JPS59105391A - Method of light amplification by use of semiconductor laser - Google Patents

Method of light amplification by use of semiconductor laser

Info

Publication number
JPS59105391A
JPS59105391A JP21593582A JP21593582A JPS59105391A JP S59105391 A JPS59105391 A JP S59105391A JP 21593582 A JP21593582 A JP 21593582A JP 21593582 A JP21593582 A JP 21593582A JP S59105391 A JPS59105391 A JP S59105391A
Authority
JP
Japan
Prior art keywords
laser
light
power
input light
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21593582A
Other languages
Japanese (ja)
Other versions
JPH041513B2 (en
Inventor
Kenjiyu Otsuka
建樹 大塚
Hidetoshi Iwamura
岩村 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21593582A priority Critical patent/JPS59105391A/en
Publication of JPS59105391A publication Critical patent/JPS59105391A/en
Publication of JPH041513B2 publication Critical patent/JPH041513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the function of shaping a light pulse wave form, of a light logical gate, and of a light memory by a method wherein a laser input light is non-linearly amplified by utilizing the S-shaped laser input power to laser output light power characteristic of a semiconductor laser. CONSTITUTION:If the laser input light S1 has a power waveform which exceeds the point at which the laser input light power takes the maximum value on the curve for the S-shaped laser input power to laser output light power characteristic, the input light S1 can be non-linearly amplified in the form of shaping to a light pulse wave form. If there are two laser input lights S1, and the sum of the powers of the two input lights have the value which exceeds the point at which the laser input light power takes the maximum value on the curve for the input light power to output light power characteristic, the laser input light S1 can be non-linearly amplified in the form of the logical gate. Further, when those of two input lights are selectively injected to an active layer 2 in the state that a bias light having the power of a medium value is injected to the active layer 2 of the semiconductor laser 1, the input light Si can be memorized by non-linear amplification in the form that the light input light taking positive and negative polarity powers corresponding to 1 and 0 in terms of binary values respectively.

Description

【発明の詳細な説明】 本発明は、半導体レーザを用いて、レーザ入力光を増幅
させる、半導体レーザを用いた光増幅法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical amplification method using a semiconductor laser, which amplifies laser input light using a semiconductor laser.

このような半導体レーザを用いた光増幅法として、第1
図に示すように、相対向している端面を男開面とし1.
それを共振器としている、または相対向して端面に反射
膜を付している構成を有する共振器形の半導体レーザ1
を用い、その活性層2に、電源3から発振閾値以下の電
流を注入させている状態で、レーザ入力光S1を注入さ
せ、活性層2からレーザ入力光S1を増幅させる、とい
う原理的な、光増幅法が提案されている。
The first optical amplification method using such a semiconductor laser is
As shown in the figure, the opposing end faces are male open faces.1.
A resonator-shaped semiconductor laser 1 having a configuration in which the resonator is used as a resonator, or a reflective film is attached to the end faces facing each other.
The principle is that the laser input light S1 is injected into the active layer 2 while a current below the oscillation threshold is injected from the power supply 3 into the active layer 2, and the laser input light S1 is amplified from the active layer 2. Optical amplification methods have been proposed.

このような、原理的な半導体レーザを用いた光増幅法に
おいて、従来は、レーザ入力光S1を線形増幅させる、
という方法であるに過ぎなかった。
In the optical amplification method using such a principle semiconductor laser, conventionally, the laser input light S1 is linearly amplified.
It was just a method.

従って、第1図に示す原理的な半導体レーザを用いた光
増幅法による、従来の光増幅法によれば、その光増幅法
を用いて、光パルス波形整形機能、光論理ゲート機能、
光メモリ機能などを得ることができなかった。
Therefore, according to the conventional optical amplification method based on the optical amplification method using the principle semiconductor laser shown in FIG.
It was not possible to obtain optical memory functions.

よって、本発明は、第1図に示す原理的な半導体レーザ
を用いた光増幅法をとるが、光パルス波形整形機能、光
論理ゲート機能、光メモリ機能などを得ることができる
、新規な光増幅法を提案せんとするもので、以下詳述す
るところから明らかとなるであろう。
Therefore, the present invention employs an optical amplification method using a semiconductor laser based on the principle shown in FIG. This will become clear from the detailed explanation below.

