JPS59101260A - Construction of tundish nozzle part for horizontal continuous casting - Google Patents

Construction of tundish nozzle part for horizontal continuous casting

Info

Publication number
JPS59101260A
JPS59101260A JP21179782A JP21179782A JPS59101260A JP S59101260 A JPS59101260 A JP S59101260A JP 21179782 A JP21179782 A JP 21179782A JP 21179782 A JP21179782 A JP 21179782A JP S59101260 A JPS59101260 A JP S59101260A
Authority
JP
Japan
Prior art keywords
nozzle
refractory
casting
tundish nozzle
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21179782A
Other languages
Japanese (ja)
Inventor
Kanichi Narita
成田 貫一
Takashi Mori
森 隆資
Toshio Onoe
尾上 俊雄
Jun Miyazaki
純 宮崎
Manabu Miyamoto
学 宮本
Akira Ote
彰 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21179782A priority Critical patent/JPS59101260A/en
Publication of JPS59101260A publication Critical patent/JPS59101260A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • B22D11/047Means for joining tundish to mould
    • B22D11/0475Means for joining tundish to mould characterised by use of a break ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the damage and breakage of a nozzle owing to a solidified shell by impregnating a high melting pulverous material in the part of a tundish nozzle connecting, via annular refractories for connection, to a casting mold, where the solidified shell is liable to be formed. CONSTITUTION:A tundish nozzle 7 consisting of porous oxide refractories is connected, via annular refractories 2 for connection, to a casting mold 3, thereby constituting a tundish nozzle part. An area 5 impregnated with a high melting pulverous material (MgO, alumina, SiO2, etc.) is formed in the part of such nozzle 1 where a solidified shell is liable to be produced by receiving the cooling effect of the mold 3 in the initial period of casting or when drawing is stopped for a long time. The impregnated layer is further preferably subjected to a heat treatment. The nozzle 1 is thus prevented from the mechanical damage or breakage that may arise owing to the formation of the permeable solidified shell.

Description

【発明の詳細な説明】 本発明は、タンディツシュノズルと鋳型の聞に環状の接
続用耐火物が介設されてなる横型連続鋳造法ノズル部の
構造に関し、詳細には鋳造初期あるいは操業異常等によ
シ長時聞引抜が停止された後の操業においても、ノズル
部を損傷あるいは損壊させることなく表面性状の良好な
鋳片を鋳造し得る様な横型連続鋳造用タンディツシュノ
ズル部構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a horizontal continuous casting nozzle part in which an annular connecting refractory is interposed between a tundish nozzle and a mold. Regarding the structure of a tundish nozzle part for horizontal continuous casting, which allows casting slabs with good surface properties without damaging or destroying the nozzle part even during operation after drawing has been stopped for a long time. It is.

横型連続鋳造法は鋳型への溶鋼注入に続く凝固から鋳片
の引抜き・切iirに至る全工稈をほぼ水平な直線上で
行なう方法であり、現在主流となっている垂直型又は湾
曲型の連続鋳造法に比べて■機高が低いので操業・保全
が容易であシ、又機械重量も小さく建設費が安価である
■タンディツシュと鋳型がタンディツシュノズル及び接
続用耐火物を介して接続されているために鋳型内溶鋼静
圧が大きく鋳片形状の精度が高い、又溶鋼の大剣による
2次酸化が防止されるのでvj片の清浄性が良い等の長
所を持つ為最近特に注目され、工朶化への取組みが積極
的に行なわれている。
The horizontal continuous casting method is a method in which the entire process, from pouring molten steel into the mold and solidifying it to drawing and cutting the slab, is performed in a nearly horizontal straight line, and it is different from the currently mainstream vertical or curved casting method. Compared to the continuous casting method ■The machine height is low, so operation and maintenance are easy, and the weight of the machine is small and the construction cost is low. ■The tundish and mold are connected via the tundish nozzle and connecting refractories. It has recently attracted particular attention because of its advantages such as the high static pressure of the molten steel in the mold and the high accuracy of the slab shape, and the prevention of secondary oxidation due to the large sword of molten steel, which improves the cleanliness of the VJ slab. , efforts are being actively made to industrialize it.

