JPS59101340A - Method of foaming and injection molding - Google Patents

Method of foaming and injection molding

Info

Publication number
JPS59101340A
JPS59101340A JP57210616A JP21061682A JPS59101340A JP S59101340 A JPS59101340 A JP S59101340A JP 57210616 A JP57210616 A JP 57210616A JP 21061682 A JP21061682 A JP 21061682A JP S59101340 A JPS59101340 A JP S59101340A
Authority
JP
Japan
Prior art keywords
resin
water
foaming
gas
mold cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57210616A
Other languages
Japanese (ja)
Inventor
Akio Yasuike
安池 秋男
Susumu Imai
進 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57210616A priority Critical patent/JPS59101340A/en
Publication of JPS59101340A publication Critical patent/JPS59101340A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum

Abstract

PURPOSE:To obtain an injection molded item whose surface is smooth and which is not affected adversely with an expanding agent, by employing water as expanding agent in a molding method wherein until a cavity is filled with an expandable resin, the expandable resin is prevented by a pressure gas from expanding. CONSTITUTION:After water as expanding agent is added to an expandable resin by for example a method wherein generally a solid substance (e.g. silica gel, etc.) is added and mixed that can liberate water of crystallization or absorbed water at the plasticising temperature of said expanding resin, the resin is injected while the resin is prevented by the action of a gas (e.g. preferably air at 10kg/cm<2>) at a pressure capable of suppressing the expansion of the resin from expanding until the mold cavity is filled with the resin. Subsequently, the pressure gas is released to allow the resin to expand to obtain the intended molded item. EFFECT:The obtained item is free from defects such as molding sink, warping, etc. and the molding can be effected economically.

Description

【発明の詳細な説明】 本発明は、平滑表面の発泡射出成形体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a foam injection molded article with a smooth surface.

従来、合成樹脂の発泡射出成形体は、寸法精度良好で肉
厚の射出成形品として製造が可能であるので、強度と精
度とが必要な、電子応用機器の筐体等の用途に汎く使用
されている。然し乍ら、一般の発泡射出成形品は、射出
時の発泡のため、その表面に特有の渦巻状の粗面を呈し
、商品価値の重要な前記用途等に応用の際には、その表
面の仕上げ塗装等に多大の労力と経費を要して居るのが
現況である。又その粗面の仕上げ加工の必要な処より、
金型模様の転写に依る自由なデザインが不可能となり、
多大のデザイン的な制約が強要される。この対策として
、平滑な表面の発泡射出成形体を得る技術として、所謂
、カウンタブレラシュア法が知られて居る。この方法と
は、発泡性の熱可塑化樹脂を金型キャビティ内に射出充
満する迄、射出中の樹脂の発泡を抑止し得るに充分な圧
力気体を作用せしめた後、該圧力気体の解除に依り型内
樹脂の発泡を許容する発泡射出成形体の製造方法である
。この場合、金型キャビティ内に射出充満された基体樹
脂は、その後、冷却に伴い、その熱膨張係数に則りその
容積を縮少して行くが、その内部に溶解分散した発泡用
の圧力気体の気化膨張により、基体樹脂の熱収縮に相当
する容積を補い、全体として、金型容積に終始一定して
、冷却同化に至る。この際前記、射出樹脂の全表面層は
、金型キャビティの冷却面に接触するや否や同化表皮を
形成し、最早発泡し得ない故、平滑な表面の発泡体を得
る理である。従って、この方法、即ちカウンタブレラシ
ュア法では、この基体樹脂の熱収縮容積相当以内の罹め
て低い発泡倍率の発泡射出体が得られる。更に高発泡体
を必要とする時は、前述の射出工程に於て、圧力気体の
解放に続いて、金研キャビティを拡大して更に発泡を可
能にする、特公昭39−22213の方法及び、上記圧
力気体の応用下に、発泡性の樹脂中に圧力気体を包蔵射
出し、金型キャビティ内を充満後、前記側圧力気体を解
