distribution pipe a2 and is liquefied in the condenser (3) and pumped (4)
The water passes through the water conduit pipe (9) and is stored in the water storage tank.

前記蒸発器(6)内で発生した水蒸気を除いた残りの海
水は濃縮液として該蒸発器(6)の底部に溜る。
The remaining seawater after removing the water vapor generated in the evaporator (6) accumulates at the bottom of the evaporator (6) as a concentrated liquid.

(「1) この液温は70℃でありこの濃縮液は、ポンプ僻を経て
導水管部を通り貯水タンクω)に貯水される。
(1) The liquid temperature is 70°C, and this concentrated liquid passes through the pump, the water conduit, and is stored in the water storage tank ω).

このようにして、熱交換器(2)、凝縮器(3)、蒸発
器(6)、貯水タンク(4)、CB)からなる系を閉塞
系に形成し、汲上げポンプ(11により系内に送られた
海水は、貯水タンク(AJ、(E>に設けられたバルブ
αQ及び卸により系内圧力を所定圧に保持しながら淡水
と濃縮液とを取り出すことができる。
In this way, the system consisting of the heat exchanger (2), condenser (3), evaporator (6), water storage tank (4), CB) is formed into a closed system, and the system is Fresh water and concentrated liquid can be taken out of the seawater sent to the tank while maintaining the system pressure at a predetermined pressure using the valve αQ and outlet provided in the water storage tanks (AJ, (E)).

以上述べて来た如く、本発明によれば、海水から蒸発し
た水蒸気が液化する際に放出する潜熱により海水を予め
加熱し、又蒸発せずに濃縮された高温の濃縮液の熱によ
っても、海水を予め加熱することにより海水の蒸発を起
こし易くせしめ、この一連の工程中における熱損失は外
部からの加熱(太陽熱を含む)で補うことにより、海水
から淡水を得ることができると共に海水の濃縮ができる
ので熱効率が極めてよい効采がある。更に又海水以外の
液体の濃縮にも効率よく適用できる。
As described above, according to the present invention, the seawater is preheated by the latent heat released when the water vapor evaporated from the seawater is liquefied, and also by the heat of the high-temperature concentrated liquid that is concentrated without evaporating. By pre-heating the seawater, it is made easier to evaporate the seawater, and by compensating for the heat loss during this series of steps with external heating (including solar heat), it is possible to obtain fresh water from seawater and also to concentrate the seawater. It is an effective method with extremely high thermal efficiency. Furthermore, it can be efficiently applied to the concentration of liquids other than seawater.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の概要説明図。 図中、囚:貯水タンク (B):貯水タンク (2):熱交換器 +31 : ′Et縮器 (6):蒸発器 Oa:加熱器 特許出願人  日本磁カ選鉱株式会社 The drawing is a schematic explanatory diagram of the device of the present invention. Prisoner in the diagram: Water tank (B): Water storage tank (2): Heat exchanger +31: 'Et compressor (6): Evaporator Oa: Heater Patent applicant: Nippon Kasei Seikan Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 海水を貯水タンク囚、貯水タンク(6)、熱交換
器及び凝縮器の順で送り、更に加熱器内へ尋人し加熱し
た後、蒸発器内に於いて蒸発部分と残留部分とに分け、
同蒸発部分は上記凝縮器内へ導入しそこを導通する海水
と間接的に接かさせる事により淡水に凝縮せしめ、該淡
水をその後上記熱交換器を経て上記貯水タンク囚に貯め
、この熱交換器及び貯水タンク(2)内で共に該淡水と
上記導入海水との同で熱交換を起こさせ、一方残留部分
は上記熱交換器を経て上記貯水タンクの)に貯め、この
熱交換器及び貯水タンク(B)内で共に該残留部分と上
記導入海水との間で熱交換を起こさせることを特徴とす
る海水の淡水化方法。 2 貯水タンク(2)、貯水タンク(I3)、熱交換1
8 ad凝縮器、加熱器及び蒸発器をこ、の順序に海水
が導入される如く連通し、上記加熱器内で加熱され上記
蒸発器内で蒸発した蒸発部分を上記凝縮器及び熱交換器
を経て上記貯水タンク囚へ送る如くこれら蒸発器、凝縮
器、熱交換器及び貯水タンク囚の順で連通せしめ、一方
上記蒸発器内での残留部分を上記熱交換器を経て上記貯
水タンクの1へ送る如くこれら蒸発器、熱交換器及び貯
水タンク(B)の順で連通せしめたことをlPjmとす
る海水の淡水化装置。
[Claims] 1. Seawater is sent to the water storage tank, the water storage tank (6), the heat exchanger, and the condenser in this order, and then heated in the heater, and then evaporated in the evaporator. Divided into part and residual part,
The evaporated portion is introduced into the condenser and brought into indirect contact with the flowing seawater to condense it into fresh water.The fresh water then passes through the heat exchanger and is stored in the water storage tank, where it is heat exchanged. Heat exchange occurs between the fresh water and the introduced seawater in both the heat exchanger and the water storage tank (2), while the remaining portion passes through the heat exchanger and is stored in the water storage tank (2). A seawater desalination method characterized by causing heat exchange between the residual portion and the introduced seawater in a tank (B). 2 Water storage tank (2), water storage tank (I3), heat exchange 1
8 ad A condenser, a heater, and an evaporator are connected in this order so that seawater is introduced, and the evaporated portion heated in the heater and evaporated in the evaporator is passed through the condenser and heat exchanger. The evaporator, condenser, heat exchanger, and water storage tank are connected in this order so that the water is sent to the water storage tank through the evaporator, while the remaining portion in the evaporator is sent to one of the water storage tanks via the heat exchanger. A seawater desalination apparatus in which the evaporator, heat exchanger, and water storage tank (B) are connected in this order as shown in FIG.
JP57217475A 1982-12-10 1982-12-10 Method and apparatus for desalination of sea water Pending JPS59105884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217475A JPS59105884A (en) 1982-12-10 1982-12-10 Method and apparatus for desalination of sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217475A JPS59105884A (en) 1982-12-10 1982-12-10 Method and apparatus for desalination of sea water

