JPS5910411B2 - Pretreatment method for raw materials for direct steelmaking - Google Patents
Pretreatment method for raw materials for direct steelmakingInfo
- Publication number
- JPS5910411B2 JPS5910411B2 JP72678A JP72678A JPS5910411B2 JP S5910411 B2 JPS5910411 B2 JP S5910411B2 JP 72678 A JP72678 A JP 72678A JP 72678 A JP72678 A JP 72678A JP S5910411 B2 JPS5910411 B2 JP S5910411B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- raw materials
- furnace
- iron
- steelmaking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】
本発明は、直接製鉄用原料の予備処理法、特に、環元炉
内における原料表面に生ずる金属鉄の拡散に基づく原料
相互の固着、所謂クラスタリングを有効に防止するため
の処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a pretreatment method for raw materials for direct steelmaking, and in particular, to effectively prevent so-called clustering, which is the sticking of raw materials to each other due to the diffusion of metallic iron that occurs on the surface of the raw materials in the main furnace. Regarding the processing method.
環元鉄製造技術のうち、固体とガスの対向流原理に基づ
き、炉頂部から装入される原料と、炉下部から導入され
る還元性がガスとを反応させて還元鉄を製造する所謂シ
ャフト炉法は、最も効率が良く、かつ操業の安定性にす
ぐれたプロセスとして知られている。Among the ring iron production technologies, the so-called shaft produces reduced iron by reacting the raw material charged from the top of the furnace with the reducing gas introduced from the bottom of the furnace, based on the principle of counterflow between solid and gas. The furnace method is known as the most efficient process with excellent operational stability.
このシャフト炉の1基当りの生産能力は現在のところ年
間約40〜50万トン程度のものであるが、近年中近東
やソ連の天然ガス産出地域において一個所で5〜10基
の直接製鉄プラントを建設し、その豊富な天然ガスを利
用して直接製鉄を行なおうとするケースが増えているこ
とから、設備の大型化と1基当シの生産性を高めること
が検討されるべき重要な課題となりつつある。The production capacity of one shaft furnace is currently about 400,000 to 500,000 tons per year, but in recent years, direct steelmaking plants of 5 to 10 units have been built in natural gas producing regions of the Middle East and the Soviet Union. Increasingly, there is an increase in the number of cases in which steel is manufactured directly using the abundant natural gas that is built, so increasing the size of equipment and increasing productivity per unit are important considerations. This is becoming an issue.
また、将来核熱の製鉄への利用によって直接製鉄法が現
在の高炉製鉄法におきかえられる場合にも、設備の大型
化と高い生産性とが要求されることは必至である。Furthermore, even if the direct iron manufacturing method is replaced by the current blast furnace iron manufacturing method due to the use of nuclear heat for iron manufacturing in the future, larger equipment and higher productivity will inevitably be required.
このシャフト炉の生産性を高めるための最も効果的な方
法は、吹込み還元ガスの高温化を図ることである。The most effective method for increasing the productivity of this shaft furnace is to raise the temperature of the blown reducing gas.
還元ガスの温度を高めることは、生産性の面だけでなく
、成品(還元鉄)の再酸化を防止するうえでも好ましく
作用する。Increasing the temperature of the reducing gas has a favorable effect not only in terms of productivity but also in preventing re-oxidation of the product (reduced iron).
ところが、炉下部の羽目から吹込まれる還元ガス温度を
高めることは、一方において炉内還元帯下部高温域にあ
る装入原料塊相互が固着する、所謂クラスタリングとい
う好ましくない現象を引き起す。However, increasing the temperature of the reducing gas injected from the slats in the lower part of the furnace, on the other hand, causes an undesirable phenomenon called clustering, in which the charged raw material lumps in the high temperature region of the lower part of the reduction zone in the furnace stick to each other.
炉内で原料のクラスターが生成すると、炉内の原料の流
れ(降下)が不均一化するばかりでなく、ガス圧損の上
昇等を惹起して操業を著しく不安定にし、著しい場合に
は操作の停止を余義なくされる。If clusters of raw materials are formed in the furnace, not only will the flow (fall) of the raw materials in the furnace become uneven, but it will also cause an increase in gas pressure drop, making the operation extremely unstable, and in severe cases, the operation may become unstable. They are forced to stop.
