JPS59100567A - Semiconductor switching element - Google Patents

Semiconductor switching element

Info

Publication number
JPS59100567A
JPS59100567A JP20935182A JP20935182A JPS59100567A JP S59100567 A JPS59100567 A JP S59100567A JP 20935182 A JP20935182 A JP 20935182A JP 20935182 A JP20935182 A JP 20935182A JP S59100567 A JPS59100567 A JP S59100567A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
region
insulating film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20935182A
Other languages
Japanese (ja)
Inventor
Tsutomu Yao
勉 八尾
Takahiro Nagano
隆洋 長野
Saburo Oikawa
及川 三郎
Michio Ogami
大上 三千男
Komei Yatsuno
八野 耕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20935182A priority Critical patent/JPS59100567A/en
Publication of JPS59100567A publication Critical patent/JPS59100567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To improve uniformity in turn OFF operation, by reducing the lateral resistance of electrodes, which are wired on the surface of a semiconductor substrate to 1/5-1/10 the conventional value. CONSTITUTION:Cathode electrodes 3 and gate electrodes 4 are electrically connected to copper foil electrodes 6 and 7, which are bonded to an organic insulating film 5, by solder layers 9 and 10. A cathode side connecting electrode 12 is electrically connected to the electrode 6 on an (n) emitter layer nE at a part of a through hole 13 that is partially provided in the insulating film 5 by a solder layer 141. A gate side connecting electrode 15 is connected to the copper foil electrode 7 at a part of a through hole 16, which is provided in the film 5, bt a solder layer 142. Then, the lateral resistance of the electrodes 6 and 7 is reduced to 1/5-1/10. Therefore, uniformity of operation in the longitudinal direction in one (n) emitter at the same time of turn OFF is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はゲートターンオフサイリスタあるいはパワート
ランジスタ等のパワー半導体スイッチング素子に係り、
特に半導体基体内の動作の一様性並びに信頼性の向上に
好適なオーミック電極の構造に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a power semiconductor switching element such as a gate turn-off thyristor or a power transistor;
In particular, the present invention relates to an ohmic electrode structure suitable for improving uniformity of operation within a semiconductor substrate and reliability.

〔従来技術〕[Prior art]

ゲートターンオフサイリスタ(以下GTOサイリスクと
呼ぶ)やパワートランジスタ等の比較的大きな電力を扱
う半導体スイッチング素子では、ペース領域表面側にオ
ーミック接続される制御電極(ゲート又はベース電極)
に囲まれた細長いカソードエミッタ領域が電流容量に応
じて所定数だけ並設配置された構造が一般に採られてい
る。これは、主電流の流れるカソードエミッタ領域に対
する制御信号の作用性を高め、同時に牛導体基体内の主
電流通路の面積利用率を上げることができるからである
。かかる構造の問題点の−っは、剛長いカソードエミッ
タ領域表面のオーミック電極及び1b1」両電極の横方
向抵抗による電圧降下に起因して動作が不均一になるこ
とである。
In semiconductor switching elements that handle relatively large amounts of power, such as gate turn-off thyristors (hereinafter referred to as GTO thyristors) and power transistors, a control electrode (gate or base electrode) is ohmically connected to the surface side of the pace region.
Generally, a structure is adopted in which a predetermined number of elongated cathode emitter regions surrounded by . This is because it is possible to increase the effect of the control signal on the cathode emitter region through which the main current flows, and at the same time to increase the area utilization rate of the main current path in the conductor base. A problem with such a structure is that the operation becomes non-uniform due to the voltage drop due to the lateral resistance of the ohmic electrode on the surface of the rigid and elongated cathode emitter region and the 1b1 electrode.

