JPS59105679A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPS59105679A
JPS59105679A JP21572282A JP21572282A JPS59105679A JP S59105679 A JPS59105679 A JP S59105679A JP 21572282 A JP21572282 A JP 21572282A JP 21572282 A JP21572282 A JP 21572282A JP S59105679 A JPS59105679 A JP S59105679A
Authority
JP
Japan
Prior art keywords
liquid crystal
display element
crystal display
voltage
smectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21572282A
Other languages
Japanese (ja)
Inventor
羽藤 仁
富井 等
正一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21572282A priority Critical patent/JPS59105679A/en
Publication of JPS59105679A publication Critical patent/JPS59105679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は液晶表示素子に関するものである。[Detailed description of the invention] [Technical field of invention] The present invention relates to a liquid crystal display element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来よシ液晶を用いる大型、大情報量の表示素子として
は、ツィステッドネマティック素子や動的散乱モードを
用いたドツトマトリックス時分割表示素子が知られてい
る。しかしながらかかる表示素子にあっては情報量が増
大するに伴なって選択状態の画素に印加する電圧と、非
選択状態又は半選択状態の画素に印加される電圧と、の
差が小さくなるという欠点があった。
Conventionally, twisted nematic devices and dot matrix time-division display devices using a dynamic scattering mode are known as large-sized, large-information display devices using liquid crystals. However, such a display element has the disadvantage that as the amount of information increases, the difference between the voltage applied to a pixel in a selected state and the voltage applied to a pixel in an unselected or half-selected state becomes smaller. was there.

このため、前記小さな電圧差に対しても敏感に応答する
液晶材料が必要とされている。しかしながら、前記表示
素子に用いられる種類の液晶は印加電圧に対する透過光
の変化の急峻性に限界があシ、シかもそのしきい値電圧
は温度変化に影響され易いため、コントラストの低下が
起こり、このドツトマトリックス時分割表示素子では高
情報量を表示するのに問題がある。
Therefore, there is a need for a liquid crystal material that responds sensitively even to the small voltage difference. However, the type of liquid crystal used in the display element has a limit in the steepness of the change in transmitted light with respect to the applied voltage, and its threshold voltage is easily affected by temperature changes, resulting in a decrease in contrast. This dot matrix time division display element has a problem in displaying a large amount of information.

このようなことから、最近、高情報量を表示できる素子
として熱電気光学効果形の表示素子が開発されている。
For these reasons, thermo-electro-optic display elements have recently been developed as elements capable of displaying a high amount of information.

かかる表示素子は液晶を加熱するためのヒータ電極を例
えば列方向に複数本有する基板と、書き込み用の信号電
極を前記ヒータと直交する行−に複数本有する基板とか
らなり、それら基板の対向面に垂直配向処理層を形成し
た液晶セルに、常温でスメクティック相を示し、常温か
ら温度を上げるに従ってネマティック相、等方性液体と
なる正の誘電異方性をもつ液晶を挟持せしめた構造にな
っている。
Such a display element consists of a substrate having a plurality of heater electrodes for heating the liquid crystal, for example in the column direction, and a substrate having a plurality of writing signal electrodes in rows perpendicular to the heaters, and the opposite surface of these substrates. It has a structure in which a liquid crystal cell with a vertical alignment treatment layer is sandwiched between liquid crystals that exhibit a smectic phase at room temperature and change to a nematic phase and an isotropic liquid as the temperature is raised from room temperature, with positive dielectric anisotropy. ing.