第1図に示す原理的な半導体レーザを用いた光増幅法に
おいて、そのレーザ入力光S1のパワーP、  とレー
ザ出力光S2のパワーP2との比で表わされる、半導体
レーザ1のパワー利得Gは、次式で表わされる。
In the principle optical amplification method using a semiconductor laser shown in FIG. 1, the power gain G of the semiconductor laser 1 expressed as the ratio of the power P of the laser input light S1 and the power P2 of the laser output light S2 is , is expressed by the following equation.

ただし、以下簡単のため半導体レーザ1が9〜開面を共
振器としているものとして述べる。
However, for the sake of simplicity, the following description will be made assuming that the semiconductor laser 1 has the open planes 9 through 9 serving as resonators.

G工=P、/P。G engineering = P, /P.

=ηT’ G (1−RG)’ X (1+Fsin’ φ) ・・・・・・・・・・・・・・・(1)F=4GR/ 
(1、−GR)’・・・・・・・・・・・・(2)G=
 exp(((]−α)L)・・・・・・・・・・・・
・・・(3)a =Q / <14−PI /p>・・
・・・・・・・・・・・・・(4)OS φ=δ−(b/2)g。(P、/ P、)/(1+P/
P)   ・・・・・・・・・・・・・・・(5)S ここで、ηは半導体レーザ1の活性層2への光注入効率
、■は半導体レーザ1の男間面の透過率、Rは半導体レ
ーザ1の男聞面の反射率、Qは飽和増幅利得係数、αは
損失係数、す。は小信号利得係数、Lは半導体レーザ1
のレーザ長、P8はレーザ出力光の飽和パワー、φは半
導体レーザ1の活性層2内を光が一回通過当りの光の位
相変化量、δは初期離調、係数すは半導体レーザ1の活
性層2に注入するキャリアの密度に関する活性層2の屈
折率と利得係数の変化率の比(AI Ga As /G
aAS系半導体レーザの場合−0,5〜−6,2)をそ
れぞれ示す。
=ηT' G (1-RG)' X (1+Fsin' φ) ・・・・・・・・・・・・・・・(1) F=4GR/
(1, -GR)'・・・・・・・・・・・・(2)G=
exp(((]-α)L)・・・・・・・・・・・・
...(3)a=Q/<14-PI/p>...
・・・・・・・・・・・・・・・(4) OS φ=δ−(b/2)g. (P,/P,)/(1+P/
P) ・・・・・・・・・・・・・・・(5)S Here, η is the light injection efficiency into the active layer 2 of the semiconductor laser 1, and ■ is the transmission of the male surface of the semiconductor laser 1. R is the reflectance of the male surface of the semiconductor laser 1, Q is the saturation amplification gain coefficient, and α is the loss coefficient. is the small signal gain coefficient, L is the semiconductor laser 1
P8 is the saturation power of the laser output light, φ is the amount of phase change of the light per pass of the light in the active layer 2 of the semiconductor laser 1, δ is the initial detuning, and the coefficient is the saturation power of the laser output light. The ratio of the rate of change of the refractive index and gain coefficient of the active layer 2 with respect to the density of carriers injected into the active layer 2 (AI Ga As /G
-0, 5 to -6, 2) for an aAS semiconductor laser.

本発明者等は、種々の実験の結果、第1図に示す原理的
な半導体レーザを用いた光増幅法において、レーザ入力
光S1のパワーP、に対するレーザ出力光S2のパワー
P、の関係が、上述したパワー利得Gの1つのパラメー
タである、注入キャリア密度に関する活性層2の屈折率
と利得係数の変化率の比すをパラメータとして、第2図
に示すような、S字形レーザ入力光パワ一対レーザ出力
光パワー特性を有することを確認するに到った。
As a result of various experiments, the present inventors have determined that in the optical amplification method using the principle semiconductor laser shown in FIG. 1, the relationship between the power P of the laser output light S2 and the power P of the laser input light S1 is , the input optical power of the S-shaped laser as shown in FIG. It was confirmed that the laser has a pair of laser output optical power characteristics.

