JPS5910126A - Transformer protecting repeating device - Google Patents

Transformer protecting repeating device

Info

Publication number
JPS5910126A
JPS5910126A JP12025382A JP12025382A JPS5910126A JP S5910126 A JPS5910126 A JP S5910126A JP 12025382 A JP12025382 A JP 12025382A JP 12025382 A JP12025382 A JP 12025382A JP S5910126 A JPS5910126 A JP S5910126A
Authority
JP
Japan
Prior art keywords
transformer
harmonic
voltage
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12025382A
Other languages
Japanese (ja)
Inventor
俊樹 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12025382A priority Critical patent/JPS5910126A/en
Publication of JPS5910126A publication Critical patent/JPS5910126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はインラッシュ電流対策として高調波抑制対策
を施している変圧器保護リレーに於て、内部故障時に発
生する高調波によって、インラッシュ時ではないにもか
かわらずリレーがロックされ動作出来なくなるのを防止
する高調波対策付変圧器保護継電装置に関するものであ
る。変圧器保護としては第1図に示す比率差動継電器方
式が最も代表的°なものである。図中(1)は保護対象
変圧器、(2)(,3)はそれぞれ高圧側、低圧側0C
T(電流変成器) 、(4)はしゃ断器、(5)け電源
、(6)は比率差動継電器である。第1図の比率差動継
電方式に於て、しゃ断器(4)を投入して変圧器を無負
荷励磁した場合、いわゆる励磁突入電流(インラッシュ
電流)工θXが電11@側から流入し、比率差動継電器
(6)の差動回路にインラッシュ電流工eXのCT2次
1[ff1iexが流れて、見かけ上質圧器(1)の内
部故障と同じ差動動作出力が発生し、比率差動継電器(
6)を誤動作させる場合がある。比率差動継電器(6)
は、変圧器(1)の巻線比を考慮した入出力電流の差を
動作力とし、入出力電流の和を抑制力とする差動継電器
である。抑制力については入力出電流の槓または入力出
電流のうち最大のものを採用してもよい。
[Detailed Description of the Invention] This invention provides a transformer protection relay that takes harmonic suppression measures as a countermeasure against inrush current. This invention relates to a transformer protection relay device with harmonic countermeasures that prevents the transformer from being locked and unable to operate. The most typical type of transformer protection is the ratio differential relay system shown in Figure 1. In the figure, (1) is the transformer to be protected, (2) (, 3) are the high voltage side and low voltage side 0C, respectively.
T (current transformer), (4) is a breaker, (5) is a power supply, and (6) is a ratio differential relay. In the ratio differential relay system shown in Figure 1, when the breaker (4) is turned on and the transformer is excited with no load, a so-called excitation inrush current (inrush current) θX flows in from the electric 11@ side. However, the CT secondary 1[ff1iex of the inrush current generator eX flows into the differential circuit of the ratio differential relay (6), and a differential operation output that appears to be the same as an internal failure of the pressure regulator (1) occurs, causing a ratio difference. Dynamic relay (
6) may malfunction. Ratio differential relay (6)
is a differential relay in which the operating force is the difference between the input and output currents in consideration of the winding ratio of the transformer (1), and the suppressing force is the sum of the input and output currents. As for the suppressing force, the maximum of the input and output currents or the maximum of the input and output currents may be adopted.

このインラッシュ対策として従来からいろいろな対策が
とられているが、世界的に見ても最も一般的な方式は、
インラッシュ電流中に含まれる高調波、特に第2高調波
f2に着目して、差動電流中に含まれる第2高調波f2
が基本波flに対しである一定割合以上の時(一般にf
 z/f lン0.15 )インラッシュ電流と判断し
て比率差動継電器(6)にロックをかけてvAvJJ作
しない様にする方式である。
Various measures have been taken to counter this inrush, but the most common method worldwide is:
Focusing on the harmonics contained in the inrush current, especially the second harmonic f2, the second harmonic f2 contained in the differential current
is more than a certain ratio to the fundamental wave fl (generally f
z/f ln 0.15) This method determines that it is an inrush current and locks the ratio differential relay (6) to prevent vAvJJ from occurring.