こうした液晶表示装置において、ヒータ電極に電圧をパ
ルス状に印加すると、液晶の温度はジュール熱により局
所的にスメクティック温度から等方性液体相に上昇し、
電流が切れた時から周囲温度により冷却されてスメクテ
ィック相の温度まで戻る。この冷却過程が短時間で行な
われれば、等方性液体時の液晶分子のゆらぎが凍結され
て散乱状態(不透明々状態)となる。この散乱状態はス
メクティ、り相まて冷却されると、記憶保持される。一
方、前記冷却過程中の等方性液体相とスメクティック相
の間のネマティック相で信号電極に信号電圧として液晶
のしきい値電圧より大きい値の電圧を液晶層に印加する
と、液晶分子は基板と垂直方向にその長軸を向けて配向
するので、液晶セルは透明となり、更に冷却が進みスメ
クテイツク相とすると、同透明状態が記憶保持される。
In such a liquid crystal display device, when a voltage is applied in a pulsed manner to the heater electrode, the temperature of the liquid crystal locally rises from the smectic temperature to the isotropic liquid phase due to Joule heat.
After the current is cut off, it is cooled by the ambient temperature and returns to the smectic phase temperature. If this cooling process is carried out in a short time, the fluctuations of the liquid crystal molecules in an isotropic liquid state are frozen and become a scattering state (opaque state). This scattering state is memorized and retained when the smecti is mixed and cooled. On the other hand, when a voltage larger than the threshold voltage of the liquid crystal is applied to the signal electrode as a signal voltage to the liquid crystal layer in the nematic phase between the isotropic liquid phase and the smectic phase during the cooling process, the liquid crystal molecules are connected to the substrate. Since the liquid crystal cell is oriented with its long axis directed in the vertical direction, it becomes transparent, and when it is further cooled and enters a smectic phase, the transparent state is memorized and retained.

但し、スメクテイック相になってしまった液晶にしきい
値電圧よシ大きい値の電圧を印加しても液晶分子は応答
しない。このように、上記液晶表示素子は一方の基板の
例えば列方向に複数本配列されたヒータによる熱と、他
方の基板の行方向に複数本配列された信号電極による電
圧との2種の外力を用いてそれらヒータと信号電極の所
定の交差部分での表示の選択、非選択を行なうので、原
理的に信号電極のみで表示を行なう場合のようなりロス
トークがなく、大情報量の表示能力を有する。また、記
憶効果を有するため、電源を切っても表示を保持できる
利点もある。
However, even if a voltage larger than the threshold voltage is applied to the liquid crystal that has entered the smectic phase, the liquid crystal molecules do not respond. In this way, the liquid crystal display element receives two kinds of external forces: heat generated by a plurality of heaters arranged in the column direction on one substrate, and voltage generated by a plurality of signal electrodes arranged in the row direction on the other substrate. Since the display is selected or non-selected at a predetermined intersection between the heater and the signal electrode, there is, in principle, no losstalk unlike when display is performed using only the signal electrode, and it has the ability to display a large amount of information. . Also, since it has a memory effect, it has the advantage of retaining the display even when the power is turned off.

ところで、上述しだ熱電気光学効果形液晶表示素子にお
いて、散乱部(白濁時)と透明部とのコントラストを上
げるためには、等方性液体相からの冷却を急激に行なわ
せしめ、液晶分子のゆらぎを効率よく凍結し、散乱度を
上げることが望ましい。このためには、周囲温度との差
が大きい高温側で狭い温度範囲のネマティック相を持つ
液晶材料を液晶セルに挟持して液晶表示素子を構成する
ことが考えられる。しかしながら、かかる表示素子では
周囲温度から等方性液体相の温度へと上昇させるために
大量の熱を必要とするので、ヒータの消費電力が大きく
なり、ヒータの電圧値を固定した場合、昇温に長い時間
を必要とする。その結果、書き込み速度が遅く々るとい
う問題がある。
By the way, in the above-mentioned thermoelectro-optic liquid crystal display element, in order to increase the contrast between the scattering part (when cloudy) and the transparent part, the isotropic liquid phase is rapidly cooled, and the liquid crystal molecules are It is desirable to efficiently freeze fluctuations and increase the degree of scattering. To this end, it is conceivable to construct a liquid crystal display element by sandwiching a liquid crystal material having a nematic phase in a narrow temperature range on the high temperature side where the difference from ambient temperature is large between liquid crystal cells. However, such display elements require a large amount of heat to raise the temperature from the ambient temperature to the isotropic liquid phase, so the power consumption of the heater increases, and if the voltage value of the heater is fixed, the temperature will increase. requires a long time. As a result, there is a problem that the writing speed is slow.