ただし、第2図は、小信号利得係数gが28cm−1、
損失係数が10cm−’、レーザ長りが500μm、男
開面反射率Rが0.35、初期離長δが2゜75 ra
dである場合の特性である。
However, in Fig. 2, the small signal gain coefficient g is 28 cm-1,
The loss coefficient is 10 cm-', the laser length is 500 μm, the open plane reflectance R is 0.35, and the initial separation δ is 2°75 ra.
This is the characteristic when d.

また、本発明者等は、種々の実験の結果、第1図に示す
原理的な半導体レーザを用いた光増幅法において、レー
ザ入力光S1のパワーP、に対するレーザ出力光S2の
パワーP、の関係が、上述したパワー利得Gの他の1つ
のパラメータである、初期離調δをパラメータとして、
第3図に示すJ:うな、S字形レーザ入力光パワ一対レ
ーザ出力光パワー特性を有することを確認するに到った
Furthermore, as a result of various experiments, the present inventors have determined that the power P of the laser output light S2 with respect to the power P of the laser input light S1 in the optical amplification method using the principle semiconductor laser shown in FIG. The relationship is as follows with initial detuning δ, which is another parameter of the power gain G mentioned above, as a parameter:
It has been confirmed that the laser has the J: Ear, S-shaped laser input optical power vs. laser output optical power characteristics shown in FIG.

ただし、第3図は、小信号利得係数g。が28cm−1
、損失係6\1Qcm−’、レーザ長りが50C1m、
男開面反射率Rが0.35である場合の特性である。
However, in FIG. 3, the small signal gain coefficient g. is 28cm-1
, loss factor 6\1Qcm-', laser length 50C1m,
This is the characteristic when the open-face reflectance R is 0.35.

よって、本発明者等は、第1図に示す原理的な半導体レ
ーザを用いた光増幅法において、レーザ入力光S1を、
半導体レーザのS字形レーザ入力光パワ一対し−ザ出ツ
ノ光パワー特性を利用して非線形増幅させるという方法
を、本発明による光増幅法として提案するに到った。
Therefore, in the optical amplification method using the principle semiconductor laser shown in FIG.
As an optical amplification method according to the present invention, we have proposed a method of performing nonlinear amplification by utilizing the characteristics of the S-shaped laser input light power of a semiconductor laser and the output light power characteristic.

以上で本発明による、半導体レーザを用いた光増幅法が
明らかとなった。
As described above, the optical amplification method using a semiconductor laser according to the present invention has been clarified.

このような本発明による、半導体レーザを用いた光増幅
法によれば、それを用いて光パルス波形整形機能、光論
理ゲート機能、光メモリ機能などを得ることができる、
という特徴を有する。
According to the optical amplification method using a semiconductor laser according to the present invention, it is possible to obtain an optical pulse waveform shaping function, an optical logic gate function, an optical memory function, etc.
It has the following characteristics.

すなわち、レーザ入力光S1が、第2図及び第3図に示
すS字形レーザ入力光パワ一対レーザ出力光パワー特性
曲線上でみて、レーザ入力光パワーが極大値をとる点を
越えるパワー波形を有していれば、そのレーザ入力光S
1を、光パルス波形整形した形で非線形増幅することが
できる。
That is, the laser input light S1 has a power waveform that exceeds the point at which the laser input light power takes a maximum value when viewed on the S-shaped laser input light power versus laser output light power characteristic curve shown in FIGS. 2 and 3. If so, the laser input light S
1 can be nonlinearly amplified by shaping the optical pulse waveform.

また、レーザ入力光S1が、複数例えば2個であるもの
とし、しかして、それら2個のレーザ入力光のパワーの
和が、レーザ入力光パワ一対レーザ出力光パワー特性曲
線上でみて、レーザ入力光パワーが極大値をとる点を越
える値を有していれば、レーザ入力光S1を、論理ゲー
トする形で非線形増幅ツることができる。
Further, it is assumed that there are a plurality of laser input lights S1, for example, two, and the sum of the powers of those two laser input lights is the laser input light power vs. laser output light power characteristic curve. If the optical power has a value exceeding the maximum value, the laser input light S1 can be nonlinearly amplified in the form of a logic gate.