放に依り、前記包蔵気体の占めた中空部に発泡を許容す
る、特公昭53−25352の方法等の応用が出来る。
Conventionally, synthetic resin foam injection molded products have good dimensional accuracy and can be manufactured as thick injection molded products, so they are widely used for applications that require strength and precision, such as housings for electronic application equipment. has been done. However, due to foaming during injection, general foam injection molded products exhibit a unique spiral-like rough surface on their surfaces, and when applied to the above-mentioned applications where commercial value is important, the surface must be finished with a coating. The current situation is that it requires a great deal of effort and expense. Also, since the rough surface requires finishing,
It became impossible to create a free design by transferring the mold pattern.
Many design constraints are imposed. As a countermeasure to this problem, the so-called counterbrella sure method is known as a technique for obtaining a foam injection molded product with a smooth surface. In this method, sufficient pressure gas is applied to suppress foaming of the resin during injection until the mold cavity is injected and filled with foamable thermoplastic resin, and then the pressure gas is released. This is a method for manufacturing a foam injection molded article that allows foaming of resin within a mold. In this case, as the base resin is injected and filled into the mold cavity, its volume decreases according to its coefficient of thermal expansion as it cools, but the foaming pressurized gas that is dissolved and dispersed inside the base resin is vaporized. The expansion compensates for the volume corresponding to the thermal contraction of the base resin, and as a whole remains constant at the mold volume throughout, resulting in cooling assimilation. At this time, the entire surface layer of the injected resin forms an assimilated skin as soon as it comes into contact with the cooling surface of the mold cavity and can no longer foam, resulting in a foamed product with a smooth surface. Therefore, in this method, that is, in the counterbrella sure method, a foamed injection product having a very low expansion ratio within the heat shrinkage volume of the base resin can be obtained. When a more highly foamed product is required, the method of Japanese Patent Publication No. 39-22213 is used, in which, in the injection process mentioned above, the Koken cavity is enlarged to enable further foaming after releasing the pressurized gas. Under the application of the above pressure gas, the pressure gas is encapsulated and injected into the foamable resin, and after filling the mold cavity, the side pressure gas is released to allow foaming in the hollow space occupied by the encapsulated gas. The method of Japanese Patent Publication No. 53-25352 can be applied.