Publications (1)

Publication Number Publication Date
JPS59105884A true JPS59105884A (en) 1984-06-19

Family

ID=16704813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217475A Pending JPS59105884A (en) 1982-12-10 1982-12-10 Method and apparatus for desalination of sea water

Country Status (1)

Country Link
JP (1) JPS59105884A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194084A (en) * 1981-05-26 1982-11-29 Ishikawajima Harima Heavy Ind Co Ltd Deaerating method of sea water-to-fresh water converting equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194084A (en) * 1981-05-26 1982-11-29 Ishikawajima Harima Heavy Ind Co Ltd Deaerating method of sea water-to-fresh water converting equipment

Similar Documents

Publication Publication Date Title
JP3448201B2 (en) Wastewater evaporative concentrator
US4963231A (en) Method for evaporation of liquids
WO2016041292A1 (en) Fluid-gap multi-effect membrane distillation process and device thereof
KR101769949B1 (en) Evaporation and concentration system and method having improved energy efficiency
US4213830A (en) Method for the transfer of heat
US4860548A (en) Air conditioning process and apparatus therefor
JPH0952082A (en) Apparatus for desalinating seawater
JPH09507036A (en) Evaporative concentrating and drying apparatus and method having vapor purification capability
RU2541489C2 (en) Method and device for evaporation of cryogenic media
JPS60248118A (en) Apparatus and method for conditioning air in hermetically closed body
CN104724776A (en) Device and method for mixing secondary steam into pressurized water in pressurized evaporation
JPS59105884A (en) Method and apparatus for desalination of sea water
CN206152367U (en) Low temperature evaporation plant
CN204778912U (en) Concentrated processing system of evaporation formula liquid
WO1991000772A1 (en) Air conditioning process and apparatus
TW201332902A (en) Integrated-type energy saving sea water desalination apparatus
US4872315A (en) Heat exchanger and systems and methods for using the same
JPS6124634B2 (en)
JPH0775642B2 (en) Method for evaporating and concentrating aqueous solution containing water-soluble organic matter
US4583370A (en) Heat exchanger and systems and methods for using the same
JPH0967584A (en) Lng vaporization apparatus
JPH0952083A (en) Apparatus for desalinating seawater
JPH04330903A (en) Method for evaporating and concentrating water solution containing water soluble organic compound
CN112624234B (en) System and method for treating organic wastewater by using low-grade heat energy
CN115490383B (en) Membrane distillation device