逆に、消費電力の低下と督き込み速度を向上させる目的
で、周囲温度とあまり変らないネマティック相温度をも
つ液晶材料を用いることが考えられる。しかし彦から、
こうした液晶材料を用いると、冷却が急激に行なわれず
、冷却過程でのネマティック相の時に液晶分子は互に平
行と々ろうとするため、散乱度が乏しくなシ、コントラ
ストの低下を招く。まだ、周囲温度が変動した場合には
等方性液体相の温度まで昇温するに必要な熱量の変化割
合が大きくなる。その結果、所望の散乱度を得るために
必要なヒータ電圧やパルス幅を大きく変化させることが
必要となり、ヒータ電圧やヒータ・セルス幅の設定余裕
度が小さくなる。したがって、従来のいずれの液晶表示
装置においても低消費電力で高速書き込みができ、しか
も高コントラストの表示を実現することは不可能であっ
た。
Conversely, in order to reduce power consumption and improve the writing speed, it is conceivable to use a liquid crystal material that has a nematic phase temperature that does not differ much from the ambient temperature. But from Hiko,
When such a liquid crystal material is used, cooling is not performed rapidly and the liquid crystal molecules tend to be parallel to each other during the nematic phase during the cooling process, resulting in poor scattering and a decrease in contrast. However, if the ambient temperature fluctuates, the rate of change in the amount of heat required to raise the temperature to the temperature of the isotropic liquid phase will increase. As a result, it is necessary to largely change the heater voltage and pulse width necessary to obtain the desired degree of scattering, and the margin for setting the heater voltage and heater cell width becomes small. Therefore, in any of the conventional liquid crystal display devices, it has been impossible to achieve high-speed writing with low power consumption and high-contrast display.

〔発明の目的〕[Purpose of the invention]

本発明は低消費電力で高速書き込みができ、かつ高コン
トラストの表示が可能で、しかもヒータ電圧の設定やヒ
ータ電圧パルス幅の設定余裕度が大きく、更に低信号電
圧駆動に適した液晶表示素子を提供しようとするもので
ある。
The present invention uses a liquid crystal display element that is capable of high-speed writing with low power consumption, high-contrast display, has a large margin for setting heater voltage and heater voltage pulse width, and is suitable for low signal voltage driving. This is what we are trying to provide.

〔発明の概要〕[Summary of the invention]

本発明は正の誘電異方性を有し、かつ高温下でネマティ
ック相を示すスメクテイック液晶にカイラル物質を、挟
持すべき液晶セルの基板間距離の1倍から6倍のへりカ
ルピッチ長を賦与できる量を添加して力るスメクテイツ
ク液晶組成物を用い、この液晶組成物を液晶セルに挟持
することを特徴とするものである。このようにスメクテ
ィック液晶に所定量のカイラル物質を添加した液晶組成
物を用いることによって、カイラル物質の分子が持つ螺
旋構造に起因する液晶分子同志のねじれ力によシ、等方
性液体時の散乱状態の凍結性が良好となり、より安定し
た散乱状態が得られる。その結果、等方性液体相の転移
温度と周囲温度との温度差を小さくしても十分に散乱度
を上げるととができ、高コントラストの表示が可能なた
め、等方性液体へ昇温するのに必要々消費成力を小さく
できると共に高速書き込みを実現できる。また、散乱度
の向上を、熱効果のみを利用して行なっているのではな
いため、ヒータの電圧(電流値)やヒータの・ぐルス幅
の設定に対する余裕度が大きくなる。
The present invention can impart a chiral substance to a smectic liquid crystal that has positive dielectric anisotropy and exhibits a nematic phase at high temperatures, and a helical pitch length that is 1 to 6 times the distance between the substrates of the liquid crystal cell to be sandwiched. The present invention is characterized in that it uses a smectic liquid crystal composition which is added in a large amount to force the liquid crystal composition, and this liquid crystal composition is sandwiched between liquid crystal cells. By using a liquid crystal composition in which a predetermined amount of a chiral substance is added to a smectic liquid crystal, the torsion force between liquid crystal molecules caused by the helical structure of the molecules of the chiral substance can be used to suppress scattering in an isotropic liquid. The freezing property of the state is improved, and a more stable scattering state can be obtained. As a result, it is possible to sufficiently increase the degree of scattering even if the temperature difference between the transition temperature of the isotropic liquid phase and the ambient temperature is small, and high-contrast display is possible. It is possible to reduce the power consumption necessary to write data and to realize high-speed writing. Furthermore, since the degree of scattering is not improved by using only thermal effects, there is a greater degree of leeway in setting the voltage (current value) of the heater and the width of the heater.

