JPS5910150B2 - frequency converter - Google Patents

frequency converter

Info

Publication number
JPS5910150B2
JPS5910150B2 JP5956878A JP5956878A JPS5910150B2 JP S5910150 B2 JPS5910150 B2 JP S5910150B2 JP 5956878 A JP5956878 A JP 5956878A JP 5956878 A JP5956878 A JP 5956878A JP S5910150 B2 JPS5910150 B2 JP S5910150B2
Authority
JP
Japan
Prior art keywords
phase
current
output voltage
commutation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5956878A
Other languages
Japanese (ja)
Other versions
JPS54150638A (en
Inventor
徳行 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP5956878A priority Critical patent/JPS5910150B2/en
Publication of JPS54150638A publication Critical patent/JPS54150638A/en
Publication of JPS5910150B2 publication Critical patent/JPS5910150B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 本発明は、3相電流から周波数の異なる単相出力を直接
に取出す周波数変換装置に関し、特に出力電圧制御方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency conversion device that directly extracts single-phase outputs with different frequencies from three-phase currents, and particularly relates to an output voltage control method.

周波数変換方式としては、交流電力を一旦直流電力に変
換し、インバータにより所定周波数の交流電力を取出す
方式、又はサイクロンコンバータ(直接形周波数変換装
置)による方式があるが、前者は後者に比べて変換効率
が劣るし、後者は変換できる周波数範囲に限界がある。
Frequency conversion methods include methods that first convert AC power into DC power and extract AC power at a predetermined frequency using an inverter, and methods that use a cyclone converter (direct frequency converter), but the former has a lower conversion rate than the latter. They are less efficient, and the latter have a limited range of frequencies that can be converted.

本発明の目的は、3相電源から直接に周波数変換した単
相出力を取出す直接形周波数変換装置において、変換器
の相間短絡を防止した出力電圧制御が容易にできる周波
数変換装置を提供するにある。
An object of the present invention is to provide a frequency converter that can easily control the output voltage while preventing phase-to-phase short circuits of the converter in a direct frequency converter that outputs a frequency-converted single-phase output directly from a three-phase power source. .

第1図は本発明における主回路の一実施例を示す。FIG. 1 shows an embodiment of the main circuit according to the present invention.

変圧器Tlは3相50H2の二次出力U4、V、、W1
とU2、V2、W2との間に30度の位相差を持たせて
いる。サイリスタ構成の3相ブリッジBf、Bbは互い
に逆並列接続されて3相50H2電源(U1、Vl、W
、)が与えられ、3相ブリッジAf、Abは互いに逆並
列接続されて3相50H2電源(U2、V2、W2)が
与えられる。そして、3相ブリッジAf、Ab(5Bf
、Bbとが直列接続されたメッシュ接続にされ、3相ブ
リッジAf、Abの一端とBf、Bbの一端とが単相6
0H2出力端にされ、変圧器T2を通して単相60H2
を取り出す構成にされている。なお、各3相ブリッジを
構成する主サイリスタ51−524は夫々1素子にする
ものでもなく、制御容量に応じて複数素子が並列接続に
される。第2図は、第1図の主回路構成における制御方
式を説明するための波形図である。
The transformer Tl has a three-phase 50H2 secondary output U4, V,, W1
A phase difference of 30 degrees is provided between U2, V2, and W2. The three-phase bridges Bf and Bb having a thyristor configuration are connected in antiparallel to each other to form a three-phase 50H2 power supply (U1, Vl, W
, ) are given, and the three-phase bridges Af and Ab are connected in antiparallel to each other to give a three-phase 50H2 power supply (U2, V2, W2). Then, the three-phase bridge Af, Ab (5Bf
, Bb are connected in series in a mesh connection, and one end of the three-phase bridge Af, Ab and one end of Bf, Bb are connected to a single-phase 6
0H2 output end, single phase 60H2 through transformer T2
It is configured to take out. Note that the main thyristors 51 to 524 constituting each three-phase bridge are not each made into one element, but a plurality of elements are connected in parallel according to the control capacity. FIG. 2 is a waveform diagram for explaining a control method in the main circuit configuration of FIG. 1.