以下この様に、金型キャビティに圧力気体を及ばず工程
を有する発泡射出成形方法は総べて、カウンタブレラシ
ュア法と呼称するが、斯様にして、カウンタブレラシュ
ア法にて、平滑表面の発泡射出成形体が製造され得るに
至ったが、未だ次の如き難問が残って居/こ。即ち、第
1の問題として、一般に用いられている、樹脂の可塑化
温度で化学的な熱分解に依って気体を発生する有機の化
学発泡剤は、基体と成る樹脂を着色したり、劣化を促進
し、その分解生成物が、成形品、金型等の汚染、金型、
成形機の腐蝕等の悪影響が多い。又、僅かにこれらの悪
影響の少いものは、その分解温度が著しく高かったり、
禁止的に高価である。又、炭酸水素す) IJウムの如
き無機系の発泡剤は、その分解残渣が潮解性を有し、成
形品中で吸湿して生成した溶液で発汗したり、その蒸発
乾固物で白粉を生じたりの問題が多い。第2の問題とし
て、一般に、使用する圧力気体は、10に9/cIl(
以下すべてケージ圧)の空気である事が経済的に最も好
ましい事である。10に9/7以上の圧力の気体は高圧
ガスであり、取扱い上も装置的にも非常に困難な問題が
多い。従って、本カウンタブレッシュア法にも、10紛
/−以下の気体の使用を試みる時は、射出の際の樹脂の
発泡を抑止し得る条件として、その発泡剤の使用量限度
に多大の制約を受ける事である。この使用限度は、発泡
剤、樹脂の種類、射出温度に依り多少の差はあるが、一
般の有機化学発泡剤の1グラム当り分解ガスの発生量は
略≧200CC(標準状態、以下同様)であり、その上
述の制限に依る使用限度は、約0.2%であるので、こ
の発生気体量は、基体樹脂容積の略240%に相当する
。一般に、電子応用機器の筐体等に応用される発泡射出
成形体中に占める気泡の基体樹脂に対して、20チ以下
であり、この面よりは一見充分に見えるも、金型キャビ
ティ内に射出充満の基体樹脂の冷却に伴って収縮するそ
の粘性に抗して、その気泡を拡大するための圧力を提供
するためにも若干不足を来すものである。汎して、特公
昭39−22213号公報、及び゛特公昭53−253
52号公報を応用するためには、全く不足する事は明ら
かである。従って、この場合、ヒケ、ソリ等、一般の厚
物の射出成形品に見る欠陥を生じ、前記精度を要する用
途には供し得ない。
Hereinafter, all foam injection molding methods that involve a process in which pressurized gas is not applied to the mold cavity will be referred to as the counterbrella sure method. Although foamed injection molded articles can now be produced, the following difficult problems still remain. In other words, the first problem is that commonly used organic chemical blowing agents that generate gas through chemical thermal decomposition at the plasticizing temperature of the resin may color the base resin or cause deterioration. The decomposition products cause contamination of molded products, molds, etc.
There are many negative effects such as corrosion of the molding machine. In addition, the decomposition temperature of substances with slightly less negative effects may be extremely high, or
Prohibitively expensive. In addition, the decomposition residue of inorganic blowing agents such as hydrogen carbonate (IJum) has deliquescent properties, and when it absorbs moisture in the molded product, the resulting solution may sweat, and its evaporated dry product may form white powder. There are many problems that arise. As a second problem, generally the pressure gas used is 10 to 9/cIl (
Economically, it is most preferable to use air at the following cage pressure. Gases with pressures higher than 9/7 in 10 are high-pressure gases, and there are many problems that are extremely difficult in terms of handling and equipment. Therefore, when attempting to use a gas of 10 powder/- or less in this counter breather method, there are significant restrictions on the amount of blowing agent used as a condition to suppress foaming of the resin during injection. It is a matter of receiving. This usage limit varies slightly depending on the blowing agent, type of resin, and injection temperature, but the amount of decomposed gas generated per gram of general organic chemical blowing agents is approximately ≧200CC (under standard conditions, the same applies below). Since the usage limit according to the above-mentioned restrictions is about 0.2%, this amount of generated gas corresponds to about 240% of the base resin volume. In general, the number of air bubbles in foam injection molded products used for the housing of electronic equipment, etc., is less than 20 cm compared to the base resin. It is also somewhat insufficient to provide pressure to expand the bubbles against the viscosity of the filled base resin, which contracts as it cools. In general, Japanese Patent Publication No. 39-22213, and Japanese Patent Publication No. 53-253
It is clear that the application of Publication No. 52 is completely insufficient. Therefore, in this case, defects such as sink marks and warpage occur, which are seen in ordinary thick injection molded products, and the product cannot be used for applications requiring the above-mentioned precision.

