JPS59102009A - Method for dynamic shearing test at site of ground - Google Patents

Method for dynamic shearing test at site of ground

Info

Publication number
JPS59102009A
JPS59102009A JP21177582A JP21177582A JPS59102009A JP S59102009 A JPS59102009 A JP S59102009A JP 21177582 A JP21177582 A JP 21177582A JP 21177582 A JP21177582 A JP 21177582A JP S59102009 A JPS59102009 A JP S59102009A
Authority
JP
Japan
Prior art keywords
test specimen
ground
sample
dynamic
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21177582A
Other languages
Japanese (ja)
Other versions
JPS6256284B2 (en
Inventor
Giichi Fujiwara
義一 藤原
Yasuo Aoki
保夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMU DENSHI KIKAI KK
Original Assignee
SAMU DENSHI KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMU DENSHI KIKAI KK filed Critical SAMU DENSHI KIKAI KK
Priority to JP21177582A priority Critical patent/JPS59102009A/en
Publication of JPS59102009A publication Critical patent/JPS59102009A/en
Publication of JPS6256284B2 publication Critical patent/JPS6256284B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil

Abstract

PURPOSE:To simply and exactly measure the dynamic both-side shearing force of a construction site by a method in which a test specimen is projectionally formed in contact with the ground, an oil-pressure cylinder is attached to the test specimen, and the test specimen is alternately pressed to detect shearing stress by a load detector. CONSTITUTION:A test specimen GE is projectionally formed connectedly to the ground TG in a site inside a tunnel T, and a static load is applied to the test specimen from bove. Oil-pressure cylinders 1 and 2 and load detectors 4 and 5 also set in the left and right-handed horizontal directions of the test specimen. The oil-pressure cylinders 1 and 2 are alternately driven through a servo amplifier (not illustrated) to press the test specimen GE, and both-side shearing forces are detected by the load detectors 4 and 5. Dynamic both-side shearing forces can be detected simply and exactly as in the case of earthquake.

Description

【発明の詳細な説明】 本発明は原位置、例えばトンネル内等の原位置において
、地盤が接続した状態で周側を切截して製出形成した試
料の動的剪断応力を試験する方法に関し、更に詳細ζ二
は、地震時に地盤が受ける動的両振り剪断力に対しての
強度を求めるための、原位置における動的地盤剪断格寺
連試験勃法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for testing the dynamic shear stress of a sample produced and formed by cutting the peripheral side with the ground connected in situ, for example in a tunnel. Further details ζ2 relate to the in-situ dynamic ground shear test method for determining the strength against the dynamic shear force applied to the ground during an earthquake.

従来より、一方向よりの加圧力によって試料のnflr
応力を試験する方法は公知(=属するが、動的両振り剪
断力に対しての応力を試験する方法は、発明者の知る限
りにおいて未だ提藁されていない。
Conventionally, the nflr of the sample was applied by applying pressure from one direction.
Although methods for testing stress are known, to the best of the inventor's knowledge, a method for testing stress against dynamic oscillating shear force has not yet been proposed.

(注、発明者は10数年前より、常時この分野における
内外文献を精嚢しているが。) 本発明は叙上の点に着目して成されたもので、即ち本発
明の目的は、地震時と同様の動的両振り剪断力を又互に
与えながら、より応力関数の少ない伏線で対応し得る強
度を求め得るよう(二した原位置における動的地盤剪断
1754昼試験物法を提供するにある。
(Note: Since more than 10 years ago, the inventor has been constantly reviewing the literature in this field at home and abroad.) In order to obtain the strength that can be applied with a smaller foreshadowing of the stress function while giving the same dynamic oscillating shear force as during an earthquake, we used the 1754 day test specimen method for dynamic ground shear in situ. It is on offer.

本発明の他の目的は、試料に4彊り力を加えるための+
L!!+ 寛治具を設けることなくして、部ち簡易なる
手段により正確なる数1ffiを求め得る原位置におけ
る動的地盤剪断診弁会試験へ法を提供するにある。
Another object of the present invention is to provide a +
L! ! + To provide a method for an in-situ dynamic ground shear diagnosis valve test in which the accurate number 1ffi can be determined by simple means without the need for a rigid jig.

次に、上記の目的を達成し得る本発明の一実施例を、添
付図面と共に詳細に説明する。
Next, an embodiment of the present invention capable of achieving the above object will be described in detail with reference to the accompanying drawings.

第7図において/及び−はプランジャー/a。In FIG. 7, / and - represent plunger /a.