第2図において、U、V1、U2V2、W、V4はそれ
ぞれ相間電圧を示し、Vは単相出力電圧を示す。今、第
1図の主サイリスタ51|57、55|511|513
1519、51|、523が点弧している状態では出力
電圧Vはθ<θ1の範囲では図示の如くなり、θ4の点
で主サイリスタ53、59が点弧するとU、相からW、
相に転流し、θ≧θ1の範囲でも引きつづき図示の如く
なり、60H2の正の半サイクルになる。この・ように
、電圧の正の半サイクルでは変圧器Tlの△側、即ち3
0度遅れている側のブリッジBf、Bbで転流が行なわ
れ、負の半サイクルでは30変造み側のブリッジAf、
Abで転流が行なわれるが、実際に電流の流れているサ
イリスタ51、56、513、517は勿論、それと逆
並列に接続されたサイリスタS7,Sl,,S,,,S
23にも常にゲートパルスを与えている。これは、高調
電流すなわち速い周期で電流の方向が変るような負荷電
流でも通電できるようにするためである。ここで、逆変
列サイリスタ共にゲート信号を与えることによる相間短
絡を防止するために、転流時点を適確に選定する。
In FIG. 2, U, V1, U2V2, W, and V4 each indicate interphase voltage, and V indicates single-phase output voltage. Now, the main thyristor 51 | 57, 55 | 511 | 513 in FIG.
1519, 51|, 523 are firing, the output voltage V becomes as shown in the figure in the range θ<θ1, and when the main thyristors 53, 59 fire at the point θ4, the output voltage V changes from U, phase to W,
Even in the range of θ≧θ1, the state continues as shown in the figure, resulting in a positive half cycle of 60H2. Thus, in the positive half cycle of the voltage, the △ side of the transformer Tl, that is, the 3
Commutation is carried out in the bridges Bf and Bb on the side that are delayed by 0 degrees, and in the negative half cycle, the bridges Af and Bb on the side that are delayed by 30 degrees are
Commutation is carried out at Ab, but of course the thyristors 51, 56, 513, 517 through which current is actually flowing, as well as the thyristors S7, Sl,, S, , S, which are connected in antiparallel thereto.
23 is also constantly given a gate pulse. This is so that even a harmonic current, that is, a load current whose direction changes in a fast cycle, can be energized. Here, in order to prevent a short circuit between phases due to applying a gate signal to both the inverted sequence thyristors, the commutation point is appropriately selected.