シャフト炉の生産性を高めるには、還元ガスの高温化に
伴う上記クラスタリングを有効に防止するための手段を
開発することが是非とも必要である。In order to increase the productivity of shaft furnaces, it is absolutely necessary to develop means for effectively preventing the above-mentioned clustering caused by the increase in temperature of the reducing gas.
ところで、発生したクラスターによる上記弊害は、クラ
スター強度、すなわち原料相互の固着力の程度によって
左右され、クラスター強度が極く低ければ、炉内に充填
された原料の自重等により分離.瓦解し特別問題は生じ
ないが、固着力が強いと前述の如き種々の支障を惹起す
る。By the way, the above-mentioned adverse effects caused by the generated clusters depend on the cluster strength, that is, the degree of adhesion between the raw materials.If the cluster strength is extremely low, the raw materials filled in the furnace may separate due to their own weight. Although it does not cause any particular problem when it falls apart, if the adhesion force is strong, it causes various troubles as mentioned above.
このクラスター強度の評価は、第1図に示すごとき、鋼
製の回転バレル1と該バレルを回転させる1駆動千段2
から成る装置を用いて行うことができ、該バレル内にク
ラスターを入れ一定速度で一定時間回転させた後、粉砕
されたクラスターを除き残存するクラスター量を秤量し
、その残存割合を以てクラスター強度を表わすのが便宜
である。The evaluation of this cluster strength was carried out using a rotating steel barrel 1, 1 drive stage 2, which rotates the barrel, as shown in Figure 1.
After the clusters are placed in the barrel and rotated at a constant speed for a certain period of time, the crushed clusters are removed and the amount of remaining clusters is weighed, and the remaining percentage represents the cluster strength. It is convenient.
本発明者等の実験によれば、回転速度30rpmで5分
間回転させた後のスラスター残留量から下式により算出
されるCS値(イ)をクラスター強度として実用上有効
に使用し得ることが判明している。According to experiments conducted by the present inventors, it has been found that the CS value (a) calculated by the following formula from the thruster residual amount after rotating at a rotational speed of 30 rpm for 5 minutes can be practically effectively used as the cluster strength. are doing.
CS(尊−B/AXIOO
〔式中、Aは回転試験前の供試クラスター重量、Bは回
転試、験後に原料粒径に相当する網目の篩上に残留する
クラスター重量を表わす。CS(B/AXIOO) [wherein A represents the weight of the sample cluster before the rotation test, and B represents the weight of the cluster remaining on the sieve with a mesh corresponding to the raw material particle size after the rotation test and the test.
〕。クラスターの発生は、還元ガス温度のほか、装入原
料物質の性状により左右され、生成するクラスター強度
は特に原料の鉄品位の影響を受けやすい。]. The generation of clusters is influenced by the reducing gas temperature as well as the properties of the charged raw material, and the strength of the clusters generated is particularly susceptible to the iron grade of the raw material.
たとえば、種々の鉄品位を有する鉄鉱石ペレットを用い
H2 55係、CO36係、CO2 5係およびCH,
4%の組成のガスを還元ガスとして910℃で3時間還
元した際に生成するクラスター強度を前記第1図に示し
た回転試.験装置で測定すると、鉄品位とクラスター強
度との間に第2図の曲線aに示すごとき関係が成立する
。For example, using iron ore pellets with various iron grades, H2 55, CO 36, CO2 5 and CH,
The cluster strength generated when reducing gas with a composition of 4% as a reducing gas at 910°C for 3 hours was measured using the rotating test shown in Figure 1 above. When measured using a testing device, a relationship as shown by curve a in FIG. 2 is established between iron quality and cluster strength.
同図に示されるように、鉄品位が高くなるにつれ、クラ
スター強度が著しく増力口するが、鉄品位約64係以下
では、回転試.験ておいてクラスターはすべて剥離し、
クラスター強度値は0になる。As shown in the figure, as the iron grade increases, the cluster strength increases significantly, but when the iron grade is about 64 or less, the strength of the cluster increases significantly. After testing, all the clusters peeled off,
The cluster strength value becomes 0.