2aを自する水平方向油圧シリンダー、3はプランジャ
ー3aを有する垂直方向油圧シリンダー、(静的上載何
厘を与えるための)ダ、!、乙はプランジャー/a、、
2a、Jal:装着さ7tた(例えは螺合手段により)
荷電検出器、弘a、ta、4aは荷亘検出器g、t、乙
の先端に設けられた抑圧板を示し、各油圧シリンダー/
、コ、3の基部にはフランジ/b。
2a is a horizontal hydraulic cylinder, 3 is a vertical hydraulic cylinder with plunger 3a (for providing static overload), ! , B is plunger/a,,
2a, Jal: Attached 7t (for example, by screwing means)
The charge detectors, Hiroa, Ta, and 4a indicate suppression plates installed at the tips of the charge detectors g, t, and Otsu, and each hydraulic cylinder/
, C, 3 has a flange /b at its base.

、2b 、 、、?bが形成されている。,2b,,,? b is formed.

Tはトンネル、TGはトンネルT内の地盤、GEは地d
TGと接続した状態で周側を切截して製出形成した試料
を示し、該試料GEは前後左右!θ鋸。
T is the tunnel, TG is the ground inside the tunnel T, GE is the ground d
This shows a sample manufactured by cutting the circumferential side while connected to TG, and the sample GE is front, rear, left and right! θ saw.

嶋さ!θαに形成されている。(注、原則的には、前後
左右の数値は1記に限られず、又高さは任意に変更され
る。)2は岸さ/θ副のコンクリート製のケーシングな
示し、このケーシング7が試料GEの上部より周側に嵌
合されている。
Shima! It is formed at θα. (Note: In principle, the values for front, rear, left, and right are not limited to 1, and the height can be changed arbitrarily.) 2 indicates a concrete casing with bank height/θ sub, and this casing 7 is the sample. It is fitted on the circumferential side from the top of the GE.

♂は水平方向油圧シリンダー/、2と垂直方間油圧シリ
ンダー3が保持される個所においてトンネルTの左右g
Taと天井壁Tbに打設されたコンクシート支体な示し
、このコンクリート文体rに各油圧シリンダー/、、2
.3のフランジ/a 、 、2a 。
♂ is the left and right g of the tunnel T at the location where the horizontal hydraulic cylinder/2 and the vertical hydraulic cylinder 3 are held.
The concrete sheet supports cast on Ta and the ceiling wall Tb are shown, and each hydraulic cylinder /,,2
.. 3 flanges/a, , 2a.

3aが鉄板りを介してボルト/θで固定されている。3a is fixed with a bolt /θ via an iron plate.

//はケーソングア上に固定された当板、7.2は垂直
方向油圧シリンダー3の抑圧板ぶaに固定された当板、
/3は当板//と/、2間に挿入された複数のコロ(丸
棒)を示し、この当板//、/2とコロ/3によりプラ
ンジャー3aによる垂直加圧時に試料GEに水平方向の
圧力が与えられないように構成されている。
// is a contact plate fixed on the casing gate, 7.2 is a contact plate fixed to the suppression plate a of the vertical hydraulic cylinder 3,
/3 indicates a plurality of rollers (round rods) inserted between the contact plates //, /2, and 2, and these contact plates //, /2 and rollers /3 cause the sample GE to be subjected to vertical pressure by the plunger 3a. It is constructed so that no horizontal pressure is applied.

又水平方向油圧シリンダー7、コはオイルの流路切換え
時にサージが発生しないようじ油圧サーボ方式で荷置フ
ィードバックにより制御され、人力信号:二より駆動す
るように、即ち第一図のブロック図の如く入力信号AF
、サーボ増幅器8A。
In addition, the horizontal hydraulic cylinder 7 is controlled by a hydraulic servo system with cargo position feedback to prevent surges when changing the oil flow path, and is driven by a human power signal, as shown in the block diagram of Figure 1. Input signal AF
, servo amplifier 8A.

サーボパルプSV、油圧シリンダー/、、2.荷電検出
器ダ、!、荷重増幅器LAにより構成されている。
Servo pulp SV, hydraulic cylinder/, 2. Charged detector! , and a load amplifier LA.

前記の粂件下において、垂直方向油圧シリンダ−3によ
り試料GEに静的上載荷嵐を与えると共に水平方向油圧
シリンダー/、2により軽く試料GEを押しながら、水
平方向油圧シリンダー/。
Under the above conditions, the vertical hydraulic cylinder 3 applies a static overloading storm to the sample GE, and the horizontal hydraulic cylinder 2 lightly pushes the sample GE, while the horizontal hydraulic cylinder 2 presses the sample GE lightly.