しかし上記の様な長所を有する反面、幾つかの特有の短
所を有しておシ、こうした短所の1つとして例えは上記
ノズル部構造に要求される条件が非常に撤しいことを挙
げることができる。
However, although it has the above-mentioned advantages, it also has some peculiar disadvantages. One of these disadvantages is that the conditions required for the nozzle structure are extremely difficult. can.

即ちタンデイツVユノズルには、11)溶鋼注入時に加
わる大きな温良変化に対する耐熱衝撃性、(2)各拙溶
鋼の長時間鋳造に朗える耐溶損性等の特性が要求される
。又#1型からの冷却作用が比較的小さいので凝固シェ
ルが発生し雌いと共に、比較的大きな構成部分である為
に安価な材料であることが望ましく、これらの考慮して
多孔質の酸化物系+rut大物が用いられている。
That is, Tandates V unit nozzle is required to have properties such as 11) thermal shock resistance against large temperature changes that occur during injection of molten steel, and (2) resistance to melting damage that is suitable for long-term casting of various types of molten steel. In addition, since the cooling effect from type #1 is relatively small, a solidified shell is generated, and since it is a relatively large component, it is desirable to use an inexpensive material. Type + rut big game is used.

一方接続用耐火物には、11+鋳型と正確に接合される
為の高い寸法精度を可能にする良好な加工性、(2)溶
鋼注入時に加わる大きな温度変化に対する耐熱衝撃性、
(3)各梓溶鋼の長時間の鋳造に耐える耐溶損性、耐摩
耗性、(4)この耐火物表面で凝固シェルが生成するが
、da固フシエルの摩擦抵抗を小さくする為の緻密で平
滑な表面性状並びに溶鋼の孔への侵入を防止する為の低
い濡れ性及び低気孔率等が要求され、これらを満足する
材質としてBN糸物質あるいはSi3N4系物質等の高
価なセラミックスが使用されている。
On the other hand, the connecting refractory has good workability that enables high dimensional accuracy for accurate joining with the 11+ mold, (2) thermal shock resistance against large temperature changes during injection of molten steel,
(3) Erosion resistance and abrasion resistance that can withstand long-time casting of each Azusa molten steel; (4) A solidified shell is generated on the surface of this refractory, but it is dense and smooth to reduce the frictional resistance of the DA hard shell. surface properties, low wettability and low porosity to prevent molten steel from entering the pores, etc., and expensive ceramics such as BN thread materials or Si3N4-based materials are used as materials that satisfy these requirements. .

第1図はこの様な材質から形成される横型連続鋳造用タ
ンディツシュノズル部構造を示す断面説明図で、lはタ
ンディツシュノズル、2は接続用耐火物、8は鋳型を示
し、溶鋼は矢印入方向に送られ接続用耐火物2あるいは
鋳型8の位置に到って凝固シェルを形成し鋳片として引
出される。ところで上記ノズル部構造において、鋳造初
期あるいは何らかの操業異常によシ引抜停止時曲が長く
なった場合には、多孔質材料からなるタンディツシュノ
ズルlの終端部(図面の右tltll )内面の慨孔中
に浸透した溶鋼が冷却されて凝固し、凝固Vエル(以下
浸透性凝固シェルという)を形成することがある。そし
てタンディツシュノズル終端部の浸透性凝固シェルと湯
道に形成される凝固シェルが一体化すると、鋳造再開に
伴い浸透性凝固シェルにも鋳造方向への引張力がかかυ
、タンデイツVユノズルの表面層が剥離等の損傷を受け
る。
Fig. 1 is an explanatory cross-sectional view showing the structure of a tundish nozzle for horizontal continuous casting made of such materials, where l is the tundish nozzle, 2 is the connecting refractory, 8 is the mold, and molten steel is indicated by the arrow. It is sent in the input direction, reaches the position of the connecting refractory 2 or the mold 8, forms a solidified shell, and is drawn out as a slab. By the way, in the above-mentioned nozzle part structure, if the drawing stop time becomes long during the initial stage of casting or due to some abnormality in operation, the inner surface of the terminal end of the tundish nozzle l made of porous material (tltll on the right side of the drawing) The molten steel that has permeated therein may be cooled and solidified to form a solidified V-ell (hereinafter referred to as a permeable solidified shell). When the permeable solidified shell at the end of the tundish nozzle and the solidified shell formed in the runner are integrated, tensile force is applied to the permeable solidified shell in the casting direction as casting is restarted.
, the surface layer of Tandates V unit nozzle suffers damage such as peeling.