このようなことから、クラスターの生成防止手段として
脈石分の多い低品位鉄原料を用いることが考えられるが
、得られた還元鉄中に持ちこされる脈石分が増えるため
、その後の製鋼工程で溶解するに必要な電力量が増力n
するという不都合を招く。For this reason, it may be possible to use low-grade iron raw materials with a high gangue content as a means to prevent the formation of clusters, but this increases the gangue content that is carried over into the resulting reduced iron, resulting in subsequent steelmaking. The amount of electricity required for melting in the process is increased n
This causes the inconvenience of doing so.
一般に還元鉄中の脈石1%の増力日に伴ない、電力消費
量は鋼トン当り25〜30KWH増力口すると言われて
いる。Generally, it is said that the power consumption increases by 25 to 30 KWH per ton of steel when the power is increased by 1% gangue in reduced iron.
このほか、脈石量の増710は、製鋼炉における石灰使
用量の増加、スラグの膨張などによる溶解作業の不定安
化等を招き好ましくない。In addition, an increase in the amount of gangue 710 is undesirable because it causes an increase in the amount of lime used in the steelmaking furnace and destabilizes the melting operation due to expansion of slag.
クラスター生成を抑制もしくは緩和する他の方法として
種々の工夫がなされている。Various other methods have been devised to suppress or alleviate cluster generation.
たとえば、シャフト炉内の原刺どともにアルミナやセラ
ミックなどを混合する方法(特公昭35 6504号
)、シャフト炉内に成型炭コークスを混合装入する方法
(特開昭51−96717号)、あるいは酸化鉄ととも
に微細炭素粒子を装入する方法(%公昭51−3536
6号)などが提案されている。For example, there is a method of mixing alumina, ceramic, etc. with raw material in a shaft furnace (Japanese Patent Publication No. 35-6504), a method of mixing and charging molded coal coke into a shaft furnace (Japanese Patent Application Laid-open No. 51-96717), or Method of charging fine carbon particles with iron oxide (%Koshō 51-3536
6) have been proposed.
しかしながら、このような他物質を混合装入する方法で
は、その他物質の装入容積分だげ鉄原料の装入量を低下
させ、シャフト炉の生産性を犠性にすることとなり、ま
た生成した還元鉄と該他物質との分離が煩らわしい欠点
がある。However, in this method of charging other materials in a mixed manner, the amount of iron raw material charged is reduced by the charging volume of other materials, sacrificing the productivity of the shaft furnace, and There is a drawback that separation of reduced iron and other substances is troublesome.
更にこのような比重、形状、粒度などが鉄原料(酸化鉄
)と異なる他物質を混合することは、炉内物質の均一か
つ円滑な降下や還元ガスの流れを乱し、特に微細炭素粒
子を混合する方法では、炉内の著しいガス圧損やダスト
ロスの増力ロを招くという問題を伴なう。Furthermore, mixing other materials with different specific gravity, shape, particle size, etc. from the iron raw material (iron oxide) disturbs the uniform and smooth descent of the materials in the furnace and the flow of reducing gas, and especially the fine carbon particles. The mixing method involves problems such as significant gas pressure loss in the furnace and increased power loss of dust.
また、他の方法として鉄鉱石に石灰を添加した石灰添加
ペレットを用いる方法が提案されている(特開昭51−
42008号)。In addition, as another method, a method using lime-added pellets made by adding lime to iron ore has been proposed (Japanese Unexamined Patent Application Publication No. 1983-1981-1).
No. 42008).
第2図中、曲線bは、種々の鉄品位の鉱石に石灰を添カ
ロして成形したペレットを原料とし、同図曲線aのペレ
ソトと同じ条件下に還元したときのクラスター強度を示
したものである。In Figure 2, curve b shows the cluster strength when pellets formed by adding lime to ores of various iron grades are used as raw materials and reduced under the same conditions as peresoto in curve a in the figure. It is.
同図に示されるように、石灰添加により、鉄品位約67
%までクラスター強度はOであり、かつそれ以上の品位
においても強度値は著しく低く、クラスターの抑制・緩
和に非常に有効なことが認められる。As shown in the figure, by adding lime, the iron grade was approximately 67.
%, the cluster strength is O, and even at higher grades, the strength value is extremely low, and it is recognized that it is very effective in suppressing and mitigating clusters.
しかしながら、この方法は、第3図に示すように原料の
被還元性を悪くする欠点がある。However, this method has the drawback of worsening the reducibility of the raw material, as shown in FIG.