さらに、レーザ入力光S1が、レーザ入力光パワ一対レ
ーザ出力光パワー特性曲線上でみて、レーザ入力光パワ
ーの極大値と、その極大値とレーザ入力光の極小値との
間の中間値との差の絶対値以上の正極性のパワーをとる
レーザ入力光と、上述した中間値と、レーザ入力光パワ
ーの極小値との差の絶対値以上の負極性のパワーをとる
レーザ入力光との2個であるものとし、しかして、それ
ら2個のレーザ入力光を、上述した中間値のパワーを有
するバイアス光を半導体レーザ1の活性層2に注入させ
ている状態で、活性層2に選択的に注入させれば、レー
ザ入力光S1を、上述した正極性及び負極性のパワーを
とるレーザ入力光がそれぞれ2値表示で「1]及びrO
Jに対応している形で、非線形増幅してメモリさせるこ
とができる。
Further, the laser input light S1 is between the maximum value of the laser input light power and the intermediate value between the maximum value and the minimum value of the laser input light on the laser input light power versus laser output light power characteristic curve. Laser input light that takes a power of positive polarity that is greater than the absolute value of the difference, and laser input light that takes power of negative polarity that is more than the absolute value of the difference between the above-mentioned intermediate value and the minimum value of the laser input light power. Assume that these two laser input lights are selectively applied to the active layer 2 of the semiconductor laser 1 while the bias light having the above-mentioned intermediate power is injected into the active layer 2 of the semiconductor laser 1. If the laser input light S1 is injected into the laser input light S1, the laser input light having the above-mentioned positive polarity and negative polarity powers will be expressed as "1" and rO
It can be nonlinearly amplified and stored in memory in a form corresponding to J.

また、上述した本発明による半導体レーザを用いた光増
幅法による場合、第2図の特性から明らかなように、上
述した係数すの値を大きくすればする程、また上述した
δの値をπに近イ」ける程、レーザ入力光S1の小さな
パワーで、そのレーザ入力光S1を非線形増幅すること
ができる。
Furthermore, in the case of the optical amplification method using the semiconductor laser according to the present invention, as is clear from the characteristics shown in FIG. As the power of the laser input light S1 approaches , the laser input light S1 can be nonlinearly amplified with a small power of the laser input light S1.

さらに、上述した本発明による半導体レーザを用いた光
増幅法による場合、半導体レーザーの活性層2における
キャリア寿命τを数nsとすることができ、一方、レー
ザ入力光S1のパワーP、が、上述したPを1On+W
、ηを0.5とする場合、1 mWになるので、P+x
τで表わされるスイッチングエネルギが数PJという極
めて小なる値で、非線形増幅をさせることができる、と
いう特徴を有する。
Furthermore, in the case of the optical amplification method using the semiconductor laser according to the present invention described above, the carrier lifetime τ in the active layer 2 of the semiconductor laser can be set to several ns, while the power P of the laser input light S1 is 1On+W
, if η is 0.5, it will be 1 mW, so P+x
It has the characteristic that nonlinear amplification can be performed with an extremely small switching energy represented by τ of several PJ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による半導体レーザを用いた光増幅法
の説明に供する、原理的な半導体レーザを用いた光増幅
法を示す路線図である。 第2図及び第3図は、本発明による半導体レーザを用い
た光増幅法の説明に供する、半導体レーザのS字形レー
ザ入力光パワ一対レーザ出力光パワー特性を示す図であ
る。 1・・・・・・・・・・・・・・・・・・半導体レーザ
S1・・・・・・・・・・・・・・・レーザ入力光2・
・・・・・・・・・・・・・・・・・活性層S2・・・
・・・・・・・・・・・・レーザ出力光3・・・・・・
・・・・・・・・・・・・電源出願人  日本電信電話
公社 @1 図
FIG. 1 is a route diagram showing a principle optical amplification method using a semiconductor laser, which is used to explain the optical amplification method using a semiconductor laser according to the present invention. FIGS. 2 and 3 are diagrams showing the S-shaped laser input optical power vs. laser output optical power characteristics of a semiconductor laser, for explaining the optical amplification method using the semiconductor laser according to the present invention. 1... Semiconductor laser S1... Laser input light 2.
・・・・・・・・・・・・・・・Active layer S2...
......Laser output light 3...
・・・・・・・・・・・・Power supply applicant Nippon Telegraph and Telephone Public Corporation @1 Figure

