JPS59102A - Radiation-proof optical transmission line - Google Patents

Radiation-proof optical transmission line

Info

Publication number
JPS59102A
JPS59102A JP57110173A JP11017382A JPS59102A JP S59102 A JPS59102 A JP S59102A JP 57110173 A JP57110173 A JP 57110173A JP 11017382 A JP11017382 A JP 11017382A JP S59102 A JPS59102 A JP S59102A
Authority
JP
Japan
Prior art keywords
optical fiber
radiation
monitoring
heating device
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57110173A
Other languages
Japanese (ja)
Inventor
Hisanori Nakai
中居 久典
Hiroshi Kajioka
博 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57110173A priority Critical patent/JPS59102A/en
Publication of JPS59102A publication Critical patent/JPS59102A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To minimize the deterioration of an optical fiber for monitoring and extend the life of transmitting function, by organically coupling the optical fiber and a heating device with each other and actuating the heating device when the loss increasing amount of the optical fiber is large. CONSTITUTION:The output of an optical fiber 2 for monitoring is monitored by an optical power meter 8, and, when the transmission loss of the optical fiber 2 is increased by exposure to radiation and the light receiving amount of the optical power meter 8 is lowered to smaller than a certain level, a heating device 6 is actuated and at least an optical fiber 1 for transmission is heated for a fixed time. An optical fiber for monitoring having a total exposed irradiation dose and transmission loss shown by (a) of the graph is used when the heating device 6 is to be sensitively actuated against radiation and another optical fiber having those shown by (c) when the reaction to the radiation is inactively set, and then, an optical fiber for monitoring shown by (b) is used when the heating device 6 is to be made to make normal operation. The life of the transmitting function of the optical fiber, therefore, can be extended remarkably.

Description

【発明の詳細な説明】 本発明は耐放射線光(伝送路に関するものである。[Detailed description of the invention] The present invention relates to radiation-resistant optical transmission lines.

放射線が存在する環境下で光コアイノ・を用いると、被
曝により光ファイバの伝送損失が増大することが知られ
ている。
It is known that when an optical core is used in an environment where radiation is present, the transmission loss of the optical fiber increases due to exposure.

そのだめ、放射線被曝による損失増加の小さい光ファイ
バの研究開発が進められており、効果を上げているが、
なお満足すべき値は得られていない。
As a result, research and development of optical fibers with less increase in loss due to radiation exposure is underway, and is proving effective.
However, a satisfactory value has not been obtained.

一方、このような放射線破曝光ファイバの性質として熱
アニール効果がある。
On the other hand, as a property of such a radiation-broken optical fiber, there is a thermal annealing effect.

これは、被曝して着色した)jラスを加熱することによ
り退色できるというものであり、450 ’c〜500
°Cで1時間加熱することにより、はぼ初期値まで回復
しうるという報告もある。
This means that the color can be faded by heating the (colored) glass that has been colored by exposure to radiation, and the color can be faded by heating it.
There is also a report that the temperature can be restored to the initial value by heating at °C for 1 hour.

そこで光ファイバを常時あるいは周期的に加熱すること
により透明度を維持するということも一応考えられるが
、このような高温度に光フーアイハを長時間あるいは多
数回晒すと、光ファイバは急速に劣化して実用不能とな
ってしまう。
Therefore, it may be possible to maintain the transparency by constantly or periodically heating the optical fiber, but if the optical fiber is exposed to such high temperatures for a long time or many times, the optical fiber will deteriorate rapidly. It becomes impractical.

本発明は期かる状況に鑑み、光ファイバをあまり劣化さ
せることなく、放射線被曝後も伝送機能を維持すること
のできる耐放射線光伝送路を提供することを目的とする
SUMMARY OF THE INVENTION In view of these circumstances, it is an object of the present invention to provide a radiation-resistant optical transmission line that can maintain its transmission function even after exposure to radiation without significantly degrading the optical fiber.

本発明の構成を、一実施例を示す図面を参照して具体的
に説明する。
The configuration of the present invention will be specifically explained with reference to the drawings showing one embodiment.

第1図において、1は伝送路用光ファイバであり、放射
線被曝時の損失増加量が極力小さい特性の光フーrイノ
・が採用される。
In FIG. 1, reference numeral 1 denotes an optical fiber for a transmission line, and an optical fiber having a characteristic of minimizing loss increase upon exposure to radiation is employed.

2はモニタ用光ファイバであり、光ファイバ1に比較し
て放射線被曝時の損失増加量の大きい光ファイバが採用
される。
Reference numeral 2 denotes a monitoring optical fiber, and compared to optical fiber 1, an optical fiber having a larger increase in loss upon exposure to radiation is employed.

6は発光装置、であ°す、4は受光装置である。6 is a light emitting device, and 4 is a light receiving device.