従来、一般に採用されているこれらの電極は厚さが高々
数μmのアルミニウム蒸着膜であり、外部端子との間の
接続には太さ0.2間前後のアルミニウム線が使用され
て来た。アルミニウム蒸着膜の横方向(膜面方向)抵抗
が大きいことから、動作の一様性を確保するため、エミ
ッタ領域の長さを短くするなどの対策が施されていたが
半導体基体の面積利用率が低下する欠点があった。一般
のパワートランジスタに比べてカソードエミッタ領域1
個当シの電流容量が数倍となるGTOサイリスタにとっ
て特にこの問題は深刻であシ、遮断できる゛電流の上限
が制約される場合も生じて来る。
Conventionally, these electrodes that have been generally employed are aluminum vapor-deposited films with a thickness of several μm at most, and aluminum wires with a thickness of about 0.2 mm have been used for connection with external terminals. Since the lateral resistance (direction of the film surface) of the aluminum vapor-deposited film is large, measures such as shortening the length of the emitter region have been taken to ensure uniformity of operation, but the area utilization rate of the semiconductor substrate has decreased. There was a drawback that the value decreased. Cathode emitter area 1 compared to general power transistors
This problem is especially serious for GTO thyristors, whose current capacity is several times larger, and there are cases where the upper limit of the current that can be cut off is restricted.

これに対して、有機絶縁性フィルムの表面に接着された
薄い金属箔を所定形状にパターンニングし、それを半導
体基体にはんだ付けする方式を先に提案した。この方式
は、厚さ数10μmの銅箔がカソード電極及び制御電極
表面に接着されるので、電極内構抵抗が115〜1/1
0に低減でき上記の問題を解消するとともに、従来アル
ミニウム線のボンディングに費やされていた半導体基体
表面エリヤが省略でき、半導体基体サイズの小形化にも
効果のある優れた方式である。
In response, we previously proposed a method in which a thin metal foil adhered to the surface of an organic insulating film is patterned into a predetermined shape and then soldered to a semiconductor substrate. In this method, copper foil with a thickness of several tens of micrometers is bonded to the surfaces of the cathode electrode and control electrode, so the internal resistance of the electrode is 115 to 1/1.
This is an excellent method that is effective in reducing the size of the semiconductor substrate by eliminating the surface area of the semiconductor substrate that was conventionally used for bonding aluminum wires, and eliminating the above-mentioned problems.

しかし、これまで実施されて来たこの方式では、カソー
ド電極及び制御電極の外部端子への接続には、これらと
一体になった同じ金属箔をそのま\、端子接続用ターミ
ナルにはんだ付けする構造を採っていたため、以下のよ
うな問題点があることが判明した。すなわち、外部の様
々な機械的な歪みから半導体基体を保護するために半導
体基体を被覆するソフトレジンあるいは、モールドレジ
ンと金属箔との熱膨張係数の差によシ、薄い金属箔が切
断されるという問題である。これは、製造時及びその直
後には別設問題とならないが、冷熱サイクル、パワーサ
イクルがくシ返される長期使用において発生する信頼性
の低下に連らなる欠点である。
However, in this method that has been implemented up to now, in order to connect the cathode electrode and control electrode to the external terminal, the same metal foil that is integrated with these electrodes is soldered directly to the terminal connection terminal. As a result, the following problems were found. In other words, a thin metal foil is cut due to the difference in thermal expansion coefficient between the soft resin that covers the semiconductor substrate to protect the semiconductor substrate from various external mechanical distortions, or the mold resin and the metal foil. This is the problem. Although this does not pose a separate problem during manufacturing or immediately thereafter, it is a drawback that leads to a decrease in reliability that occurs during long-term use where the cooling/heating cycle and power cycle are repeated.

また、従来の方法では、金属箔電極を半導体基体上には
んだ付けする際、個々の半導体基体に対して電極と半導
体基体の位置合せ作業を必要とし、電極付けの生産性が
下がるという問題もあった。
In addition, with the conventional method, when soldering metal foil electrodes onto semiconductor substrates, it is necessary to align the electrodes and semiconductor substrates with respect to each semiconductor substrate, which reduces productivity in electrode attachment. Ta.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、一方の外側領域が細長い形状をなすも
のにおいて、動作の一様性を高めかつ、信頼性の高い電
極構造を具備する半導体スイッチング素子を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor switching element in which one outer region has an elongated shape, which improves uniformity of operation and has a highly reliable electrode structure.