第2図に上記方式を示す。図中(6)は比率差動継電器
、(7)l−を高調波検出回路、(8)はインヒピット
回路で、高調波検出回路(7)が#l’l:した時比率
差動継電器(6)をロックする事を示している。
FIG. 2 shows the above method. In the figure, (6) is a ratio differential relay, (7) l- is a harmonic detection circuit, and (8) is an inhibit circuit. 6) is shown to be locked.

上記の様に第2高調波によるインラッシュ対策で効果を
上げて来たが、最近次の点に於てこの第2高調波ロツク
方式の比率差動継電器が使えないケースが出て来た。す
なわち最近変圧器本体が経済設計される様になり、鉄心
の飽和磁束が定格時の磁束に対して余裕が少なくなって
インラッシュ時飽和しやすくなり、その結果としてイン
ラッシュ電流中に含まれる基本波に対する第2高調波の
割合(f2/fl)が低下して来ている。従来はインラ
ッシュ電流中のf2/f+は15%を割る事はなかった
が、最近は上記理由によってf2/ftが15%以下に
なるケースが発生し、その結果として変圧器投入時イン
ラッシュで誤動作するケースが出ている。
As mentioned above, countermeasures against inrush due to the second harmonic have been effective, but recently there have been cases where the ratio differential relay of the second harmonic locking method cannot be used due to the following points. In other words, recently, the transformer body has been designed economically, and the saturation magnetic flux of the iron core has less margin compared to the rated magnetic flux, making it easier to saturate during inrush, and as a result, the basic value contained in the inrush current The ratio of the second harmonic to the wave (f2/fl) is decreasing. In the past, f2/f+ during inrush current did not fall below 15%, but recently, due to the above reasons, cases have occurred where f2/ft becomes less than 15%, and as a result, inrush current when the transformer is turned on has become less than 15%. There have been cases of malfunction.

単にこれだけの事ならインラッシュ検出用のf2/fl
の割合を現在の15%からもう少し小さく(例えば10
%)すれは良い事になるが、やっかいな事に最近電力系
統けますます大形化、複雑化して来ており特に、市街地
高圧ケーブル送電網の拡大及び′8を源の集中、遠隔化
による遠距離送電線の出現によって対地静電容量が増加
し、この対地静電容量と送電線のインダクタンスの共振
によって事故時に広範にわたる周波数の高調波電流が比
較的長期間(数サイクル)発生する事が明らかになって
来た。この事故時に発生する高調波中には系統条件によ
ってあらゆる同波数成分が含まれるが、対地静電容量の
大きな系統(ケーブル系統、スタコン挿入系統等)に於
てけ既に第2高購波が基本波に対して30%程度も含ま
れる系統が発生して来ている。この事は変圧器内部事故
時この様に大きな第2高調波分が故障電流中に含有され
れば、第2高調波対策付の比率差動継電器はインラッシ
ュ電流対策でロックがかかつて内部故障であるのに動作
出来ない事になる。もち論この故障時に発生する高調波
は抵抗分による減衰で故サイクル後には減衰する事にな
るが、その間変圧器保護リレーがロックされる事になる
と変圧器のタンクの破壊など大きな災害になる危険性が
大きい。
If this is just the case, use f2/fl for inrush detection.
The percentage of
%) This is a good thing, but the problem is that power systems have recently become larger and more complex, especially due to the expansion of high-voltage cable transmission networks in urban areas and the centralization and remoteization of power sources in 2008. With the advent of long-distance power transmission lines, ground capacitance has increased, and due to the resonance between this ground capacitance and the inductance of the transmission line, harmonic currents with a wide range of frequencies can be generated for a relatively long period of time (several cycles) in the event of an accident. It has become clear. The harmonics generated at the time of this accident include all the same wave number components depending on the system conditions, but in systems with large ground capacitance (cable systems, systems with starboard inserts, etc.), the second harmonic wave is already the fundamental wave. Strains that contain about 30% of the This means that in the event of an internal fault in a transformer, if such a large second harmonic component is included in the fault current, the ratio differential relay with second harmonic countermeasures will lock due to the inrush current countermeasure and cause an internal failure. However, it will not work. In theory, the harmonics generated during this failure will be attenuated by the resistance component and will attenuate after the failure cycle, but if the transformer protection relay becomes locked during that time, there is a risk of major disasters such as destruction of the transformer tank. The sex is great.