−を入力信号AFにより、第3図の[)(II)の如く
正弦波の片波づつ駆動して試料GEを左右より交互に押
圧する。(Fは試料GEの圧縮力が示されている。)し
かるときは試料([にかかる剪断力は(1)の如くなる
。(なおtmはタイムラインが示されている。) そして今、水平方向油圧シリンダー/、コ及び垂直方向
油圧シリンダー3が、各j0TOHの出力を発生すると
して、 試料断面積ム=!θxj0=、Ltθθcr11″垂直
応力  =−−)−万一λθ印f/♂剪断応力  =、
2θQlf/cm” −断弾性係数:G−!−[幀/♂] 減衰定数  “  ″ 〆πW となり、′tAa、、を図において に=!Oxjθ=、2!θθcrn1 t=3!□□□ Δt=ooz口 F=J−0000り 従って となる。
- is driven by one half wave of a sine wave as shown in [) (II) in FIG. 3 by the input signal AF, and the sample GE is pressed alternately from the left and right sides. (F indicates the compressive force of the sample GE.) In that case, the shear force applied to the sample ([ is shown in (1). (tm indicates the timeline.) And now, the horizontal Assuming that the directional hydraulic cylinders /, ko and the vertical hydraulic cylinders 3 generate outputs of j0TOH, sample cross-sectional area m=!θxj0=, Ltθθcr11″ vertical stress =--) - in case λθ mark f/♂ shear stress =,
2θQlf/cm” - Modulus of shear elasticity: G-!- [幀/♂] Attenuation constant “ ” 〆πW In the figure, 'tAa,, is =!Oxjθ=, 2!θθcrn1 t=3!□□□ Δt =ooz mouth F=J-0000 Therefore, it becomes.

本発明は上記したように成るから、地震時と同様の動的
両振りの剪断力を交互に与えながら試験し得ると共に応
力関数の少ない状態で対応し得る強度を求めることが出
来、又試料に引張りカを加えるための固定治具な要せず
、従って部属手段により正確なる数値を求め得られる等
の効果を有するものである。
Since the present invention is constructed as described above, it is possible to perform tests while alternately applying dynamic shear forces similar to those during an earthquake, and to obtain a strength that can be applied to a sample with a small stress function. There is no need for a fixing jig to apply tensile force, and therefore, accurate numerical values can be obtained using the attached means.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は本発明方法に用いられる!A置の概念説明図、
第一図は人力信号より出方に至るブロック図、第3図は
出力の波形図、第り図及び第一図は数値検出の説明図で
ある。 T・・・トンネル、TG・・・地盤、GE・・・試料A
F・・・入力信号、8A・・・サーボ増幅器−・・・左
右の水平方向油圧シリンダーダ、!・・・荷重検出器 −39=
FIG. 7 is used in the method of the present invention! Conceptual diagram of A location,
Fig. 1 is a block diagram of the output from the human input signal, Fig. 3 is an output waveform chart, and Fig. 1 and 1 are explanatory diagrams of numerical value detection. T...Tunnel, TG...Ground, GE...Sample A
F...Input signal, 8A...Servo amplifier-...Left and right horizontal hydraulic cylinders,! ...Load detector-39=

Claims (1)

【特許請求の範囲】[Claims] トンネル内等の原位置において、地盤と接続して試料を
突出形成し、該試料に静的上載荷重を与えると共に左右
の水平方向油圧シリンダーζ;より軽く試料を押しなが
ら、左右の水平方向油圧シリンダーを、入力信号により
サーボ増幅器を介して左右交互に騒動して試料を左右よ
り交互に押圧して荷ム検出器により剪断応力を検知して
成すことを特徴とする原位置(:おける動的地U9g断
妾祷り試晶法。
At the original location such as in a tunnel, the sample is connected to the ground to form a protrusion, and a static overload is applied to the sample, while the left and right horizontal hydraulic cylinders ζ; While pushing the sample more lightly, the left and right horizontal hydraulic cylinders This is achieved by alternating left and right vibrations via a servo amplifier in response to an input signal, pressing the sample alternately from the left and right sides, and detecting the shear stress with a load detector. U9g concubine prayer test crystal method.
JP21177582A 1982-12-02 1982-12-02 Method for dynamic shearing test at site of ground Granted JPS59102009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21177582A JPS59102009A (en) 1982-12-02 1982-12-02 Method for dynamic shearing test at site of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21177582A JPS59102009A (en) 1982-12-02 1982-12-02 Method for dynamic shearing test at site of ground

Publications (2)

Publication Number Publication Date
JPS59102009A true JPS59102009A (en) 1984-06-12
JPS6256284B2 JPS6256284B2 (en) 1987-11-25

Family

ID=16611381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21177582A Granted JPS59102009A (en) 1982-12-02 1982-12-02 Method for dynamic shearing test at site of ground

Country Status (1)