本発明は、上述の如き、平滑表面の発泡成形体を得るた
めの問題を解決したものである。即ち、本発明は、「発
泡性の合成樹脂を金型キャビティ内に射出充満する迄、
該射出樹脂の発泡を抑止し得る圧力の気体を、前記金型
キャピテイ内に作用せしめる工程を含む発泡射出成形に
於て、主たる発泡剤として水を使用する事を特徴とする
発泡射出成形方法」の提供を骨子とするものである。
The present invention solves the problem of obtaining a foamed molded article with a smooth surface as described above. That is, the present invention provides the following advantages: ``Until the foamable synthetic resin is injected and filled into the mold cavity,
A foaming injection molding method comprising using water as the main foaming agent in foaming injection molding, which includes a step of applying gas at a pressure capable of suppressing foaming of the injected resin into the mold cavity. The main objective is to provide the following.

従来、発泡射出成形に於てd1水を主とする発泡剤は用
い得なかった。その理由は、射出の際の発泡に依って放
出された水蒸気が金型キャビティの冷却面にて凝縮して
水滴と成って、成形の続行が不可能と成る事に依ると推
定される。然し乍ら、本発明では、金型キャビティに及
ぼす樹脂の射出の間、その発泡は抑止され、樹脂が金型
キャビティ内に充満するや否や、樹脂の全表面は、冷却
硬化、平滑で硬い皮層を形成し、内部樹脂の発泡に依る
発生気体の逸出は抑止し得る。
Conventionally, it has not been possible to use a blowing agent mainly consisting of d1 water in foam injection molding. The reason for this is presumed to be that water vapor released due to foaming during injection condenses on the cooling surface of the mold cavity and forms water droplets, making it impossible to continue molding. However, in the present invention, the foaming of the resin during injection into the mold cavity is suppressed, and as soon as the resin fills the mold cavity, the entire surface of the resin is cooled and hardened to form a smooth and hard skin layer. However, escape of generated gas due to foaming of the internal resin can be suppressed.

以上、本発明に於ける発泡剤としての水の供給方法は各
種あね、発泡剤の所要量が、基体樹脂が担体と成り得る
量の範囲内の時は、基体樹脂と混合して、射出成形機に
供給する事も出来るが、一般には、基体樹脂の可塑化の
温度で、結晶水、吸収水等を放出する固体物質を、R[
定量混合して射出成形機に供給する。これらの水の担体
として用いられる物質としては、硫酸カルシウム、活性
白土、シリカゲル、タルク粉等である。又、これら物質
の脱水状物の多量を基体物質と溶融混練の後、抱水し得
る量の水を 添加混合、抱水せしめ、その所要量を、所
謂、コンセントレートの型で基体樹脂と混合して射出成
形機に供給する事も出来る。
As mentioned above, there are various methods for supplying water as a blowing agent in the present invention. When the required amount of the blowing agent is within the amount that the base resin can serve as a carrier, it is mixed with the base resin and then injected. Although it can be fed to a molding machine, in general, a solid substance that releases crystal water, absorbed water, etc. at the temperature of plasticization of the base resin is used as R[
Mix in a quantitative manner and supply to the injection molding machine. Materials used as these water carriers include calcium sulfate, activated clay, silica gel, and talcum powder. In addition, after melt-kneading a large amount of dehydrated products of these substances with the base material, add and mix the amount of water that can be hydrated to retain the water, and mix the required amount with the base resin in a so-called concentrate type. It can also be supplied to an injection molding machine.

又、斯様にして添加する水の量は、基体樹脂の種類、所
望発泡倍率、射出温度等の条件に依て異にするが、その
Mは、水蒸気容積として、基体樹脂容積の約3倍以下で
充分に前記用途に供し得る発泡射出成形体が製造し得る
事を確認した。又、この程度の水の使用量では、金型キ
ャビティに及ぼす気体の圧力は、10 Kf/−にて略
≧充分である事も確認した。一般に前記用途に供される
基体と成る合成樹脂は、耐衝撃性ポリスチレン、ABS
樹脂、スチレン変性ポリフェニレンエーテル樹脂等であ
り、圧力下に1.射出時に前記範囲内の水の溶解性を有
し、充分に一般の水の平衡蒸気圧より低い圧気の圧力に
て、射出時の発泡を抑止し得る。
The amount of water added in this manner varies depending on conditions such as the type of base resin, desired expansion ratio, injection temperature, etc., but M is approximately 3 times the volume of the base resin in terms of water vapor volume. It was confirmed that a foamed injection molded article that can be sufficiently used for the above purpose could be produced in the following manner. It was also confirmed that with this amount of water used, the gas pressure exerted on the mold cavity was approximately ≧sufficient at 10 Kf/-. Generally, the synthetic resin that forms the base material used for the above purpose is high-impact polystyrene, ABS
resin, styrene-modified polyphenylene ether resin, etc. under pressure. If the solubility of water is within the above range at the time of injection and the pressure is sufficiently lower than the equilibrium vapor pressure of ordinary water, foaming at the time of injection can be suppressed.