従来の変圧器保護継電装置は、以上のような第2高調波
抑制付比率差動継電器で構成されているので、変圧器内
部事故時第2高調波が減衰するまで動作出来なくなり、
変圧器の爆発など大事故に至る欠点を持っていた。
Conventional transformer protection relay devices are composed of the ratio differential relay with second harmonic suppression as described above, so in the event of an internal fault in the transformer, it will not be able to operate until the second harmonic is attenuated.
It had drawbacks that could lead to major accidents, such as transformer explosions.

この発明は上記のような従来のものの欠点を除去するこ
とを目的になされたもので、インラッシュ対策が必要な
時、即ち変圧器に電圧が印加さhた後又は印加されてい
る電圧が増加した後一定時間だけ従来の高調波抑制回路
を生かし、それ以外の時には高調波抑制回路によるロッ
ク機能が働く前に差動継電器の出力を有効とすることに
より、インラッシュ電流では誤動作せず、内部事故時の
第2高調波には影響を受けないで動作出来る変圧器保護
継電装置を提供するものである。
This invention was made for the purpose of eliminating the above-mentioned drawbacks of the conventional ones, and is used when inrush countermeasures are required, that is, after voltage has been applied to a transformer or when the applied voltage increases. By making use of the conventional harmonic suppression circuit for a certain period of time after the current is applied, and by enabling the output of the differential relay before the locking function of the harmonic suppression circuit is activated at other times, the inrush current will not malfunction and the internal The present invention provides a transformer protection relay device that can operate without being affected by second harmonics during an accident.

以下、この発明の一実施例を図について説明する。第3
図において、(9)は変圧器(1)の印加電圧を検出す
る分圧コンデンサ、(10)は変圧器(1)に印加され
る電圧が所定値以下であることを検出する不足電圧検出
器、(11)は不足電圧検出器(10)の出力を受けて
一定時間tずらして出力するディレィタイマ回路、(1
2)はAND回路である。図中、■は系統電圧、V6 
、 v7 、V8 、V+o 、l/11 、 V12
、は各グロック回路の出力である。変圧器(1)にイン
ラッシュが発生するのは、変圧器起動時にしゃ断器投入
によって電圧が印加される場合及び、変圧器起動時外部
低 故障発生で電圧が謡下し、外部故障除去で回復電圧が印
加される場合だけであり、その他の時には発生しない。
An embodiment of the present invention will be described below with reference to the drawings. Third
In the figure, (9) is a voltage dividing capacitor that detects the voltage applied to transformer (1), and (10) is an undervoltage detector that detects that the voltage applied to transformer (1) is below a predetermined value. , (11) is a delay timer circuit that receives the output of the undervoltage detector (10) and outputs the output after shifting it by a certain time t.
2) is an AND circuit. In the figure, ■ is the grid voltage, V6
, v7, V8, V+o, l/11, V12
, are the outputs of each Glock circuit. Inrush occurs in the transformer (1) when voltage is applied by closing the breaker when the transformer starts, or when the voltage drops due to an external low fault when the transformer starts and is recovered by removing the external fault. This occurs only when voltage is applied, and does not occur at other times.