上記スメクティック液晶としては、例えばビフェニール
系液晶、アゾメチン系液晶、アゾキシ系液晶、エステル
系液晶、ビ1,1 ミジン系液晶或いはこれら液晶の混
合物等を使用することができる。
As the smectic liquid crystal, for example, biphenyl liquid crystal, azomethine liquid crystal, azoxy liquid crystal, ester liquid crystal, bi-1,1-midine liquid crystal, or a mixture of these liquid crystals can be used.

上記カイラル物質としては、例えば4−(2−メチルブ
チル)−4’ −(4−n−ペンテルシクロヘキロキシ
カルボニル)ビフェニル、4−n−へブトキシ−4’−
(2−メチルブチロキシカルボニル)ビフェニル、4−
(4−(2−メチルブチル)ペンツイロキシ〕ベンゾイ
ックアシド−4′−n−ペンチルフェニルエステル等を
挙げることができる。
Examples of the chiral substance include 4-(2-methylbutyl)-4'-(4-n-pentylcyclohexyloxycarbonyl)biphenyl, 4-n-hebutoxy-4'-
(2-methylbutyroxycarbonyl)biphenyl, 4-
Examples include (4-(2-methylbutyl)pentyloxy)benzoic acid-4'-n-pentylphenyl ester.

上記の如くカイラル物質の添加量を限定した理由はその
量を基板間距離の1倍未満のヘリカルピッチ長となるよ
うに添加すると、初期状態で既に白濁していることが多
く、加熱し冷却中のネマティック相状態で信号電極に通
電しても透明にならず、白濁した′!、まで、応答性が
悪くなる。かといって、その量が基板間距離の6倍を越
えるへりカルピッチ長となるように添加すると、カイラ
ル物質の添加効果が得られなくなる。
The reason for limiting the amount of chiral substance added as described above is that if the amount is added so that the helical pitch length is less than one time the distance between the substrates, it often becomes cloudy in the initial state, and during heating and cooling. When electricity is applied to the signal electrode in the nematic phase state, it does not become transparent and becomes cloudy! , the responsiveness deteriorates. However, if the amount is added so that the helical pitch length exceeds six times the distance between the substrates, the effect of adding the chiral substance will not be obtained.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

実施例 ビフェニル系のスメクティック液晶(BDH(株)製部
品名; K24)と同系のスメクティック液晶(BDH
(休)製部品名;に30)とを等モル分率で混合し、こ
れにカイラル物質(チッ素(株)製部品名: CM−2
0)を2重量%添刀口してヘリカルピッチ長が13.7
μmのスメクティック液晶組成物を調製した。
Example A biphenyl-based smectic liquid crystal (manufactured by BDH Co., Ltd., part name: K24) and a similar smectic liquid crystal (BDH
(Part name: CM-2 manufactured by Chisso Co., Ltd.) and 30) are mixed in an equimolar fraction, and a chiral substance (Part name manufactured by Chisso Co., Ltd.: CM-2) is mixed in an equimolar fraction.
The helical pitch length is 13.7 by adding 2% by weight of 0).
A μm smectic liquid crystal composition was prepared.