このような尤ファイバ1,2の全長もしくは放射線被曝
部分5に伝送用光ファイ・・1のみもしくは回送用光フ
ァイバ1とモニタ出光コアイノ・2の双方を加熱するだ
めの装置6が設けられている。7は加熱端イである。
A device 6 for heating only the transmission optical fiber 1 or both the forwarding optical fiber 1 and the monitor light output core 2 is provided on the entire length of such optical fibers 1 and 2 or on the radiation-exposed portion 5. . 7 is the heating end A.

モニタ用光ファイバ2の出力は光パワーメータ8によっ
てモニタされ−こおり、放射線被曝によって1尺送損失
が増加し、光パワーメータ8の受光量が作動させ、少々
くとも伝送用光ファイバ1を一定時間だけ加熱する。
The output of the monitor optical fiber 2 is monitored by the optical power meter 8, and the transmission loss increases by 1 meter due to radiation exposure, and the amount of light received by the optical power meter 8 is activated, keeping the transmission optical fiber 1 at least a little constant. Heat only for an hour.

加熱装置6の作動のタイミングは本伝送路の目的、用途
により異なるが、例えば次のモニタ用光ファイバが適し
ている。
Although the timing of activation of the heating device 6 varies depending on the purpose and use of the transmission line, for example, the following monitoring optical fiber is suitable.

第2図はモニタ出光ファイ・・・の種類による被曝総線
昂と伝送損失との関係を示す。
Figure 2 shows the relationship between the total radiation exposure and transmission loss depending on the type of monitor output fiber.

放射線に対して非常に敏感に反応して加熱装置を働かせ
たい場合には、コアがOH基1 ppm以下の高純度石
英ガラスである光ファイ・・(a)を用いれはよい。こ
の場合、被曝が停止するとモニタ用光ファイバの損失は
急激に回1夏する。
If it is desired to operate a heating device that reacts very sensitively to radiation, an optical fiber (a) whose core is made of high-purity quartz glass with 1 ppm or less of OH groups may be used. In this case, when the exposure stops, the loss in the monitoring optical fiber increases rapidly.

寸だ、放射線に対する反応を鈍く設定し、頻繁に加熱装
置を働かせたくない場合や、放射線によるモニタ用光フ
ァイバの伝送損失が大きくなり過ぎては困る場合などは
、コアがOH基をE300 ppm以上含む石英ガラス
である光ファイバ(C)を用いればよい。
However, if you want to set the reaction to radiation to be slow and do not want to use the heating device frequently, or if you do not want the transmission loss of the monitoring optical fiber to become too large due to radiation, set the core to have an OH group of E300 ppm or more. An optical fiber (C) that is made of quartz glass may be used.

これらの中間で標準的動作を期待する場合には、コアが
P20□十5j−02系ガラスからなる光ファイ・・(
1))を用いればよい。
If standard operation is expected between these, an optical fiber whose core is made of P20□15j-02 glass...
1)) may be used.

第6図及び第4図は、本発明の2通りの実施例における
部分説明図であり、1′は伝送用光ファイバを腹数本束
ねたものである。
FIG. 6 and FIG. 4 are partial explanatory views of two embodiments of the present invention, and 1' is a bundle of transmission optical fibers.

この束1′に加熱端子7が巻付けられており、断熱層9
を介しであるいは介さずにモニタ用光ファイバ2が巻回
されており、被覆10が施されている。
A heating terminal 7 is wound around this bundle 1', and a heat insulating layer 9
A monitoring optical fiber 2 is wound with or without the intervening casing, and is coated with a coating 10.

もちろん、本発明はこの図面の構成に限定されるもので
はない。
Of course, the present invention is not limited to the configuration shown in this drawing.

以」二説明したような本発明の光伝送路であれば、モニ
タ用光ファイバと加熱装置とを有機的に結合することに
より、被曝による伝送損失の増加を加熱によって直ちに
回復することができるので光伝送路の信頼性が高い。
With the optical transmission line of the present invention as described above, by organically coupling the monitoring optical fiber and the heating device, the increase in transmission loss due to exposure to radiation can be immediately recovered by heating. High reliability of optical transmission line.

まだ、加熱は設定された必要最低限の機会のみ行われる
ので、徒らに光ファイバを劣化させることが々く長期間
の実用が可能である。
However, since heating is performed only on the minimum necessary occasions, the optical fiber is often unnecessarily deteriorated and can be used for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図、第2図はモニ
タ出光コアイノ・の種類による放射線被曝総線量と伝送
損失との関係を示す線図、第6図及び第4図は本発明の
2通りの実施例における部分説明図である。 1:伝送用光コアイノ・、2;モニタ出光コアイノ・、
6・発光装置、4:受光装置、6:加熱装置、7:加熱
端子、8:光パワーメータ。
Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing the relationship between total radiation exposure dose and transmission loss depending on the type of monitor output core, and Figs. FIG. 3 is a partial explanatory diagram of two embodiments of the invention. 1: Optical core ino for transmission, 2; Monitor Idemitsu core ino,
6. Light emitting device, 4: Light receiving device, 6: Heating device, 7: Heating terminal, 8: Optical power meter.