第3図はUlV,からWllに転流する場合を示す。同
図において、UlV,からWlVlに転流するためには
、第1図のブリツジBf,Bbの主サイリスタSl,S
7からS3,S,にゲート信号を切換える必要があるが
、切換時点θ,においてW,l〉UllであればW1〉
U1であり、このときは主サイリスタSl,S6を通し
て負荷電流1Lが流れていれば(θ1〉力率角θL)、
正電流(電圧と同極性)であり、θ,において主サイリ
スタSl,S,のゲートをオフした後に主サイリスタS
3,S,を点弧すれば、電流はθ,の時点でS,からS
3に自然転流する。これは、S,はW,U,の電圧が逆
電圧として印加されターンオフするし、正電流であるか
らS,には電流が流れない。もし、主サイリスタS,,
S7からS6,S,にゲート信号を切換える時点θ1で
負荷電流1LがS,,Sllを通電していれば(θ1〈
θしくθ,)、負電流(電圧と逆極性)であり、S3,
S9をθ1で点弧するとW,−S,−S,−U1を通し
て線間短絡になる。一般に正電流の場合は低い電位から
高い電位の方に自然転流が可能であり、負電流の場合は
逆に高い電位から低い電位の方に自然転流が可能である
。これに反する場合は転流失敗になつて線間短絡を生ず
る。さて、U,,からWl,に自然転流する場合、第3
図のような負荷力率ではθしくθ〈θ2の範囲で可能第
4図の負荷力率の場合はθ2くθくθLの範囲で自然転
流が可能である。
FIG. 3 shows the case of commutation from ULV to Wll. In the figure, in order to commutate from UlV to WlVl, the main thyristors Sl and S of bridges Bf and Bb in Figure 1 are required.
It is necessary to switch the gate signal from 7 to S3,S, but if W,l〉Ull at the switching time θ, then W1〉
U1, and at this time, if 1L of load current is flowing through the main thyristors Sl and S6 (θ1>power factor angle θL),
It is a positive current (same polarity as the voltage), and after turning off the gates of the main thyristors Sl and S at θ, the main thyristor S
3. If S, is ignited, the current changes from S, to S at the time θ,
Naturally translocates to 3. This is because the voltage of W and U is applied as a reverse voltage to S, which turns it off, and since it is a positive current, no current flows through S. If the main thyristor S,,
If the load current 1L is flowing through S, , Sll at the time θ1 when the gate signal is switched from S7 to S6, S, (θ1
θ and θ, ), negative current (opposite polarity to voltage), S3,
When S9 is ignited at θ1, a short circuit occurs between the lines through W, -S, -S, and -U1. Generally, in the case of a positive current, natural commutation is possible from a low potential to a high potential, and in the case of a negative current, on the contrary, natural commutation is possible from a high potential to a low potential. If this is not the case, commutation will fail and a short circuit will occur between the lines. Now, when there is a natural commutation from U,, to Wl, the third
With the load power factor as shown in the figure, natural commutation is possible in the range of θ<θ2. With the load power factor of FIG. 4, natural commutation is possible in the range of θ2 - θ<θ2.

しかし、第5図のような負荷力率では自然転流の可能な
領域が存在しない。この場合は電流が零になつてサイリ
スタが自然消弧したことを確認後にW,lのサイリスタ
を点弧するようにすれば線間短絡を防止できる。本発明
では、第6図に示すように、負荷力率に関係なく電流が
零に自然消弧したことを確認後、点弧すべき次のサイリ
スタを点弧するようにして短絡を防止すると共に電流の
零区間△θを制御することにより出力電圧の制御を行な
う。このように本発明では、線間短絡を防止した出力電
圧制御が可能になる効果がある。
However, at a load power factor as shown in FIG. 5, there is no region where natural commutation is possible. In this case, short circuits between the lines can be prevented by igniting the thyristors W and I after confirming that the current has become zero and the thyristors have naturally extinguished. In the present invention, as shown in Fig. 6, after confirming that the current has spontaneously disappeared to zero regardless of the load power factor, the next thyristor to be fired is fired, thereby preventing short circuits. The output voltage is controlled by controlling the zero section Δθ of the current. As described above, the present invention has the effect of making it possible to control the output voltage while preventing line-to-line short circuits.

特に、転流時点を出力電圧波高値近傍にして負荷力率の
影響を受けにくくすると同時に電流零点を検出してそれ
を基準にして点弧位相制御するため如何なる負荷力率に
対しても安定した転流を可能とする効果がある。
In particular, the commutation point is set close to the peak value of the output voltage so that it is less susceptible to the influence of the load power factor, and at the same time, the current zero point is detected and the ignition phase is controlled based on it, so it is stable regardless of the load power factor. This has the effect of enabling commutation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による周波数変換装置の一実施例を示す
主回路構成図、第2図乃至第6図は本発明の動作を説明
するための波形図である。 Af,Ab,Bf,Bb・・・・・・3相ブリツジ、T
,,T2・・・・・・変圧器。
FIG. 1 is a main circuit configuration diagram showing an embodiment of a frequency converter according to the present invention, and FIGS. 2 to 6 are waveform diagrams for explaining the operation of the present invention. Af, Ab, Bf, Bb...3-phase bridge, T
,,T2......Transformer.