又、発泡剤の使用量、金型キャビティに及ぼす気体の圧
力は、勿論、条件に依って異るので、その量の決定に当
っては、先ず試行に依って、所望の発泡の倍率の成形品
にヒケの生じない充分な量を決定し、ついで、所謂、シ
ルバーストリークの消失するために充分な圧力気体の圧
力も試行に依って決定する。
In addition, the amount of foaming agent used and the gas pressure applied to the mold cavity will of course vary depending on the conditions, so when determining the amount, first conduct a trial to determine the desired foaming ratio. A sufficient amount of gas is determined so as not to cause sink marks on the product, and then a sufficient pressure of the gas to eliminate so-called silver streaks is also determined by trial.

又、基体の樹脂の熱変形温度(ASTM、 D648 
)が低く、この温度、常圧で、水が気体として存在し得
ない場合には不可であるので、この場合には夕景の化学
発泡剤を補助的に使用する。この使用量も試行に依り決
定するが、その使用の指標は、化学発泡剤よりの発生気
体容積が、基体樹脂の発泡膨張容積に相当する量である
。この場合には、水は、その温度にて、分圧として気体
として存在し得て、発泡成形体の形状の維持に寄与し得
る。
In addition, the heat distortion temperature of the base resin (ASTM, D648
) is low and water cannot exist as a gas at this temperature and normal pressure, so in this case, a chemical blowing agent of Sunset is used as an auxiliary. The amount to be used is also determined by trial, but the indicator for its use is the amount in which the volume of gas generated by the chemical foaming agent corresponds to the foaming expansion volume of the base resin. In this case, the water may exist as a gas at a partial pressure at that temperature and may contribute to maintaining the shape of the foam molded article.

この場合には前述の化学発泡剤の使用に基く悪影響は残
るが、その量は僅少である故、大愕に稀釈緩和が可能と
なる。
In this case, although the adverse effects caused by the use of the chemical blowing agent described above remain, the amount thereof is so small that dilution can be alleviated to a great extent.

次に実施例に就て説明する。次の各実施例は何れも、汎
用の20オンス射出成形機と、平均厚さ7 y 、外形
寸法260wJIX350m、内形寸法160maX2
50Iの額縁形状の金型を用いて成形したものである。
Next, an example will be explained. Each of the following examples uses a general-purpose 20 oz injection molding machine, an average thickness of 7 y, external dimensions of 260 w, JIX of 350 m, and internal dimensions of 160 ma x 2.
It was molded using a 50I frame-shaped mold.

9一 実施例1 基体と成る樹脂として、グラフト化ポリフェニレンエー
テル樹脂(商品名サイロン201V、旭化成社製)10
0重量部を0.2ii部の鉱油で溝潤し、これに硫酸カ
ルシウム粉(Ca SO42H2O) 1.2部を添加
混合した。
91 Example 1 Grafted polyphenylene ether resin (trade name Cylon 201V, manufactured by Asahi Kasei Corporation) 10 as the base resin
0 parts by weight was moistened with 0.2 parts of mineral oil, and 1.2 parts of calcium sulfate powder (Ca SO42H2O) was added and mixed thereto.

射出温度260℃、金型キャビティに及ばず、空気の圧
力は8 Kq/lriで、金型キャビティ内射出充満し
た。冷却後取出した発泡射出成形品は、平滑表面を有し
、何等のヒケも認められず、その発泡倍率は1.06倍
であり、何らの変色も認められなかった。
The injection temperature was 260°C, which did not reach the mold cavity, and the air pressure was 8 Kq/lri, and the mold cavity was filled with injection. The foamed injection molded product taken out after cooling had a smooth surface, no sink marks were observed, the expansion ratio was 1.06 times, and no discoloration was observed.

実施例2 実施例1の8割の射出樹脂量で、同一の原料組成、同一
射出温度、及び同一空気圧を用いた。又、特公昭53−
25352の方法にて、150Ky/i の窒素ガスを
内蔵して射出成形した。
Example 2 The injection resin amount was 80% that of Example 1, and the same raw material composition, the same injection temperature, and the same air pressure were used. Also, special public service 1973-
Injection molding was carried out using the method of No. 25352, with 150 Ky/i of nitrogen gas incorporated.