Claims (1)

【特許請求の範囲】 1 放射線被曝による損失増加量が小さい伝送路用九フ
リ′イバ1と、放射線被曝による損失増加量が大きいモ
ニタ用光ファイバ2と、前記損失増加m″が小さい1云
送路用光フアイバ1を加熱するだめの加熱装置6とから
なり、モニタ用光ファイバ2の損失増加量が大きい場合
に前記加熱装置6を作動させることを特徴とする1制放
射線″AS1云送路。 2、モニタ用光ファイバ2はコアがOH基をlppm以
下含有する純粋石英であることを特徴とする前項記載の
耐放射線光伝送路。 6、モニタ用光ファイバ2はコアカOH基ヲ800pp
m以−1−含有する純粋石英であることを特徴とする第
1項記載の耐放射線光伝送路。 4、モニタ用光ファイバ2はコア力P 205+ S:
LO□系ガラスであることを!待機とする第1項記載の
]耐放射線光伝送路。
[Scope of Claims] 1. Nine flexible fibers 1 for a transmission line with a small increase in loss due to radiation exposure, a monitoring optical fiber 2 with a large increase in loss due to radiation exposure, and one optical fiber 1 with a small increase in loss m'' due to radiation exposure. 1 radiation control system "AS1" is characterized in that the heating device 6 is used to heat the optical fiber 1 for monitoring, and the heating device 6 is activated when the increase in loss of the optical fiber 2 for monitoring is large. . 2. The radiation-resistant optical transmission line as described in the preceding item, wherein the monitoring optical fiber 2 has a core made of pure quartz containing 1 ppm or less of OH groups. 6. Monitoring optical fiber 2 has a core OH group of 800pp.
2. The radiation-resistant optical transmission line according to claim 1, wherein the radiation-resistant optical transmission line is made of pure quartz containing m or more. 4. The monitoring optical fiber 2 has a core force of P 205+ S:
Make sure it is LO□ type glass! The radiation-resistant optical transmission line according to item 1, which is on standby.
JP57110173A 1982-06-25 1982-06-25 Radiation-proof optical transmission line Pending JPS59102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110173A JPS59102A (en) 1982-06-25 1982-06-25 Radiation-proof optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110173A JPS59102A (en) 1982-06-25 1982-06-25 Radiation-proof optical transmission line

Publications (1)

Publication Number Publication Date
JPS59102A true JPS59102A (en) 1984-01-05

Family

ID=14528896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110173A Pending JPS59102A (en) 1982-06-25 1982-06-25 Radiation-proof optical transmission line

Country Status (1)

Country Link
JP (1) JPS59102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370804A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Radiation resistance optical fiber transmission equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760302A (en) * 1980-09-29 1982-04-12 Furukawa Electric Co Ltd:The Method for reducing transmission loss of optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760302A (en) * 1980-09-29 1982-04-12 Furukawa Electric Co Ltd:The Method for reducing transmission loss of optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370804A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Radiation resistance optical fiber transmission equipment

Similar Documents

Publication Publication Date Title
JPH0157326B2 (en)
JPS61180216A (en) Apparatus and method for preventing radiation induced degrading of optical element
JPS59102A (en) Radiation-proof optical transmission line
JP2007114067A (en) Radiation detection system and radiation detection method
Yajima Theory and applications of dielectric branching waveguides
JPS5278447A (en) Winding drum for light transmitting fiber
Medvedkin et al. Optical properties of a thermal oxide on CuInSe2
JPS59126505A (en) Radiation damage recoverying method of image guide and image guide with heating means used for it
JPH08313767A (en) Heat resistant optical fiber
JPS63125901A (en) Antireflection film for infrared
JPS61184505A (en) Multiple function optical fiber
Coates Tungsten ribbon lamps for the calibration of disappearing filament pyrometers
Mikk Geometrical-optical characteristics and calculation of radiant heat transfer between a flame and a wall
Mahan et al. Thermal model of a filtered radiometer
Gorodetskii et al. Heat conditions for the scientific instrumentation, and methods of calculating them
Raymond et al. The EUV emission of cataclysmic variables
Ivanov et al. The use of an immersion thermistor bolometer in a radiometer
McIntyre A polyethylene shielded globe thermometer
Motch et al. Discovery of a very fast optical activity in the X-ray source GX 339-4.
Gerashchenko et al. New heat-flux measuring devices for investigation of radiant heat exchange
Ochs et al. Optical C sub n2 instrument model 2
Reznichenko et al. Thermal effect of optical radiation on a weakly absorbing plate with a deposited coating
Brazhnichenko Errors in the technique of spectral-line reversal
Kuester et al. Radiation loss from a curved dielectric channel waveguide in a dense substrate
Sinex et al. Expendable bathythermograph for measuring light attenuation and temperature below the ocean surface