しかして上記ノズル部構造の損傷を防止するには、(l
)浸透性凝固シェルの発生し易い部位における溶鋼の浸
透を防止すべく耐火物を微密化させればよいと考えられ
、具体的には例えば気孔率の小さな材料(例えばBN系
セラミックス等)でタンディツシュノズルを形成するこ
とが考えられるが、これはタンディツシュノズルに要求
される緒特性〔殊に耐熱衝撃性(熱的スポーリング)及
び価櫛を満足せず、良好な解決手段となシ得ない。そこ
で次に、タンディツシュノズルの表面にのみ緻密質耐火
材を被覆する手段が考えられたが(実公昭56−484
41参照)、単なる被椋法では被覆層と母材の結合度が
不十分であ)、被覆材層が母材から容易に剥離するとい
う問題が残る。
However, in order to prevent damage to the nozzle structure, (l
) It is thought that it would be better to make the refractory finer in order to prevent the penetration of molten steel into areas where permeable solidified shells are likely to occur. Specifically, for example, a material with a small porosity (such as BN ceramics) should be used. It is possible to form a tundish nozzle, but this method does not satisfy the mechanical properties required for a tundish nozzle, especially thermal shock resistance (thermal spalling) and resistance, and is not a good solution. I don't get it. Therefore, the next method was to coat only the surface of the tanditshu nozzle with a dense refractory material (1984-484).
41), the mere coating method results in insufficient bonding between the coating layer and the base material), and the problem remains that the coating layer easily peels off from the base material.

一方鋳造M植(殊にステンレス鋼)によっては接続用耐
火物が溶鋼と反応して溶損することがあシ、接続用耐火
物においては浸透性凝固シェルの発生防止と共に耐溶損
性を備えることが重要な項目となっている。そして一般
に用いられるBN系セリミックス等においては両者をほ
ぼ満足するが、これらの材料は高価であシ且り、耐溶損
性の問題も皆無とは冒えず、またBN系以外の#密質セ
ラミックス、例えばSi3N4糸の緻密質セラミックス
では強度が高いため加工性が悪(コストも安価とはいえ
ない。そこで反応焼結法によって、製令した多孔質Si
3N4糸セラミツクスが用いられているが浸透性凝固シ
ェルの発生によって機械的損傷を受ける。従って可及的
安価で且つff1It溶損性および耐溶鋼浸透性の浸れ
た材質の開発が望1れるが現在のところ完成に至ってい
ない。
On the other hand, depending on the cast M type (particularly stainless steel), the connecting refractory may react with molten steel and be damaged by erosion, and the connecting refractory may not only prevent the formation of a permeable solidified shell but also be resistant to erosion. This is an important item. Generally used BN-based ceramics, etc., almost satisfy both requirements, but these materials are expensive, have problems with erosion resistance, and are not compatible with dense materials other than BN-based materials. Ceramics, such as dense ceramics made of Si3N4 threads, have high strength and are difficult to work with (and are not cheap. Therefore, porous Si prepared using the reaction sintering method is
3N4 thread ceramics are used but are subject to mechanical damage due to the development of a permeable solidified shell. Therefore, it would be desirable to develop a material that is as inexpensive as possible and is resistant to ff1It erosion and penetration into molten steel, but this has not yet been completed.

本発明はこうした事情に着目してなされたものであって
、鋳造初期あるいは操業異常等によシ長時曲引抜が停止
された後の操業においてもノズル部を損壊させることな
く連続鋳造を行ない得る様な徳型連続碍造用ノズルもご
構造を提供することを目的とするものである。
The present invention has been made in view of these circumstances, and enables continuous casting without damaging the nozzle portion even during the initial stage of casting or after the bend drawing has been stopped for a long time due to an operational abnormality. The purpose of this is to provide a similar structure to the continuous insulating nozzle.