一方、金属膜からなるヒータ電極が付着されたガラス基
板と、酸化インジウムからなる信号電極が付着されたガ
ラス基板との対向面に垂直配向剤(住友3M(株)製部
品名; FC−805)で垂直配向層を設けた。次いで
、垂直配向層が対向するように9μmの間隔で平行に配
置した前記基板間に前述したスメクティック液晶組成物
を挟持し、基板間の周辺をシール材で封止して液晶表示
素子を製作した。
On the other hand, a vertical alignment agent (manufactured by Sumitomo 3M Co., Ltd., part name: FC-805) is applied to the opposing surfaces of the glass substrate to which the heater electrode made of metal film is attached and the glass substrate to which the signal electrode made of indium oxide is attached. A vertical alignment layer was provided. Next, the above-described smectic liquid crystal composition was sandwiched between the substrates arranged in parallel with an interval of 9 μm so that the vertical alignment layers faced each other, and the periphery between the substrates was sealed with a sealing material to produce a liquid crystal display element. .

比較例1 ビフェニル系のスメクティック液晶(BDH(株)製部
品名; K24)と同系のスメクティック液晶(BDH
(株)製部品名; K2O)とを等モル分率で混合した
スメクディック液晶材料を用いて実施例と同様、基板間
に挟持し、シール材で封止し一〇液晶表示素子を製作し
た。
Comparative Example 1 A biphenyl-based smectic liquid crystal (part name: K24 manufactured by BDH Corporation) and a similar smectic liquid crystal (BDH
A liquid crystal display element (10) was fabricated by using a Sumekdic liquid crystal material mixed with KO (part name: K2O) manufactured by Co., Ltd. in an equimolar proportion and sandwiching it between substrates and sealing with a sealing material in the same manner as in the example.

比較例2 ネマティック相転移温度の高いスメクテイック液晶材料
を用いて実施例と同様、基板間に挟持し、シール材で封
止して液晶表示素子を製作した。
Comparative Example 2 A liquid crystal display element was manufactured using a smectic liquid crystal material having a high nematic phase transition temperature by sandwiching the material between substrates and sealing with a sealing material in the same manner as in the example.

しかして、本実施例及び比較例1・2の液晶表示素子に
ついてスメクティックーネマテイック相転移温度、ネマ
ティック−等方性液体相転移温度、比較例1に対するコ
ントラスト比及び書き込み信号電圧の最小値を調べた。
Therefore, the smectic-nematic phase transition temperature, the nematic-isotropic liquid phase transition temperature, the contrast ratio with respect to Comparative Example 1, and the minimum value of the write signal voltage were investigated for the liquid crystal display elements of this example and Comparative Examples 1 and 2. Ta.

その結果を下記表に示す。The results are shown in the table below.

表 また、本実施11/IJ及び比較例1・2の液晶表示素
子のヒータ電極に・ぐルス状の電圧を印加し、その電圧
値とパルス幅を変化させて、散乱状態実現可能なヒータ
電圧とヒータパルス幅の関係を調べたところ、図に示す
特性図を得た。図中のAは本実施例の液晶表示素子の特
性線、Bは比較例1の同素子の特性線、Cは比較例2の
同素子の特性線である。なお各特性線の斜線部は許容範
囲を示す。
The table also shows the voltage at which a scattering state can be achieved by applying a gust-like voltage to the heater electrodes of the liquid crystal display elements of Example 11/IJ and Comparative Examples 1 and 2, and changing the voltage value and pulse width. When we investigated the relationship between this and the heater pulse width, we obtained the characteristic diagram shown in the figure. In the figure, A is a characteristic line of the liquid crystal display element of this example, B is a characteristic line of the same element of Comparative Example 1, and C is a characteristic line of the same element of Comparative Example 2. Note that the shaded portion of each characteristic line indicates the allowable range.

図示した特性図よシ明らかな如く、比較例1の液晶表示
素子は低圧で、しかも短いパルスの電圧で散乱状態を実
現できる。これは、上表に示した如く等方性液体への転
移温度と周囲温度との差が小さいので、少ない熱量でス
メクティック相から等方性液体相にまで昇温できるため
である。しかしながら、比較例1の液晶表示素子では上
表に示す如くコントラストが低く、シかも同図に示す如
くヒータ電圧値とそのパルス幅の設定余裕度は非常に低
い。
As is clear from the illustrated characteristic diagram, the liquid crystal display element of Comparative Example 1 can achieve a scattering state with a low voltage and a short voltage pulse. This is because, as shown in the table above, the difference between the transition temperature to an isotropic liquid and the ambient temperature is small, so the temperature can be raised from a smectic phase to an isotropic liquid phase with a small amount of heat. However, the liquid crystal display element of Comparative Example 1 had low contrast as shown in the above table, and as shown in the same figure, the margin for setting the heater voltage value and its pulse width was very low.