得られた発泡体の外観は、全〈実施例工と同様で、その
切断面は、均一な発泡細胞を示した。
The appearance of the obtained foam was similar to that of all the examples, and its cut surface showed uniform foamed cells.

実施例3 基体樹脂として、ABS樹脂(商品名、スタイラック1
91、無化成社製) 100重量部と0.2重量部の鉱
油で湿潤し、1重量部のタルク粉末に0.2重量部の水
を含有せしめたものと、0.02部のアゾジカルボンア
マイドを添加混合して原料とした。
Example 3 ABS resin (trade name, Stylac 1) was used as the base resin.
91, manufactured by Mukasei Co., Ltd.) moistened with 100 parts by weight and 0.2 parts by weight of mineral oil, containing 0.2 parts by weight of water in 1 part by weight of talc powder, and 0.02 parts of azodicarbonate. Amide was added and mixed to obtain a raw material.

射出温度220℃、金型キャビティに及ぼす空気の圧力
9 Kf/−で金型キャビティ内に射出充満した。
The mold cavity was filled with injection at an injection temperature of 220 DEG C. and an air pressure of 9 Kf/- on the mold cavity.

冷却後取り出した発泡射出成形品は、平滑表面で淡黄色
のヒケは認められなかった。
The foamed injection molded product taken out after cooling had a smooth surface and no pale yellow sink marks were observed.

比較例 原料組成の他は実施例3と同一条件にて実施した。原料
ABSは実施例3と同一とし、これに対して0.2−の
鉱油で湿潤して、0.2チのアゾシアルボンアマイドを
添加混合して射出成形用の原料とした。得られた発泡成
形体は、平滑表面ではあったが、内側、内角部に若干の
ヒケが認られ、甚しく黄変色を呈していた。
Comparative Example A comparative example was carried out under the same conditions as in Example 3 except for the raw material composition. The raw material ABS was the same as in Example 3, and it was moistened with 0.2% mineral oil and mixed with 0.2% azosialbonamide to obtain a raw material for injection molding. Although the obtained foamed molded product had a smooth surface, some sink marks were observed on the inside and inner corners, and it had a severe yellow discoloration.

以上の如く、本発明に於ては、主発泡剤である水、及び
その担体は一般に基本樹脂に対し、一部を除き不活性で
あり、着色活着等の悪影響を呈しない。又、電子応用機
器等に応用し得る発泡成形体等の製造に対しては、10
KIi/Cd以下の金型キャビティに及ぼす圧力にて平
滑表面の発泡射出成形体を製造し得る経済的効果は犬で
ある。
As described above, in the present invention, water, which is the main blowing agent, and its carrier are generally inert to the basic resin, with some exceptions, and do not exhibit any adverse effects such as color sticking. In addition, for the manufacture of foam molded products that can be applied to electronic application equipment, etc., 10
The economic efficiency of producing smooth-surfaced foam injection molded bodies with pressures in the mold cavity of less than KIi/Cd is significant.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 L 発泡性の合成樹脂を金型キャビティ内に射出充満す
る迄、該射出樹脂の発泡を抑止し得る圧力の気体を、前
記金型キャビティ内に作用せしめる工程を含む発泡射出
成形に於て、主たる発泡剤として水を使用する事を特徴
とする発泡射出成形方法 2 前記特許請求の範囲第1項の方法に於て、発泡剤と
しての水は、基体樹脂の熱可塑化時の湿度で、水を放出
する固体で射出成形機に供給される事を特徴とする発泡
射出成形方法 & 前記特許請求の範囲82項の方法に於て、加熱に依
って水を放出する固体、硫酸カルシウム、活性白土、シ
リカゲル、メルク粉より選ばれた物質である事を特徴と
する発泡射出成形方法表 前記特許請求の範囲第1項の
方法に於て、金型キャビティに及ばず圧力気体の圧力は
、ゲージ圧toKg/−J以下であり、発泡剤として用
いられる水の景は、水蒸気の標準状態換算の容積として
、基体樹脂の容積の3倍以下である事を特徴とする発泡
射出成形方法 & 前記特許請求の範囲第1項の方法に於て、目的とす
る成形品の発泡膨張容積を超えない気体量を熱分解にて
発生する化合物を添加する事を特徴とする発泡射出成形
方法
[Scope of Claims] L. Foaming injection comprising the step of applying gas at a pressure capable of suppressing foaming of the injected resin into the mold cavity until the mold cavity is injected and filled with foamable synthetic resin. Foaming injection molding method 2 characterized in that water is used as the main blowing agent in molding In the method according to claim 1, water as a blowing agent is used to thermoplasticize the base resin. A method for foam injection molding, characterized in that a solid that releases water upon heating is fed to an injection molding machine in the form of a solid that releases water upon heating. , calcium sulfate, activated clay, silica gel, and Merck powder. In the method according to claim 1, the pressurized gas does not reach the mold cavity. The pressure is less than the gauge pressure toKg/-J, and the volume of water used as the foaming agent is less than three times the volume of the base resin as the volume of water vapor converted to the standard state. Molding method & Foaming injection molding in the method according to claim 1, characterized in that a compound generated by thermal decomposition is added in an amount of gas that does not exceed the foaming expansion volume of the intended molded product. Method
JP57210616A 1982-12-02 1982-12-02 Method of foaming and injection molding Pending JPS59101340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210616A JPS59101340A (en) 1982-12-02 1982-12-02 Method of foaming and injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210616A JPS59101340A (en) 1982-12-02 1982-12-02 Method of foaming and injection molding