Country Link
JP (1) JPS59102009A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102535A (en) * 1984-10-24 1986-05-21 Sankyo Denki Kk Shearing tester
JPS62148712A (en) * 1985-12-23 1987-07-02 Fujita Corp Compressive and tensile testing at original position of rockbed
JPS62148710A (en) * 1985-12-23 1987-07-02 Fujita Corp Monoaxial compression testing at original position of rockbed
FR2785310A1 (en) * 1998-10-30 2000-05-05 Paris Eaux Gestion METHOD AND APPARATUS FOR CONTROLLING THE COMPACTION OF A BACKFILL
CN103969012A (en) * 2014-04-13 2014-08-06 北京工业大学 Shake table test real-time loading device for simulating different burial depths of rock tunnel
CN104847408A (en) * 2015-05-06 2015-08-19 西安科技大学 Dynamic disaster occurrence mechanism and prevention method
CN106226112A (en) * 2016-09-21 2016-12-14 中南大学 A kind of multi-functional reduced scale tunnel structure force model response characteristic laboratory test system and method
CN109972671A (en) * 2019-03-21 2019-07-05 浙江大学 The quiet dynamic shear stress of the super gravity field Laboratory Module soil body and compression measuring device and method
KR20220069090A (en) 2019-11-15 2022-05-26 다이오 페이퍼 코퍼레이션 Multi-layered paper and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102535A (en) * 1984-10-24 1986-05-21 Sankyo Denki Kk Shearing tester
JPS62148712A (en) * 1985-12-23 1987-07-02 Fujita Corp Compressive and tensile testing at original position of rockbed
JPS62148710A (en) * 1985-12-23 1987-07-02 Fujita Corp Monoaxial compression testing at original position of rockbed
FR2785310A1 (en) * 1998-10-30 2000-05-05 Paris Eaux Gestion METHOD AND APPARATUS FOR CONTROLLING THE COMPACTION OF A BACKFILL
US6389905B1 (en) 1998-10-30 2002-05-21 Societe Anonyme De Gestion Des Eaux De Paris (Sagep) Method and apparatus for monitoring the compaction of a fill
CN103969012A (en) * 2014-04-13 2014-08-06 北京工业大学 Shake table test real-time loading device for simulating different burial depths of rock tunnel
CN104847408A (en) * 2015-05-06 2015-08-19 西安科技大学 Dynamic disaster occurrence mechanism and prevention method
CN106226112A (en) * 2016-09-21 2016-12-14 中南大学 A kind of multi-functional reduced scale tunnel structure force model response characteristic laboratory test system and method
CN109972671A (en) * 2019-03-21 2019-07-05 浙江大学 The quiet dynamic shear stress of the super gravity field Laboratory Module soil body and compression measuring device and method
CN109972671B (en) * 2019-03-21 2020-02-07 浙江大学 Device and method for measuring static and dynamic shear stress and compressive stress of soil body of supergravity field experiment cabin
KR20220069090A (en) 2019-11-15 2022-05-26 다이오 페이퍼 코퍼레이션 Multi-layered paper and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6256284B2 (en) 1987-11-25

Similar Documents

Publication Publication Date Title
Luong Infrared thermovision of damage processes in concrete and rock
Wu et al. Debond detection using embedded piezoelectric elements in reinforced concrete structures-part I: experiment
JPS59102009A (en) Method for dynamic shearing test at site of ground
Makhnenko et al. Plane strain testing with passive restraint
Leyder et al. Dynamic response of an innovative hybrid structure in hardwood
Khayat et al. Effect of section width and casting rate on variations of formwork pressure of self-consolidating concrete
CN105259107A (en) Device for testing bond performance of reinforcing steel bar and concrete through drawing and testing method
CN104807707A (en) Testing device and testing method for determining double-side shear performance of FRP (Fiber Reinforced Plastic)-concrete
Chen et al. New method to calculate the kinematic response of offshore pipe piles under seismic S-waves
KR102282400B1 (en) Inspection method for concrete delamination based on multi-channel elastic wave measurement
Gao et al. High spatial resolution imaging for damage detection in concrete based on multiple wavelet decomposition
Rittel et al. A study of mixed-mode dynamic crack initiation in PMMA
Das et al. Application of S1 A1 modes of acoustic emission waves for health monitoring of reinforced concrete slab
JP2568085Y2 (en) Compression testing machine
Tan et al. Dynamic deformation signatures in reinforced concrete slabs for condition monitoring
Luong Infrared thermographic characterization of engineering materials
El-Diasty et al. Development of Accurate Bridge Structure Strain Response Function Due to Temperature Changes Effect
SU746287A1 (en) Method and apparatus for determining concrete strength in construction
CN211235665U (en) Building material structural performance detection device
Tanaka et al. Detection of contact-type failure based on nonlinear wave modulation utilising ultrasonic vibration driven by self-excitation.
SU1370487A1 (en) Installation for mechanical tests of building structures
SU1810810A1 (en) Acoustic method of testing of stressed state of material
Lee et al. Application of built-in microphone of smartphone for inspecting unbonded length of fully grouted rock bolt
SU585422A1 (en) Apparatus for testing sealing of fixed connections
Grabke et al. Comparison of structural analysis results with coda wave interferometry measurements