また、比較例2の液晶表示素子は散乱状態を実現するに
は高圧でしかも長いパルス幅の電圧を印加する必要があ
る。これは、等方性液体への相転移温度と周囲温度との
差が太きいため、ヌメクティック相から等方性液体相ま
で昇温するのに大量の熱を必要とするからである。しか
も、比較例2の液晶表示素子は高コントラストの表示が
可能であるものの、同図に示す如くヒータ電圧値とその
パルス幅の設定余裕度は非常に低い。
Further, in the liquid crystal display element of Comparative Example 2, it is necessary to apply a voltage with a high voltage and a long pulse width in order to realize a scattering state. This is because there is a large difference between the phase transition temperature to isotropic liquid and the ambient temperature, so a large amount of heat is required to raise the temperature from the numectic phase to the isotropic liquid phase. Moreover, although the liquid crystal display element of Comparative Example 2 is capable of high contrast display, as shown in the figure, the margin of latitude in setting the heater voltage value and its pulse width is very low.

これに対し、カイラル物質を添加したスメクティック液
晶組成物を有した本実施例の液晶表示素子は比較例1の
素子に比べてヒータ電圧、パルス幅とも多少大きいが、
比較例2に比べて非常に小さい電圧1,4+ルス幅で散
乱状態を実現できた。また、本実施例の表示素子のコン
トラストはカイラル物質をスメクティック液晶に添加す
ることによシ、カイラル物質無添加で同組成のスメクテ
ィック液晶を用いた比較例1に比べて2.6倍向上し、
かつネマティック相温度の高い比較例2を越える高コン
トラストの表示を達成できた。更に本実施例の液晶表示
素子は同図に示す如くヒータ電圧値とそのパルス幅の設
定余裕度が極めて高い。このため、周囲温度に変動があ
った場合でも、ヒータ電圧値、/4’ルス幅の設定を大
きく変化させることなく、安定した散乱状態を得ること
ができた。その他、本実施例の液晶表示素子は比較例1
,2とほとんど変わらない信号電極への信号電圧値で透
明状態にできた。
On the other hand, the liquid crystal display element of this example, which had a smectic liquid crystal composition doped with a chiral substance, had a somewhat larger heater voltage and pulse width than the element of comparative example 1;
A scattering state could be achieved with a voltage of 1,4+Rus width, which was much smaller than in Comparative Example 2. Furthermore, by adding a chiral substance to the smectic liquid crystal, the contrast of the display element of this example was improved by 2.6 times compared to Comparative Example 1 using a smectic liquid crystal of the same composition without the addition of a chiral substance.
Moreover, a high contrast display exceeding that of Comparative Example 2, which had a high nematic phase temperature, could be achieved. Furthermore, as shown in the figure, the liquid crystal display element of this embodiment has extremely high latitude in setting the heater voltage value and its pulse width. Therefore, even if there was a change in the ambient temperature, a stable scattering state could be obtained without greatly changing the heater voltage value or /4' pulse width setting. In addition, the liquid crystal display element of this example is Comparative Example 1
, 2, a transparent state was achieved with a signal voltage value to the signal electrode that was almost the same as that of 2.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば低消費電力で高速書
き込みができ、かつ高コントラストの表示が可能であり
、ヒータ電圧の4変動やヒータ電圧パルス幅の設定余裕
度が大きく、更に低信号電圧駆動も可能である等優れた
特性を有する液晶表示素子を提供できる。
As described in detail above, according to the present invention, high-speed writing is possible with low power consumption, high-contrast display is possible, there is a large degree of latitude in setting the heater voltage pulse width and heater voltage pulse width, and furthermore, it is possible to perform high-speed writing with low power consumption. It is possible to provide a liquid crystal display element having excellent characteristics such as being able to be driven by voltage.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の液晶表示素子及び従来の2種の液晶表示素
子における散乱状態実現可能なヒータ電圧とヒータパル
ス幅との関係を示す特性図である。
The figure is a characteristic diagram showing the relationship between heater voltage and heater pulse width that can realize a scattering state in the liquid crystal display element of the present invention and two types of conventional liquid crystal display elements.