本発明の他の目的は、生産性の高い電極構造を具備する
半導体スイッチング素子を提供することにある。
Another object of the present invention is to provide a semiconductor switching element having an electrode structure with high productivity.

〔発明の概要〕[Summary of the invention]

か\る目的を奏する本発明半導体スイッチング素子の特
徴とするところは、半導体基体の一方面に入り組んだパ
ターンで配置された第1及び第2の電極に接着される絶
縁性フィルムの一方面に支持される第1及び第2の箔電
極に、絶縁性フィル2、の他方面側よシ絶縁性フィルム
を貫通して第1及び第2の接続導体を接着した点にある
The semiconductor switching device of the present invention that achieves the above purpose is characterized by being supported on one side of an insulating film adhered to first and second electrodes arranged in an intricate pattern on one side of a semiconductor substrate. The point is that the first and second connection conductors are bonded to the first and second foil electrodes, which pass through the insulating film from the other side of the insulating film 2.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図及び第2図により説明
する。シリコン単結晶の一辺約6層の半導体基体1には
pE * ”B ! pH’ r ”Hの4層が形成さ
れ、nエミッタJtBnr、は長さ約4囚、幅約0.3
調の細長い短冊状をなし、合計5本一定間隔で並べられ
ている。pEln’1.I)Bの各層表面に例えば銀を
主成分とする厚さ数μmの電極2゜3.4が各々低抵抗
接続される。電極2はアノード電極でベース側接続電極
11とはんだ膚8によシ屯気的に接続される。まfc電
極3,4はカソード電極及びゲート電極で、有機絶縁性
フィルム5に接層された厚さ約40μmの銅箔電極6.
7がはんだI19.ioにより電気接続されている。そ
して、nエミツタ層11 、上の銅箔電極6にはカソー
ド側接続電極12が絶縁性フィルム5に部分的に設けら
れた貫通穴13の部分ではんだ層141によシミ気的に
連結され、同様に、ゲート側接続電極15が絶縁性フィ
ルム5に設けられた貫通穴16の部分で銅箔電極1には
んだ層1・42により連結されている。第2図は外装パ
ッケージ内の組立図を示す。第1図に示したカソード側
接続電極I2.ゲート側接続電極16がはんだ付けされ
た半導体基体1がアルミナ絶縁板17上のアノード側接
続′屯極11にはんだ付けされ、同時にカソード及びゲ
ートリード線18.19が各々カソード及びゲート端子
20.21とカソード及びゲート側接続′rd極12,
15を電気的に連結するようはんだ付けされる。また、
アノード端子22はアノード側接続電極11に接続され
ている。アルミナ絶縁板17ははんだ層23によシ厚さ
約3gの銅板24に取り付けられ、銅板24には外装板
25が取シ付けられている。そして、外装板25の中に
は例えばエポキシレジンなどのレジン材料26が充てん
される。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Four layers of pE * ``B!
They are shaped like long, thin strips, with a total of five pieces lined up at regular intervals. pEln'1. I) Electrodes 2° 3.4 mm thick and made mainly of silver, for example, are connected to the surface of each layer of B with a low resistance. The electrode 2 is an anode electrode and is electrically connected to the base side connection electrode 11 and the solder skin 8. The fc electrodes 3 and 4 are cathode electrodes and gate electrodes, and are copper foil electrodes 6. about 40 μm thick that are in contact with the organic insulating film 5.
7 is solder I19. electrically connected by io. A cathode-side connecting electrode 12 is connected to the copper foil electrode 6 on the n-emitter layer 11 through a solder layer 141 through a through hole 13 partially provided in the insulating film 5. Similarly, the gate side connection electrode 15 is connected to the copper foil electrode 1 by the solder layer 1 42 at the through hole 16 provided in the insulating film 5 . FIG. 2 shows an assembly diagram inside the outer package. Cathode side connection electrode I2 shown in FIG. The semiconductor body 1 to which the gate-side connection electrode 16 is soldered is soldered to the anode-side connection terminal 11 on the alumina insulating plate 17, and at the same time the cathode and gate leads 18, 19 are connected to the cathode and gate terminals 20, 21, respectively. and cathode and gate side connection'rd pole 12,
15 are soldered to electrically connect them. Also,
The anode terminal 22 is connected to the anode side connection electrode 11. The alumina insulating plate 17 is attached to a copper plate 24 having a thickness of about 3 g through a solder layer 23, and an exterior plate 25 is attached to the copper plate 24. Then, the exterior plate 25 is filled with a resin material 26 such as epoxy resin.