同図は、鉄品位は約67%の一定値とし、石灰添力口量
を種々変えて製造したペレットを原料とし、前記と同じ
還元ガスを用いて860℃で還元した場合の還元率と還
元時間の関係を示したグラフであり、図中、曲線a,b
およびCは石灰添力1率がそれぞれ0.12%、0.9
係および1.1係の場合を示す。The figure shows the reduction rate and reduction when the iron grade is set at a constant value of approximately 67% and pellets manufactured by varying the amount of lime added are used as raw materials, and the same reducing gas as above is used for reduction at 860 ° C. It is a graph showing the relationship between time, and in the figure, curves a and b
and C, the lime addition rate is 0.12% and 0.9, respectively.
The cases of section 1.1 and section 1.1 are shown.
直接製鉄では、成品(還元鉄)品質として一般に還元率
90係以上における、所謂最終到達還元率の高いもの桿
好1しいわ・けであるが、同図に示されるようにその値
はペレット中の石灰CaOの含有量が高い程、低下する
傾向を示している。In direct steelmaking, the quality of the finished product (reduced iron) is generally one with a high reduction rate of 90 or higher, the so-called final reduction rate, but as shown in the figure, the value is higher than that in pellets. The higher the lime CaO content, the lower the content tends to be.
石灰添力ロペレットの焼成組織には、ヘマタイトのほか
、CaO−nFe203の固溶体またはCaO−Fe2
03・Sio2などのスラグ相が共存しており、このよ
うにスラグ中に固定された鉄酸化物はシャフト炉法での
還元湛度範囲では還元されにくク、そのためにペレット
組織中に石灰が存在することは、原料の被還元性を悪く
し、最終到達還元率を低下させることになるのである。In addition to hematite, the calcined structure of lime-loaded pellets contains a solid solution of CaO-nFe203 or CaO-Fe2.
Slag phases such as 03 and Sio2 coexist, and the iron oxides fixed in the slag are difficult to reduce in the reduction range of the shaft furnace method, so lime is present in the pellet structure. Its presence impairs the reducibility of the raw material and lowers the final reduction rate.
本発明者等は、上述のごとき従来提案されてきたクラス
ター防止策の欠点を克服し、安定円滑な操作性とすぐれ
た被還元性とを備えつつ、クラスタリング現象を効果的
に防止するための方法を開発すべく、かねてより還元条
件や原料性状とクラスター生成挙動との関連につき鋭意
研究を重ねてきた。The present inventors have devised a method for effectively preventing the clustering phenomenon while overcoming the drawbacks of the previously proposed cluster prevention measures as described above and providing stable and smooth operability and excellent reducibility. In order to develop this, we have been conducting intensive research on the relationship between reduction conditions, raw material properties, and cluster formation behavior.
その結果、クラスターの金属組織学的にみた成因1・マ
、還元生成した金属鉄の固体としての表面拡散による焼
結現象に基づくものであるとの知見を得るとともに、か
かる焼結現象の進行を抑制緩和する手段として、装入原
料表面に、CaOあるいはMgOその他、製鋼工程に悪
影響を及ぼさない異物質の皮膜を形成することが極めて
効果的であること、およびその皮膜形成法として、その
ような異物質を含む溶液に原料を浸漬し、あるいはその
溶液を原料表面に散布する方法が有効でありかつ便宜で
あることを見出した。As a result, we found that the metallographic cause of the clusters is 1.Ma, which is based on the sintering phenomenon caused by the surface diffusion of reduced metallic iron as a solid. It is extremely effective to form a film of CaO, MgO, or other foreign substances that do not adversely affect the steelmaking process on the surface of the charged raw material as a means of suppressing and alleviating the steelmaking process. We have found that it is effective and convenient to immerse the raw material in a solution containing a foreign substance or to spray the solution onto the surface of the raw material.
本発明はかかる知見に基づいて完成されたものである。The present invention was completed based on this knowledge.