Claims (1)

【特許請求の範囲】[Claims] 加熱用ヒータ電古き込み用信号電極を有しそれぞれ垂直
配向処理層が形成された基板間にスメクティック液晶組
成物を挟持してなる熱電気光学効果形の液晶表示素子に
おいて、前記スメクティック液晶組成物として正の誘電
異方性を有し、かつ高温下でネマティック液晶相を示す
スメクティック液晶にカイラル物質を前記基板間距離の
1倍から6倍のへりカルピッチ長を賦与できる量を添加
したものを用いることを特徴とする液晶表示素子。
In a thermo-electro-optical liquid crystal display element in which a smectic liquid crystal composition is sandwiched between substrates each having a signal electrode for heating and a vertical alignment treatment layer, the smectic liquid crystal composition is Use a smectic liquid crystal that has positive dielectric anisotropy and exhibits a nematic liquid crystal phase at high temperatures, with a chiral substance added in an amount capable of imparting a helical pitch length of 1 to 6 times the distance between the substrates. A liquid crystal display element featuring:
JP21572282A 1982-12-09 1982-12-09 Liquid crystal display element Pending JPS59105679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21572282A JPS59105679A (en) 1982-12-09 1982-12-09 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21572282A JPS59105679A (en) 1982-12-09 1982-12-09 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPS59105679A true JPS59105679A (en) 1984-06-19

Family

ID=16677091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21572282A Pending JPS59105679A (en) 1982-12-09 1982-12-09 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS59105679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416692A (en) * 1987-07-10 1989-01-20 Yoshikazu Kimura Normal postal card material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370456A (en) * 1976-12-03 1978-06-22 Thomson Csf Smectic lc display cell
JPS57169727A (en) * 1981-04-10 1982-10-19 Nec Corp Liquid crystal temperature display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370456A (en) * 1976-12-03 1978-06-22 Thomson Csf Smectic lc display cell
JPS57169727A (en) * 1981-04-10 1982-10-19 Nec Corp Liquid crystal temperature display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416692A (en) * 1987-07-10 1989-01-20 Yoshikazu Kimura Normal postal card material

Similar Documents

Publication Publication Date Title
JPH0120725B2 (en)
JPH1053765A (en) Smectic liquid crystal composition and liquid crystal cell
JPS6160782A (en) Storage-type liquid crystal composition
JPH0413395B2 (en)
Gray The Clifford Paterson Lecture, 1985 Liquid crystals: an arena for research and industrial collaboration among chemists, physicists and engineers
US4016094A (en) Electro-optical device
JPS59105679A (en) Liquid crystal display element
JP2927662B2 (en) Liquid crystal display
JPS61197682A (en) Liquid crystal display device
Lu et al. Thermally and electrically addressed dye switching LCDs
JP2513607B2 (en) Liquid crystal composition
JPS5950713B2 (en) liquid crystal composition
JPS61198187A (en) Liquid crystal display unit
JP2910791B2 (en) Liquid crystal composition
JP3027643B2 (en) Ferroelectric liquid crystal composition and liquid crystal display device using the same
JP2003066429A (en) Liquid crystal display element having memory function
JP2002275470A (en) Chiral nematic liquid crystal composition and liquid crystal optical element using the same
JP2726111B2 (en) Ferroelectric liquid crystal device
JP2607491B2 (en) LCD driving method
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP3102332B2 (en) Antiferroelectric liquid crystal composition
JPS6191631A (en) Method for driving liquid crystal element
JPS6086521A (en) Phase transition type liquid crystal display element
JPH06110037A (en) Liquid crystal display device
JPS5940865B2 (en) Mixed cholesteric liquid crystal and its device