しかして上記目的を達成した不発Mh’)ノズル部4i
1を造とは、タンディツシュノズルと郵を型の間に環状
の接続用耐火物が介設されてなる横型連続鋳造用タンデ
ィツシュノズル部構造であって、凝固Vエルの発生し易
い部位に存在する非M1.密簀耐人物に高融点微粒物質
を含浸させてなる点に要旨を有するものであシ、必要に
応じその後更に熱処理を加えたものは、上記目的を一層
効果的に達成することができる。
However, the unexploded Mh') nozzle part 4i achieved the above purpose.
1 is a tundish nozzle structure for horizontal continuous casting in which an annular connecting refractory is interposed between the tundish nozzle and the mold, and it is used in areas where solidification V-wells are likely to occur. Existing non-M1. The purpose is to impregnate a high-melting-point particulate material into a sealed body, and the above object can be achieved more effectively if the material is further heat-treated if necessary.

即ち上記fmrMにいう凝固シェルの発生し易い部位に
存在する非緻蕾質耐火物とは、鋳型の冷却作用を受は易
い部分における前記耐火物を意味し、例えば第1図に示
したタンディッシュノズ′ルのう−ち接続用耐火物2に
近接する部分はその一例であって、鋳型8による冷却作
用を受ける接続用耐火物2であっても緻密質耐火物で形
成されているときは上記条件に合致しない。要は慨孔率
がある程度高い(通常5チ以上)耐火物からなると共に
、引抜が長時間停止した時等に鋳型からの冷却作用をう
けて浸透性凝固シェルが形成される危険のある部位に存
在する非緻密゛質耐火物を意味する。従って勿論タンデ
ィツシュノズル以外であっても本発明の条件に該当する
場合をある(実施例2.8参照)。
In other words, the non-dense refractory existing in the area where solidified shells are likely to occur as referred to in fmrM above refers to the refractory in the area that is easily affected by the cooling action of the mold, such as the tundish shown in Figure 1. The part of the nozzle that is close to the connecting refractory 2 is one example, and even if the connecting refractory 2 is subjected to the cooling effect by the mold 8, if it is made of a dense refractory. The above conditions are not met. In short, it is made of refractory material with a certain degree of porosity (usually 5 mm or more), and is used in areas where there is a risk of a permeable solidified shell forming due to the cooling effect from the mold, such as when drawing is stopped for a long time. Refers to non-dense refractories present. Therefore, of course, there are cases in which the conditions of the present invention are met even when there are cases other than tundish nozzles (see Example 2.8).

又上述の高融点微粒物質としては、MgO,アルミナ、
5102、Z r 02、BN、 C,ジルコン、81
3N4、スピネル([0−Al2O2等)、ムライト等
の微粒物を挙げることができる。セして含浸層を形成す
るに際しては、■上記高融点微粒物質を水あるいは有機
溶剤に懸濁させ、圧入あるいは真空処理によって凝固シ
ェルの発生し烏い部位に存在する非緻密質耐火物表面に
浸透させた後、■水あるいは有機溶剤を蒸発させればよ
い。しかるにこの段階では高融点微粒物質は耐火物中の
小孔に浸入しているだけであル、i−融点微粒物質と耐
火物の間には結合は生じない。しかしながら高融点微粒
物質を含浸させた状態のノズルを用いて鋳造を行なうと
含浸層の温度が上昇し含浸物質と耐火物の間で結合反応
が起こって安定化し、耐火物の小孔が閉鎖されて溶鋼の
浸入を防止し得る様な緻密な含浸層が形成される。肯含
浸物質と耐火物の反応は瞬時に進行するものではないの
で鋳造初期においては、鋳造中断等の事故を招かない様
に注慧する必要がある。
In addition, the above-mentioned high melting point fine particles include MgO, alumina,
5102, Z r 02, BN, C, zircon, 81
Examples include fine particles such as 3N4, spinel ([0-Al2O2, etc.), and mullite. When forming an impregnated layer by suspending the above-mentioned high melting point fine particulate material in water or an organic solvent, a solidified shell is generated by press injection or vacuum treatment, and it is applied to the surface of the non-dense refractory existing in the rough areas. After infiltration, the water or organic solvent may be evaporated. However, at this stage, the high melting point fine particulate material has only penetrated into the small pores in the refractory, and no bond is formed between the i-melting point fine particulate material and the refractory. However, when casting is carried out using a nozzle impregnated with high melting point fine particulate material, the temperature of the impregnated layer rises and a bonding reaction occurs between the impregnated material and the refractory, resulting in stabilization and closing the small pores of the refractory. A dense impregnated layer is formed that can prevent the penetration of molten steel. Since the reaction between the impregnated material and the refractory does not proceed instantaneously, care must be taken in the early stages of casting to avoid accidents such as interruptions in casting.