従って変圧!(1)Kインラッシュ電流が発生するよう
な状態かどうかを不足電圧検出器(10)で識別し、デ
ィレィタイマ回路(11)で不足電圧検出i (10)
の出力を一定時間tずらして出力することにより、電圧
が印加された時又は増大したときのインラッシュ電流で
比率差動継電器(6)が誤−ノ作するのを防止し、電圧
が印加されている状態の内部事故時に第2高調波発生で
比率差動継電器(6)が誤不動作となるのを防止するも
のである。
Therefore transformation! (1) The undervoltage detector (10) identifies whether the condition is such that K inrush current is generated, and the delay timer circuit (11) detects the undervoltage i (10).
By shifting the output of This prevents the ratio differential relay (6) from malfunctioning due to the generation of second harmonics in the event of an internal fault.

仄に実施例の動作について、第4図に変圧器に題千會印
加した場合のインラツシニ発生時を、第5図に変圧器に
電圧が印加されている状態で第2高調波を含む内部事故
時を、第6図に第4図と第5図の例を合わせた変圧器に
電圧を印加すると同時に内部事故発生時をそれぞれタイ
ムチャートで示す。
For a brief explanation of the operation of the embodiment, Fig. 4 shows the occurrence of an internal fault when voltage is applied to the transformer, and Fig. 5 shows the internal fault including the second harmonic when voltage is applied to the transformer. The times are shown in FIG. 6 as a time chart when a voltage is applied to the transformer combined with the examples shown in FIGS. 4 and 5, and at the same time when an internal accident occurs.

第4図について説明する。FIG. 4 will be explained.

当初、変圧器(1)には所定電圧が印加されていないの
で不足電圧検出器(10)はv+oを出力し、ディレィ
タイマ(11)もVIGを受けてVllを出力している
。変圧1!(1)K電圧が印加されると、不足電圧検出
器(10)は出力を停止するが、Iイレイタイマ(11
)けV’toが無くなって一定時間tだけVllを出力
している。
Initially, the predetermined voltage is not applied to the transformer (1), so the undervoltage detector (10) outputs v+o, and the delay timer (11) also receives VIG and outputs Vll. Transformation 1! (1) When the K voltage is applied, the undervoltage detector (10) stops outputting, but the I erase timer (11)
) and V'to disappears, and Vll is output for a certain period of time t.

電圧印加に伴なうインラッシュ電流に含まれる第2高調
波成分が基本波成分に対して所定割合以上であるとき高
ill波検出回路(7)けv7を出力する。
When the second harmonic component included in the inrush current accompanying the voltage application is at a predetermined ratio or more with respect to the fundamental wave component, the high illumination wave detection circuit (7) outputs the signal V7.

AND回u’ (12) Id Vt 】とV717)
重’l ’) alfil iCV12 全出力し、こ
の出力V12けインヒピント回路(8)に人力され、比
率差動継電器(6)の出力v6を阻止する。
AND times u' (12) Id Vt ] and V717)
The output V12 is inputted to the inhibit circuit (8) to block the output v6 of the ratio differential relay (6).

ここで、高調波検出回路(7)がインラッシュ検出レベ
ル以下になるまでの時間をtl、比率差動継電器(6)
がインラッシュ検出レベル以下になるまでの時間をt2
とすると、ディレィタイマ回路(11)の一定時間tF
′it+とt2の短い方よりも長く設定する必要がある
Here, the time required for the harmonic detection circuit (7) to fall below the inrush detection level is tl, and the ratio differential relay (6)
t2 is the time it takes for
Then, the fixed time tF of the delay timer circuit (11)
It is necessary to set it longer than the shorter of 'it+ and t2.

第5図について説明する。FIG. 5 will be explained.