すなわち、本発明は、直接製鉄用原料をシャフト炉のご
とき直接製鉄還元炉に装入するに先立って、該原料に、
水銀化マグネシウム溶液を散布し、もしくはこれらの液
に該原料を浸漬した後、乾燥することによって該原料表
面に約0.05〜2条(散布もしくは浸漬前の原料重量
基準)の塗膜を形成せしめることにより、該原料の被還
元性や炉内操業の安定性を害することなく原料相互の固
着を効果的に防止することを町能にしたものである。That is, the present invention provides that, prior to charging the direct steelmaking raw material into a direct steelmaking reduction furnace such as a shaft furnace, the raw material is subjected to the following steps:
By spraying a magnesium mercury solution or immersing the raw material in these solutions and drying, a coating film of about 0.05 to 2 stripes (based on the weight of the raw material before being sprayed or immersed) is formed on the surface of the raw material. The goal is to effectively prevent the raw materials from sticking to each other without impairing the reducibility of the raw materials or the stability of operation within the furnace.
以下、本発明について詳しく説明する。The present invention will be explained in detail below.
本発明によれば、装入原料は、炉内装入前に、異物質に
よる塗膜が施こされる。According to the present invention, the charged raw material is coated with a foreign substance before being introduced into the furnace.
異物質は、還元炉での還元反応に後続する製鋼工程に支
障をきたさないものが望ましく、CaO,MgOが好適
である。The foreign substance is preferably one that does not interfere with the steelmaking process that follows the reduction reaction in the reduction furnace, and CaO and MgO are preferable.
皮膜を形成するには、たとえばCaOやMgOを用いる
ときには、Ca(OH)2やMg(OH)2の水溶液と
し、これを原料表面に散布するか、あるいはその水溶液
に浸漬した後、乾燥する方法を採用することができ、こ
れにより原料表面にごく薄い皮膜を形成することができ
る。To form a film, for example, when using CaO or MgO, an aqueous solution of Ca(OH)2 or Mg(OH)2 is made, and this is sprayed onto the surface of the raw material, or it is immersed in the aqueous solution and then dried. This makes it possible to form a very thin film on the surface of the raw material.
かく形成される水酸化カルシウムまたは水酸化マグネシ
ウムの皮膜は、力口熱されることにより次の如く水を解
離する。The film of calcium hydroxide or magnesium hydroxide thus formed dissociates water as follows when heated by force.
C a ( O H ) 2 →C a O + H2
0 ”・−・(1)Mg(OH)2→MgO+H20
・・・・・・・・・(2)上呂1)の反応は大気圧下、
580℃で、(2)の反応は350℃で生起する。C a (OH) 2 → C a O + H2
0 ”・-・(1) Mg(OH)2→MgO+H20
・・・・・・・・・(2) The reaction of Uero 1) is carried out under atmospheric pressure.
At 580°C, reaction (2) occurs at 350°C.
従って、皮膜形成処理を受けた原料は、シャフト炉装入
前の乾燥工程または、シャフト炉内上部で容易に上記反
応による皮膜の脱水が行なわれ、その結果、表面組織は
適度にポーラスな状態となるため、炉内における還元反
応は何らの妨げを受けずに円滑に進行する。Therefore, the film of the raw material that has undergone film formation treatment is easily dehydrated by the above reaction during the drying process before charging into the shaft furnace or in the upper part of the shaft furnace, and as a result, the surface structure becomes appropriately porous. Therefore, the reduction reaction in the furnace proceeds smoothly without any hindrance.
かく原料表面に付着した物質粒子は、還元反応により生
成する金属鉄相互の接触を妨げると共に、固体相互の表
面拡散の1駆動力となる原子の移動を抑制する役割を果
すことによ虱還元鉄相互の固着を効果的に防止する。The material particles that adhere to the surface of the raw material prevent the metallic iron produced by the reduction reaction from coming into contact with each other, and also play the role of suppressing the movement of atoms, which is one of the driving forces for surface diffusion between solids. Effectively prevent mutual sticking.
本発明方法における皮膜の形成は、種々の態様で実施し
てよく、たとえば第4図に示すごとき装置を用いて能率
良く、大量の原料を処理することができる。The film formation in the method of the present invention may be carried out in various ways, and for example, a large amount of raw material can be efficiently processed using an apparatus as shown in FIG.
図中、1は原料粒度よりや\細かい網目を有するエンド
レスのバンドドライヤ、2は該バンドドライヤへ原料を
供給する原料ホッパ、4はスプレイノズルで、これより
ドライヤ上の原料に皮膜形成用処理液が散布される。In the figure, 1 is an endless band dryer with a mesh that is finer than the particle size of the raw material, 2 is a raw material hopper that supplies the raw material to the band dryer, and 4 is a spray nozzle, from which the treatment liquid for film formation is applied to the raw material above the dryer. is scattered.