従って鋳造による使用中の熱処理を当てにせず高融点微
粒物質を耐火物中に浸透させた後、積極的に熱処理を施
すことによシ、耐火物との結合性を最初から高めた含浸
層を形成することも推奨される。熱処理条件については
、特に制限されないが、例えば含浸物質がアルミナ、母
材が813 N aである場合には、1600℃以上の
雰囲完に数時間保持するだけで十分でめシ、これによシ
良好な結合状殿が得られると共に、耐溶損性は最初から
極めて高いものとなる。この熱処墳温度は、前記の通シ
含浸物質と耐火物の反応が十分に進行するのに必要な湿
度を考慮して定めるべきであシ、含浸物質と耐火物の組
み合わせによって異なるものであることは言う迄もない
。そして上記構成部ち耐火物中へ高融点は粒物質を浸透
させた後、熱処理を施すという構成をとれば、耐火物と
の結合性が高い強固な含浸層を最初から形成し得るので
Therefore, without relying on heat treatment during use during casting, it is possible to infiltrate high-melting point fine particles into refractories and then perform active heat treatment to create an impregnated layer that improves bonding with the refractories from the beginning. Forming is also recommended. There are no particular restrictions on the heat treatment conditions, but for example, if the impregnating material is alumina and the base material is 813 Na, it is sufficient to maintain the temperature in an atmosphere of 1600°C or higher for several hours; Not only can a well-bonded structure be obtained, but also the erosion resistance is extremely high from the beginning. This heat treatment mound temperature should be determined in consideration of the humidity necessary for the reaction between the impregnated material and the refractory to proceed sufficiently, and will vary depending on the combination of the impregnated material and the refractory. Needless to say. If a high melting point granular material is infiltrated into the refractory of the above-mentioned component and then heat treated, a strong impregnated layer with high bonding properties with the refractory can be formed from the beginning.

鋳造開始時において一時中断等のトラプルが発生しても
浸透性凝固シェルの発生を回避することができる。
Even if a trouble such as a temporary interruption occurs at the start of casting, the generation of a permeable solidified shell can be avoided.

以上の様に形成される高融点微粒物質の含浸層特にマト
リックスと結合した層は耐火物素地と強固な結合性を有
すると共に、元来任在していた気孔が殆んど封鎖される
ので溶鋼が浸透することもなく、又SUS等の反応性の
高い溶鋼に対しても優れた耐溶損性を示す。さらにBN
あるいはCのように熱伝導率の高い含浸剤を耐火物全体
に含浸させ7IC場合は耐火物の緻密化と同時に耐火物
の熱伝導率が大き(なル、耐スポーリング性を向上させ
る効果も得られる。
The impregnated layer of high-melting point fine grain material formed as described above, especially the layer combined with the matrix, has strong bonding properties with the refractory base, and most of the pores that originally existed are sealed, so the molten steel is It also shows excellent corrosion resistance against highly reactive molten steel such as SUS. Further BN
Alternatively, in the case of 7IC, the entire refractory is impregnated with an impregnating agent with high thermal conductivity, such as C, which increases the density of the refractory and increases the thermal conductivity of the refractory (also has the effect of improving spalling resistance. can get.