内部故障時に変圧器電圧は低下するので不足電圧検出器
(10)けVloを出力し、ディレィタイマ(11)け
VIOを受けて一定時間を後にVllを出力する。故障
電流に含まれる第2高調波成分が基本波成分に対して一
定割合以上である期間に高調波検出回路(7)はv7を
出力するが、V7とVllを人力とするAND回路(1
2) Fi一定時間tの期間出力せず、これによって高
調波検出回路(7)の出力v7け無効にされる。そして
、そのt間に比率差動継電器(8)の甘た、内部事故で
もあまり電圧が低下しないという系統条件をもつ変圧器
も、第5図の場合にディレィタイマ(11)のtが、t
)t3となるだけと考えることにより、不足電圧検出器
(10)の誤不動作で、リレーが誤不動作となる恐れは
ない。
Since the transformer voltage drops when an internal failure occurs, an undervoltage detector (10) outputs Vlo, and a delay timer (11) receives VIO and outputs Vll after a certain period of time. The harmonic detection circuit (7) outputs v7 during a period in which the second harmonic component included in the fault current is at a certain ratio or more with respect to the fundamental wave component, but the AND circuit (1
2) Fi is not output for a certain period of time t, thereby invalidating the output v7 of the harmonic detection circuit (7). In the case of Fig. 5, the delay timer (11) has a delay time of t.
) t3, there is no risk that the relay will malfunction due to malfunction of the undervoltage detector (10).

さらに、不足電圧検出器(10)の電圧条件の導入方法
としては、分圧コンデンサ(9)によるものに限らず、
変圧器(1)1次、2次側に設置されるFT(、FD)
から導入する方法等も考えられる。
Furthermore, the method of introducing the voltage condition of the undervoltage detector (10) is not limited to the method using the voltage dividing capacitor (9).
Transformer (1) FT (, FD) installed on the primary and secondary sides
Another possible method is to introduce it from

以上のようにこの発明によれば、インラッシュ対策回路
をインラッシュの発生する電圧印加時のみ生かし、変圧
器内部事故時には動作に関与しない様に構成したので、
系統事故時にいかなる高調波(第2高訓波も含む)が発
生しても、正常に動作出来る変圧器保護継電装置を得る
ことが出来る。
As described above, according to the present invention, the inrush countermeasure circuit is utilized only when voltage is applied where inrush occurs, and is configured so as not to be involved in the operation in the event of an internal fault in the transformer.
It is possible to obtain a transformer protection relay device that can operate normally even if any harmonics (including second harmonics) occur during a system fault.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変圧器を保護する従来の比率差動継電器の適用
例を示す系統図、第2図は第1図に示す系統図のインラ
ッシュ対策回路を示すグロック図、第3図は本発明に係
る変圧器保護継電装置の一実施例を示すグロック図、第
4図はインラッシュ時の本発明継電装置のタイムチャー
ト、第5図は変圧器内部事故時の本発明継電装置のタイ
トチャート、第6図はインラッシュ時と同時の変圧器内
部事故時の本発明継電装置のタイムチャート、第7図は
本発明に係る変圧器保護継電装置の他の実施例を示すグ
ロック図である。 図において、(1)は変圧器、(6)は比率差動継電器
の如き差動継電器、(7)は高調波検出回路、(8)は
インヒピット回路、(10)は不足電圧検出器、(11
)はティレイタイマ回路、(12)はAND回路である
。 なお、図中同一符号は同−又は相当部分を示す。 代 理 人  葛  野    信  −第1図 第2図 第3図 第4図 EpθU : vB      ’−一一一−−−一−−−第5図 帖 、     “゛ 第6図 6p5o同時の$扶 V□ 第7図
Fig. 1 is a system diagram showing an application example of a conventional ratio differential relay to protect a transformer, Fig. 2 is a block diagram showing an inrush countermeasure circuit of the system diagram shown in Fig. 1, and Fig. 3 is a system diagram showing the inrush countermeasure circuit of the system diagram shown in Fig. 1. FIG. 4 is a time chart of the relay device of the present invention during an inrush, and FIG. Figure 6 is a time chart of the relay device of the present invention at the time of an internal accident of the transformer at the same time as an inrush, and Figure 7 is a time chart showing another embodiment of the transformer protective relay device of the present invention. It is a diagram. In the figure, (1) is a transformer, (6) is a differential relay such as a ratio differential relay, (7) is a harmonic detection circuit, (8) is an inhibit circuit, (10) is an undervoltage detector, ( 11
) is a tiller timer circuit, and (12) is an AND circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3 Figure 4 EpθU: vB'-111---1---Figure 5, “゛Figure 6 6p5o Simultaneous $F V □ Figure 7