7および8は原料乾燥装置である。7 and 8 are raw material drying devices.
原料ホッパ−2から−・ンドドライヤ1上に供給された
原料3は、バンドドライヤ10回転により順次左方向へ
移送される過程でまず、スプレイノズル4から処理液の
散布を受ける。The raw material 3 supplied from the raw material hopper 2 onto the band dryer 1 is first sprayed with a treatment liquid from the spray nozzle 4 while being sequentially transferred to the left by the band dryer 10 rotations.
処理液としては、前述のようにC a (O H )2
やMg(OH)2の水溶液を用いることができる。As the treatment liquid, as mentioned above, C a (OH)2
An aqueous solution of Mg(OH)2 or Mg(OH)2 can be used.
該処理液は、原料表面を十分に被覆しつつ原料層3を透
過し、残余の液は下部の回収槽5で回収され、循環ポン
ブ6により、スブレイノズル4部へ回送再使用される。The processing liquid permeates through the raw material layer 3 while sufficiently covering the surface of the raw material, and the remaining liquid is recovered in the lower recovery tank 5 and sent to the soubray nozzle 4 section by the circulation pump 6 for reuse.
処理液の散布により表面に処理液膜が形成された原料は
ついで、熱風送給管7およびフード8に到って、約15
0〜500℃のガス流にさらされつつ乾燥された後、ベ
ルトドライヤ1の終端部に到り、原料受けホッパ9内に
落下し収納される。The raw material on which a treatment liquid film has been formed on the surface by spraying the treatment liquid then reaches the hot air supply pipe 7 and the hood 8, where it is heated for about 15 minutes.
After being dried while being exposed to a gas flow of 0 to 500° C., the material reaches the terminal end of the belt dryer 1, falls into the material receiving hopper 9, and is stored therein.
かくして処理液中に含有される異物質より成る皮膜を有
する原料が得られる。In this way, a raw material having a film made of foreign substances contained in the treatment liquid is obtained.
このような装置を用いることにより、原料の連続的な大
量処理により、その表面に均一な異物質皮膜を能率よく
形成せしめることができる。By using such an apparatus, it is possible to efficiently form a uniform foreign substance film on the surface of the raw material by continuously processing a large amount of the raw material.
かくして得られる原料は、還元炉内において良好な還元
性を維持しつつ、かつ効果的にクラスタリングを防止す
る。The raw material thus obtained maintains good reducibility in the reduction furnace and effectively prevents clustering.
第5図は、本発明方法に従い、異物質の皮膜を形成した
酸化鉄原料について、シャフト炉内で種種の還元温度に
おいて還元処理(還元時間3Hr)したときに生成した
クラスターの強度測定結果を示したグラフである。Figure 5 shows the strength measurement results of clusters generated when iron oxide raw materials with a foreign material film were subjected to reduction treatment (reduction time 3 hours) in a shaft furnace at various reduction temperatures according to the method of the present invention. This is a graph.
図中、曲線1および2は原料ペレットを水酸化カルシウ
ム水溶液に浸漬し、CaOをそれぞれ0.2%および0
.5’%(塗布前の原料重量基準)付着させたものであ
る。In the figure, curves 1 and 2 are obtained by immersing raw material pellets in an aqueous calcium hydroxide solution and adding 0.2% and 0.0% CaO, respectively.
.. 5'% (based on the weight of the raw material before coating) was deposited.
なお、曲線aは無処理ペレット、曲線bは石灰添加ペレ
ットの各比較材を示す。Note that curve a shows the comparative materials of untreated pellets, and curve b shows the comparative materials of lime-added pellets.
同図から明らかなように、本発明力法により処理した原
料ペレットのクラスター強度は、皮膜物質の種類および
付着量により若干の程度の差はあるが、無処理ペレット
(曲線a)に比し著しく低く、石灰添カロペレット(曲
線b)とほソ同等の値を示すことが認められる。As is clear from the figure, the cluster strength of the raw material pellets treated by the force method of the present invention is significantly higher than that of untreated pellets (curve a), although there are slight differences depending on the type and amount of coating material. It is recognized that the value is low and roughly equivalent to that of lime-added Calopellet (curve b).