本発明は概略以上の様に構成されており、組合初期ある
いは操業異常等によって長時間の引抜停止を余儀な・〈
された後においても、ノズル部を損偵あるいは損壊させ
ることなく表面性状の良好な鋳片を鋳造し得る様な横型
連続蒔偕用ノズル部構造を提供することができた。
The present invention is roughly constructed as described above, and does not require a long period of suspension of extraction due to the initial stage of assembly or abnormal operation.
It has been possible to provide a nozzle part structure for horizontal continuous sowing that allows casting of slabs with good surface properties without damaging or damaging the nozzle part even after the nozzle part has been washed.

以下実施例によシ本発明の構成並びに作用効果を更に明
らかにする。
The configuration and effects of the present invention will be further clarified by the following examples.

第2図は本発明のノズル部19を市(実施例)を示す断
面説明図であシ、タンディツシュノズA/l、接続用耐
火物2、鋳型8の形状は第1図に従って表わした。本例
におけるタンディツシュノズル1はジルコン質耐火物で
形成され、又接続用耐火物2は窓化硼素爪体で形成され
ている。そしてタンff1ffの範囲(図り線部分)に
、アルミナを含浸させている。
FIG. 2 is an explanatory cross-sectional view showing the nozzle part 19 of the present invention (embodiment), and the shapes of the tundish nozzle A/1, the connecting refractory 2, and the mold 8 are shown in accordance with FIG. The tundish nozzle 1 in this example is made of a zircon refractory, and the connecting refractory 2 is made of a windowed boron claw. Alumina is impregnated in the range of tongue ff1ff (diagram line area).

以上の様なノズル部構造において、鋳込温度1570℃
、鋳片径110m+φ、引抜速度1.7m/分の条件で
、ステンレス鋼(5US804)4.5トンの鋳造を行
なったところ、約64mの鋳造片を良好に完鋳すること
ができた(鋳造時間88分間)。又鋳迫後のノズル部内
面を調査したところ、含浸部はほぼ健全な状態で残任し
ておりタンディツシュノズル1には損傷は見られなかっ
た。同従来のノズル部Q迫を用いた鋳造実験では、鋳造
中に引抜抵抗が増大し18mの長さで鋳造が中断し、又
WJKi後のタンディツシュノズルlの内面に大きな損
傷が見られると共に、タンディツシュノズル1と接続用
耐火物2との境界部に溶鋼がさし込み接続用耐火物2に
クラックが発生していた。
In the nozzle structure as described above, the casting temperature is 1570℃.
When we cast 4.5 tons of stainless steel (5US804) under the conditions of a slab diameter of 110 m + φ and a drawing speed of 1.7 m/min, we were able to successfully complete a cast slab of about 64 m (casting time: 88 minutes). Further, when the inner surface of the nozzle part after casting was investigated, the impregnated part remained in a substantially healthy state, and no damage was observed in the tundish nozzle 1. In a casting experiment using the same conventional nozzle part Q, the drawing resistance increased during casting and casting was interrupted at a length of 18 m, and large damage was observed on the inner surface of the tundish nozzle L after WJKi. Molten steel was inserted into the boundary between the tundish nozzle 1 and the connecting refractory 2, causing cracks in the connecting refractory 2.

第8図は本発明の他のノズル部構造(実施例2)を示す
断面説明図で、第2図例と同一形状のノズル部5におい
て、タンディツシュノズル1はジルコン質耐火物で形成
され、又接続用耐火物2は5i3hr4 (90ボ量%
)とBN(10ffi象チ)から形成されている。そし
てタンディツシュノズル1の内面に表面から約lO關の
深さまでアルミナを含浸させている。また接続用耐火物
2の全体にタールを含浸し1000℃で加熱処即してい
る。
FIG. 8 is a cross-sectional explanatory view showing another nozzle part structure (Embodiment 2) of the present invention. In the nozzle part 5 having the same shape as the example in FIG. 2, the tundish nozzle 1 is formed of a zircon refractory, In addition, the connecting refractory 2 is 5i3hr4 (90 volume%
) and BN (10ffi square). The inner surface of the tundish nozzle 1 is impregnated with alumina to a depth of about 10 degrees from the surface. Further, the entire connecting refractory 2 is impregnated with tar and heat-treated at 1000°C.