Claims (1)

【特許請求の範囲】[Claims] 1 位相差を持つ二組の3相電流をそれぞれ逆並列接続
の3相ブリッジに与え、転流を半サイクルごとに3相ブ
リッジで交互に行なわせ、3相電源から周波数を変換し
た単相出力を直接に得る周波数変換装置において、上記
3相ブリッジの整流素子に流れる電流あるいは負荷電流
を検出し、正(負)の半波電流が零点になつた時点から
次の負(正)の半波電流が流れ始めるまでの時間を出力
電圧波形の波高値近傍で制御することで単相出力電圧を
制御することを特徴とする周波数変換装置。
1 Two sets of three-phase currents with phase differences are applied to three-phase bridges connected in antiparallel, and commutation is performed alternately in the three-phase bridge every half cycle, resulting in a single-phase output that converts the frequency from the three-phase power supply. In a frequency converter that directly obtains the current, the current flowing through the rectifying element of the three-phase bridge or the load current is detected, and from the point when the positive (negative) half-wave current reaches the zero point, the next negative (positive) half-wave current is detected. A frequency conversion device characterized by controlling a single-phase output voltage by controlling the time until the current starts flowing near the peak value of the output voltage waveform.
JP5956878A 1978-05-18 1978-05-18 frequency converter Expired JPS5910150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5956878A JPS5910150B2 (en) 1978-05-18 1978-05-18 frequency converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5956878A JPS5910150B2 (en) 1978-05-18 1978-05-18 frequency converter

Publications (2)

Publication Number Publication Date
JPS54150638A JPS54150638A (en) 1979-11-27
JPS5910150B2 true JPS5910150B2 (en) 1984-03-07

Family

ID=13116965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5956878A Expired JPS5910150B2 (en) 1978-05-18 1978-05-18 frequency converter

Country Status (1)

Country Link
JP (1) JPS5910150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895945A (en) * 1981-12-02 1983-06-07 三菱レイヨン株式会社 3-phase power receiving single phase load balance control circuit

Also Published As

Publication number Publication date
JPS54150638A (en) 1979-11-27

Similar Documents

Publication Publication Date Title
JPH04197078A (en) Power converter, control method therefor and uninterruptible power supply
US11183948B2 (en) Series multiplex inverter
US3641356A (en) Static converter station for high voltage
GB1344534A (en) Polyphase power converter circuits
GB1532031A (en) Three phase load controlling system
JPS59222079A (en) Power converter
US4188659A (en) Static AC/AC thyristor converter for a self-driven synchronous motor
US4058738A (en) Method and circuit arrangement for starting up a converter having forced commutation with the correct phase
JPS5910150B2 (en) frequency converter
JPH0120769B2 (en)
JPS6035892B2 (en) power converter
GB1243525A (en) Improvements in static power converter with variable commutation reactance
JPH0753390Y2 (en) Uninterruptible power system
SU504287A1 (en) Three Phase AC Voltage Regulator
JPH0523791U (en) Isolated converter device
SU372626A1 (en) DEPENDENT INVERTER WITH ARTIFICIAL COMMUTATION
SU1096752A1 (en) Method of separate control of three-phase direct frequency converter with separated power sources
SU1436235A1 (en) Direct frequency doubler
SU1121763A1 (en) Three-phase a.c.voltage-to-pulsed voltage converter
JP2645157B2 (en) Control method of cyclo converter
JPS5961476A (en) Power source
SU1598068A1 (en) Device for synchronizing three-phase converter
JPH07163156A (en) Current type inverter
SU955508A1 (en) Method of lochkng inverter gates with two-stage compensation
SU936313A1 (en) Dc voltage-to-three-phase ac voltage converter