Claims (1)

【特許請求の範囲】[Claims] 変圧器に印加される電圧が所定値以下であることを検出
する不足電圧検出器と、この不足電圧検出器の出力を受
けて一定時間ずらして出力するディレィタイマ回路と、
上記変圧器電流の高調波成分の基本波成分に対する・比
が所定値以上であることを検出する高調波検出回路と、
上記変圧器の入力電流と出力電流りの差に応動する差動
継電器とをlliえ、上記ディレィタイマ回路と上記高
調波検
an undervoltage detector that detects that the voltage applied to the transformer is less than a predetermined value; a delay timer circuit that receives the output of the undervoltage detector and outputs the output after a certain period of time;
a harmonic detection circuit that detects that the ratio of the harmonic components of the transformer current to the fundamental wave components is greater than or equal to a predetermined value;
A differential relay that responds to the difference between the input current and output current of the transformer is installed, and the delay timer circuit and the harmonic detection circuit are connected to each other.
JP12025382A 1982-07-08 1982-07-08 Transformer protecting repeating device Pending JPS5910126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12025382A JPS5910126A (en) 1982-07-08 1982-07-08 Transformer protecting repeating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12025382A JPS5910126A (en) 1982-07-08 1982-07-08 Transformer protecting repeating device

Publications (1)

Publication Number Publication Date
JPS5910126A true JPS5910126A (en) 1984-01-19

Family

ID=14781615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12025382A Pending JPS5910126A (en) 1982-07-08 1982-07-08 Transformer protecting repeating device

Country Status (1)

Country Link
JP (1) JPS5910126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234830A (en) * 1987-03-24 1988-09-30 三菱電機株式会社 Transformer protecting differential relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234830A (en) * 1987-03-24 1988-09-30 三菱電機株式会社 Transformer protecting differential relay

Similar Documents

Publication Publication Date Title
JPS5956825A (en) Ac current limiting device
EP0155408A1 (en) Differential-type protective relay
JPS5910126A (en) Transformer protecting repeating device
EP0169313B1 (en) Transformer protective relay
JP7159990B2 (en) Single-line ground fault overvoltage suppressor for ungrounded systems
JPS5967823A (en) Transformer protecting relay unit
JPS6046725A (en) Differential protecting relaying device of transformer
SU691988A1 (en) Arrangement for differential protection of a transformer
JPH023372B2 (en)
JP2503972B2 (en) Busbar protection relay
CN116169638A (en) Auxiliary judging method for harmonic braking of differential protection of transformer
JPS5934048B2 (en) Transformer protection relay device
JPS5925528A (en) Transformer protecting relay unit
JPS6074924A (en) Ratio differential relay for protecting transformer
JPS60180432A (en) Transformer protection relaying device
JPH06245367A (en) Protective relay for transformer
JPS6327928B2 (en)
JPS59162714A (en) Transforming device for instrument
JPS5967821A (en) Distance relay
JPS596724A (en) Transformer protecting relaying device
JPS6016121A (en) Ratio differential relay
JPH03245724A (en) Protective relay
JPS61112529A (en) Protective system of capacitor for modifying phase
JPH0121687B2 (en)
JPS61191233A (en) Protector for transformer