以上の様なノズル部構造において、鋳込湿度1570℃
、鋳片径110酊φ、引抜速度1.7m/分の条件でス
テンレ、x、’M(5US804)4.5 )ンの鋳造
を行なったところ、約64mの鋳片を良好に完鋳するこ
とができた。(鋳造時(化88分間)。
In the nozzle structure as described above, the casting humidity is 1570℃.
, Stainless steel x, 'M (5US804) 4.5) was cast under the conditions of a slab diameter of 110 mm and a drawing speed of 1.7 m/min, and a slab of approximately 64 m was successfully cast. I was able to do that. (During casting (88 minutes).

同従来のノズル部171造を用いた耐重実験では、鋳造
中の引抜抵抗が増大し151nの長さでXf造が中断し
た。又鋳市後には、接続用耐火物が溶損し工おシ、且つ
タンディツシュノズルlと接続用耐火物の境界部に溶鋼
がさし込むと共に、鋳型内面に傷が発生していた。
In a weight-bearing test using the same conventional nozzle part 171 structure, the Xf structure was interrupted at a length of 151n due to increased pull-out resistance during casting. Further, after casting, the connecting refractory was eroded and damaged, molten steel was inserted into the boundary between the tundish nozzle l and the connecting refractory, and scratches were generated on the inner surface of the mold.

第4図は本発明の他のノズル部構造(実施例8)を示す
断面説明図で、ジルコン質耐火物製のタンディツシュノ
ズル1とBN車体製の接続用耐火物2の間に中間リング
4を介設させておシ、#型8からタンディツシュノズル
lへの冷却効果を軽減させて、タンディツシュノズル1
部における凝固シェルの生成を可及的に防止し得る様に
構成し・Cいる。岡本例においては、該中間リング4は
ジルコン質耐火物で形成されているが、5t3N4、B
N、Al203−C11mgm V !J :ty、ジ
ルコン、S/ y コンカーバイト等の耐火物で製作す
ることもできる。そして中間リング4(太線部分)にア
ルミナを含浸させている。以上の様なノズル部構造にお
いて、鋳込温度1550℃、釣片径150mmφ、引抜
速[1,8m/分の条件でステンレス鋼(SUS804
)4.6トンの鋳造を行なったところ、約84mを良好
に完鋳することができた(鋳造時間28分間)。
FIG. 4 is a cross-sectional explanatory view showing another nozzle part structure (Embodiment 8) of the present invention, in which an intermediate ring 4 is placed between a tundish nozzle 1 made of a zircon refractory and a connecting refractory 2 made of a BN car body. By interposing the
The structure is designed to prevent the formation of coagulated shells as much as possible. In Okamoto's example, the intermediate ring 4 is made of zircon refractory, but is made of 5t3N4, B
N, Al203-C11mgm V! It can also be made of refractories such as J:ty, zircon, and S/y conquerite. The intermediate ring 4 (thick line portion) is impregnated with alumina. In the nozzle structure as described above, stainless steel (SUS804
) When 4.6 tons were cast, approximately 84 m was able to be completely cast (casting time 28 minutes).