Claims (1)

【特許請求の範囲】 半導体レーザを用い、その活性層に、発振閾値以下の電
流を注入させている状態で、レーザ入力光を注入させ、
上記活性層から上記レーザ入力光の増幅されたレーザ出
力光を出力させて、上記レーザ入力光を1i141ii
iさせる、半導体レーザを用いた光増幅法において、 上記レーザ入力光を、上記半導体レーザのS字形レーザ
入力光パワ一対レーザ出力光パワー特性を利用して、非
線形増幅させることを特徴とする光増幅法。
[Claims] Using a semiconductor laser, injecting laser input light into its active layer while injecting a current below the oscillation threshold,
Amplified laser output light of the laser input light is output from the active layer, and the laser input light is 1i141ii
In the optical amplification method using a semiconductor laser, the laser input light is nonlinearly amplified using the S-shaped laser input light power pair laser output light power characteristics of the semiconductor laser. Law.
JP21593582A 1982-12-09 1982-12-09 Method of light amplification by use of semiconductor laser Granted JPS59105391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21593582A JPS59105391A (en) 1982-12-09 1982-12-09 Method of light amplification by use of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21593582A JPS59105391A (en) 1982-12-09 1982-12-09 Method of light amplification by use of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS59105391A true JPS59105391A (en) 1984-06-18
JPH041513B2 JPH041513B2 (en) 1992-01-13

Family

ID=16680690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21593582A Granted JPS59105391A (en) 1982-12-09 1982-12-09 Method of light amplification by use of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59105391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007061A (en) * 1988-07-28 1991-04-09 Fujitsu Limited Bistable semiconductor laser diode device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145388A (en) * 1981-03-03 1982-09-08 Nippon Telegr & Teleph Corp <Ntt> Control method for laser light generation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145388A (en) * 1981-03-03 1982-09-08 Nippon Telegr & Teleph Corp <Ntt> Control method for laser light generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007061A (en) * 1988-07-28 1991-04-09 Fujitsu Limited Bistable semiconductor laser diode device

Also Published As

Publication number Publication date
JPH041513B2 (en) 1992-01-13

Similar Documents

Publication Publication Date Title
AU642546B2 (en) Optical amplifiers
JP2721124B2 (en) Optical processor
AU589817B2 (en) Bistable optical device
JP3145941B2 (en) Optical function amplifying element and operation method thereof
JPH0983050A (en) Method and circuit for driving semiconductor laser and external modulator
RU2099762C1 (en) Optical regenerator
JP2839105B2 (en) High-speed optical communication system for long distance
JPS59105391A (en) Method of light amplification by use of semiconductor laser
ATE284574T1 (en) OPTICAL RESONATORS WITH DISCONTINUOUS PHASE DEVICES
JPS62144426A (en) Optical transmission equipment
JPS63177626A (en) Optical timing extracting circuit
US7355538B2 (en) Binary delta-sigma modulator
US4713818A (en) Optical bistable device
JPH02100385A (en) Method of generating control light signal and generator
Soccolich et al. Cascade of ultrafast soliton-dragging and trapping logic gates
JPH0317633A (en) Optical inverter
CN213584589U (en) Q-switched pulse laser based on vanadium dioxide film saturable absorber
JP2518255B2 (en) Multiple quantum well type optical bistable semiconductor laser
CN210577009U (en) Mode-locked pulse laser based on tin diselenide saturable absorber
SE9502960L (en) Generation of high power optical pulses
JP3006023B2 (en) Optical fiber communication method
JPS61102082A (en) Light emitting semiconductor device
Bhambri et al. A novel approach for SOA-based all-optical NAND gate
JP3553443B2 (en) Optical signal reproduction device
JP2622576B2 (en) Optical signal converter