第6図は、上記処理における各ペレットの最終到達還元
率を示すグラフであり、各曲線2taおよびbの各記号
は上記と同じペレットを表わす。FIG. 6 is a graph showing the final reduction rate of each pellet in the above treatment, and each symbol on each curve 2ta and b represents the same pellet as above.
同図に示されるように、石灰添加ペレット(曲線b)で
は、最終到達還元率は95優に満たないのに対し、本発
明方法によるもの(曲線2)は極めて高く、無処理ペレ
ノト(曲線a)と同等の水準を有することが認められる
。As shown in the figure, the final reduction rate achieved with lime-added pellets (curve b) is less than 95%, whereas that with the method of the present invention (curve 2) is extremely high; ) is recognized as having a level equivalent to that of
上述のように、無処理ペレットは、最終到達還元率は高
いが(第6図、曲線a)、強固なクラスターが生成し易
い欠点があり(第5図、曲線a)一方石灰添加ペレット
では、クラスターを生じにくく、強度も低い利点はある
が(第5図、曲線b)、被還元性に劣り、最終到達還元
率が低いという欠点がある(第6図、曲線b)。As mentioned above, untreated pellets have a high final reduction rate (Fig. 6, curve a), but have the disadvantage that strong clusters are likely to form (Fig. 5, curve a), whereas lime-added pellets have Although it has the advantage of being less likely to form clusters and having low strength (Fig. 5, curve b), it has the disadvantage of poor reducibility and a low final reduction rate (Fig. 6, curve b).
これに対し、本発明方法によれば、無処理ペレットと同
等の被還元性を維持しつつ(第6図、曲線2)、かつ石
灰添加ベレットと同等のクラスター防止効果を有してい
る(第5図、曲線1および2)ことが認められる。On the other hand, according to the method of the present invention, the reducibility equivalent to that of untreated pellets is maintained (Fig. 6, curve 2), and the cluster prevention effect is equivalent to that of lime-added pellets (Fig. 6, curve 2). 5, curves 1 and 2).
以上のように本発明によれば、還元鉄原料を適当な異物
質の液に浸漬しまたは散布してその表面に皮膜を形成す
るという簡便な手段により、原料の被還元性をそこなう
ことなく、還元炉内でのクラスタリングを効果的に防止
することができ、特に生産性の改善を目的として炉内反
応湛度を高める場合にも、安定した円滑な操作を保証す
ることができる。As described above, according to the present invention, the reduced iron raw material is immersed in or sprinkled with a liquid containing a suitable foreign substance to form a film on its surface, which is a simple means of forming a film on the surface of the raw material, without impairing the reducibility of the raw material. Clustering in the reduction furnace can be effectively prevented, and stable and smooth operation can be guaranteed, especially when increasing the reaction content in the furnace for the purpose of improving productivity.
第1図はクラスター強度測定装置を示す外観概要図、第
2図はクラスター強度に及ぼす原料の鉄品位の影響を示
すグラフ、第3図は還元率と還元時間の関係を示すグラ
フ、第4図は本発明の実施に用いられる原料処理装置の
1具体例を示す概要図、第5図はクラスター強度と還元
温度との関係を示すグラフ、第6図は最終到達還元率と
還元温度との関係を示すグラフである。
1・・・バンドドライヤ、2・・・原料供給ホッハ、3
・・・原料、4・・・スプレイノズル、5・・・処理液
回収槽、6・・・循環ポンプ、7・・・熱風送給管、9
・・・原料受けホッパ。Figure 1 is a schematic diagram of the appearance of the cluster strength measuring device, Figure 2 is a graph showing the influence of the iron grade of the raw material on cluster strength, Figure 3 is a graph showing the relationship between reduction rate and reduction time, and Figure 4. 5 is a schematic diagram showing a specific example of a raw material processing apparatus used in carrying out the present invention, FIG. 5 is a graph showing the relationship between cluster strength and reduction temperature, and FIG. 6 is a graph showing the relationship between final reduction rate and reduction temperature. This is a graph showing. 1... Band dryer, 2... Raw material supply hoch, 3
... Raw material, 4... Spray nozzle, 5... Processing liquid recovery tank, 6... Circulation pump, 7... Hot air supply pipe, 9
...Raw material receiving hopper.