祷造後、中間リング及びタンディツシュノズル醇の内面
に損傷は見られなかった。
After construction, no damage was found on the inner surface of the intermediate ring or the tundish nozzle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の横型連続鋳造用ノズル部構造を示す断面
図、第2.8.4図は本発明に係る横型連続鋳造用ノズ
ル部構造を示す断面図である。 l・・・タンディツシュノズル 2・・・接続用耐火物  8・・・鋳型4・・・中間リ
ング   6・・・含浸した領域出願人  株式会社神
戸製鋼所 第1図 第3図 第2図 第4図
FIG. 1 is a sectional view showing a conventional horizontal continuous casting nozzle structure, and FIG. 2.8.4 is a sectional view showing a horizontal continuous casting nozzle structure according to the present invention. l... Tundish nozzle 2... Connection refractory 8... Mold 4... Intermediate ring 6... Impregnated area Applicant Kobe Steel, Ltd. Figure 1 Figure 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 illタンディツシュノズルと鋳型の間に環状の接続用
耐火物が介設されてなる横型連続鋳造用タンディツシュ
ノズル部構造であって、少なくとも凝固シェルの発生し
易い部位に存在する非緻密質耐火物に高一点微粒物質の
含浸層を形成してなることを特徴とする横型連続鋳造用
タンディツシュノズル部構迫。 f2! / :/ ティッシュノズルと鋳型の間に環状
の接続用耐火物が介設されてなる横型連続鋳造用タンデ
ィツシュノズル部構造であって、少な(とも凝固シェル
の発生し易い部位に存在する。lF緻密質耐火物に高融
点微粒物質の含浸層を形成し、次いで熱処坤したもので
あることを特徴とする横型連続kh用−タンディッシュ
ノズル部構造。
[Scope of Claims] A tundish nozzle structure for horizontal continuous casting in which an annular connecting refractory is interposed between the tundish nozzle and the mold, which exists at least in a portion where a solidified shell is likely to occur. A structure of a tundish nozzle for horizontal continuous casting, which is characterized by forming an impregnated layer of high point fine grain material on a non-dense refractory. f2! / :/ A tundish nozzle structure for horizontal continuous casting in which an annular connecting refractory is interposed between a tissue nozzle and a mold. A horizontal continuous kh tundish nozzle structure, characterized in that an impregnated layer of high-melting point fine grain material is formed on a dense refractory material, and then heat-treated.
JP21179782A 1982-12-01 1982-12-01 Construction of tundish nozzle part for horizontal continuous casting Pending JPS59101260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21179782A JPS59101260A (en) 1982-12-01 1982-12-01 Construction of tundish nozzle part for horizontal continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21179782A JPS59101260A (en) 1982-12-01 1982-12-01 Construction of tundish nozzle part for horizontal continuous casting

Publications (1)

Publication Number Publication Date
JPS59101260A true JPS59101260A (en) 1984-06-11

Family

ID=16611763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21179782A Pending JPS59101260A (en) 1982-12-01 1982-12-01 Construction of tundish nozzle part for horizontal continuous casting

Country Status (1)

Country Link
JP (1) JPS59101260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875079A (en) * 1987-03-19 1989-10-17 Ricoh Company, Ltd. Toner density control for multicolor electrophotographic copier
US4916490A (en) * 1984-12-01 1990-04-10 Canon Kabushiki Kaisha Image forming apparatus comprising a plurality of developing devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916490A (en) * 1984-12-01 1990-04-10 Canon Kabushiki Kaisha Image forming apparatus comprising a plurality of developing devices
US4875079A (en) * 1987-03-19 1989-10-17 Ricoh Company, Ltd. Toner density control for multicolor electrophotographic copier

Similar Documents

Publication Publication Date Title
US5299620A (en) Metal casting surface modification by powder impregnation
US3917110A (en) Stopper rod having fibrous protective sleeve
JP6572933B2 (en) Casting core and manufacturing method thereof
JPS59101260A (en) Construction of tundish nozzle part for horizontal continuous casting
US3598732A (en) Coated molybdenum mesh screen for ferrous metal casting molds
Zhang et al. Gold jewellery casting: Technology design and defects elimination
JPS61296938A (en) Casting method using sand mold
JP2739224B2 (en) Stoke for casting
JP2698186B2 (en) Manufacturing method of casting nozzle member
JPH04500949A (en) Container for molten metal, material for the container, and method for manufacturing the material
JPS5964153A (en) Construction of cooling type slide valve plate for controlling flow rate of molten steel
JPS5997746A (en) Construction in tundish nozzle part for continuous casting of horizontal type
JPS6167540A (en) Casting mold
JP4264286B2 (en) Continuous casting nozzle
JPS6055211B2 (en) Horizontal continuous casting method
JPS6140289B2 (en)
JPS6362475B2 (en)
JP2810111B2 (en) Gas injected refractories
Biswas et al. Refractory for Casting
JPH0662350B2 (en) Breathable refractory
Pimenov Casting of bronze parts with crystallization under pressure
JP2758975B2 (en) Ceramic break ring
JPS5942198Y2 (en) Air seal pipe for molten metal casting
JPS60115361A (en) Production of composite material
FI66775C (en) FOER FARING FOER FRAMSTAELLNING AV ETT FODER AV EN BEHAOLLARE FOER SMAELT METALL