Publications (1)

Publication Number Publication Date
JPS59101340A true JPS59101340A (en) 1984-06-11

Family

ID=16592271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210616A Pending JPS59101340A (en) 1982-12-02 1982-12-02 Method of foaming and injection molding

Country Status (1)

Country Link
JP (1) JPS59101340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732403A (en) * 1993-07-16 1995-02-03 Niigata Eng Co Ltd Method and device for foam molding resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732403A (en) * 1993-07-16 1995-02-03 Niigata Eng Co Ltd Method and device for foam molding resin

Similar Documents

Publication Publication Date Title
JPH01254742A (en) Production of foamed polyethylene resin
US7655705B2 (en) Open-cell foam composed of high-melting point plastics
CY1120017T1 (en) COMPOSITION OF DOUBLE POLYESTRENE
KR940018192A (en) Method for manufacturing reinforced molded article and product
DK0450331T3 (en) Process for the production of foamed polystyrene films
DK0537110T3 (en) Process for preparing mold tablets of thermoplastic processable component mixtures
JPS6155125A (en) Manufacture of formed body of independent bubble foaming material based on bridged polyolefin
US4331777A (en) Foaming synthetic resin compositions stabilized with certain naphthyl amine compounds
JPS59101340A (en) Method of foaming and injection molding
US2634243A (en) Production of gas-expanded organic plastics
EP2103647A4 (en) Pre-expanded noncrosslinked polypropylene resin beads and in-mold expansion moldings
US4047860A (en) Press mold for producing microcellular shaped pieces of dimensional accuracy, particularly shoe soles
US2888414A (en) Process of preparing an open cell polyvinyl chloride sponge
JPH0321643A (en) Foamable resin composition
JPS61101537A (en) Production of coated thermoplastic resin extrusion molding
JPH03279583A (en) Manufacture of window glass with gasket
US3429768A (en) Protein insulation material
JPS5855229A (en) Manufacture of polyethylene foam
JPS5933124A (en) Resin composition for foam injection molding and method of injection molding therefor
JPS6331369B2 (en)
JPS5927928A (en) Foaming composition of modified polyphenylene oxide and its production
KR940000116B1 (en) Process for the preparation of expandable particles of sphered and crosslinked polyethylene resin
SU654640A1 (en) Composition for obtaining foam polystyrene
JPS6330140B2 (en)
JPS57144A (en) Molding method of foamed nylon