Claims (1)
って、該原料に、水酸化カルシウムまたは水酸化マグネ
シウム溶液を散布し、もしくはこれらの液に該原料を浸
漬した後、乾燥することにより該原料表面に0.05〜
2係(散布もしくは浸漬前の原料重量基準)の塗膜を形
成せしめることによって、原料のクラスタリングを防止
するようにしたことを特徴とする直接製鉄用原料の予備
処理法。1. Prior to directly charging raw materials for steelmaking into a steelmaking reduction furnace, the raw materials are sprayed with a calcium hydroxide or magnesium hydroxide solution, or by immersing the raw materials in these liquids and then drying them. 0.05~ on the surface of the raw material
A method for pre-processing raw materials for direct steelmaking, characterized in that clustering of raw materials is prevented by forming a coating film of 2nd layer (based on the weight of raw materials before being sprayed or immersed).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP72678A JPS5910411B2 (en) | 1978-01-06 | 1978-01-06 | Pretreatment method for raw materials for direct steelmaking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP72678A JPS5910411B2 (en) | 1978-01-06 | 1978-01-06 | Pretreatment method for raw materials for direct steelmaking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5493617A JPS5493617A (en) | 1979-07-24 |
JPS5910411B2 true JPS5910411B2 (en) | 1984-03-08 |
Family
ID=11481730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP72678A Expired JPS5910411B2 (en) | 1978-01-06 | 1978-01-06 | Pretreatment method for raw materials for direct steelmaking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5910411B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015016145A1 (en) * | 2013-07-29 | 2015-02-05 | 新日鐵住金株式会社 | Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron |
-
1978
- 1978-01-06 JP JP72678A patent/JPS5910411B2/en not_active Expired
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015016145A1 (en) * | 2013-07-29 | 2015-02-05 | 新日鐵住金株式会社 | Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron |
JP5880790B2 (en) * | 2013-07-29 | 2016-03-09 | 新日鐵住金株式会社 | Raw material for direct reduction, method for producing raw material for direct reduction, and method for producing reduced iron |
CN105492633A (en) * | 2013-07-29 | 2016-04-13 | 新日铁住金株式会社 | Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron |
CN113699299A (en) * | 2013-07-29 | 2021-11-26 | 日本制铁株式会社 | Raw material for direct reduction, method for producing raw material for direct reduction, and method for producing reduced iron |
Also Published As
Publication number | Publication date |
---|---|
JPS5493617A (en) | 1979-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4032352A (en) | Binder composition | |
US2127632A (en) | Concretionary agglomerate | |
US3536475A (en) | Method of making pellets from a finely divided solid material | |
US3837843A (en) | Process for thermal production of magnesium | |
RU2240354C2 (en) | Method for producing of liquid metal iron | |
US3975182A (en) | Pellets useful in shaft furnace direct reduction and method of making same | |
CN1037193C (en) | Method for producing direct reduced iron | |
US2373244A (en) | Blast furnace process | |
US2622977A (en) | Desulfurization of iron and iron alloys | |
US3150958A (en) | Process for the reduction of metals from oxide | |
US3495971A (en) | Smelting furnace charge composition and method of making same | |
US3276859A (en) | Process for the reduction of metals from oxide | |
US2836487A (en) | Process for the separation of iron from other metals accompanying iron in ores or waste materials | |
JPS5910411B2 (en) | Pretreatment method for raw materials for direct steelmaking | |
US3946098A (en) | Preparation of feed material for a blast furnace | |
US2684897A (en) | Smelting of ore, particularly iron ore | |
JP6772526B2 (en) | Nickel oxide ore smelting method | |
US4027002A (en) | Hydrogen sulphide removal process | |
EP0495455B1 (en) | Method and apparatus for coating iron-bearing particles to be processed in a direct reduction process | |
US2710796A (en) | Method of making iron bearing material for treatment in a blast furnace | |
JP2002226920A (en) | Sintered ore manufacturing method, and sintered ore | |
US3097090A (en) | Metallurgical process | |
CN107326198A (en) | A kind of processing method and system of high phosphorus low-grade manganese carbonate ore | |
WO2023171486A1 (en) | Coating material for use in direct-reduction iron production, and production method therefor | |
US3700431A (en) | Preparation and method of feeding copper concentrates and method of tapping copper in the continuous smelting and converting process |