かかる構造のG T Oサイリスクの導通時の電流通路
は、アノード側接続電極1.1からカソード側接続電極
」2に向けて流れる。半導体基体1内ではpg−nn 
 pg  nEのパスを流れ、複数個に分割されたn1
層に各々分流され銅箔電極6、貫通穴13を通ってカソ
ード側接続電極12に集電する。ターンオフ時にはゲー
ト端子21とカソード端子20の間にゲート端子が負電
位となる約20Vのゲート信号が投入される。このゲー
ト信号によシ、n1層を流れる主電流の一部が隣接する
pb眉、ゲート電極4、銅箔電極7を通って引抜かれ、
n1層からの電子の注入が阻止されるようになり、しか
る後、主電流通路のpE+ nll+9g、ngを流れ
る電流の自己保持能力が停止する。
The current path when the G T O silisk having such a structure is conductive flows from the anode-side connection electrode 1.1 to the cathode-side connection electrode ``2''. pg-nn in the semiconductor substrate 1
n1 flows through the path of pg nE and is divided into multiple pieces.
The current is divided into each layer, passes through the copper foil electrode 6 and the through hole 13, and is collected to the cathode side connection electrode 12. At turn-off, a gate signal of about 20V is applied between the gate terminal 21 and the cathode terminal 20 so that the gate terminal has a negative potential. According to this gate signal, a part of the main current flowing through the n1 layer is extracted through the adjacent pb layer, gate electrode 4, and copper foil electrode 7,
Injection of electrons from the n1 layer becomes blocked, and thereafter the self-sustaining ability of the current flowing through the main current path pE+nll+9g,ng stops.

以上のGTOサイリスタの動作において、本実施例は次
の効果をもつ。まず、nエミッタJ蛍nE上のカソード
電極3及びゲート電極4の各々に厚さ約40μmの銅箔
電極がはんだ付けされているのでカソード及びゲート電
極の横方向抵抗が115〜1/10に低減さiする。こ
のため、ターンオフ時のnエミツタ層1個内の長手方向
における動作の均一性が向上し、結果としてGTOサイ
リスクの最大しゃ断電流が増大する。具体的には、電極
3.4のみの場合には最大100Aの遮断電流であった
ものが150〜200Aに向上する。また、銅箔電極7
と銅箔電極6の間は絶縁性フィルム5で′電気的に絶縁
されており、ターンオフ時の約20Vの電圧に対して十
分な絶縁が保証される。
In the operation of the GTO thyristor described above, this embodiment has the following effects. First, copper foil electrodes with a thickness of approximately 40 μm are soldered to each of the cathode electrode 3 and gate electrode 4 on the n emitter J fluorescent nE, so the lateral resistance of the cathode and gate electrodes is reduced to 115 to 1/10. Let's go. Therefore, the uniformity of the operation in the longitudinal direction within one n-emitter layer during turn-off is improved, and as a result, the maximum breaking current of the GTO cyrisk is increased. Specifically, in the case of only electrode 3.4, the maximum cut-off current was 100A, which was increased to 150-200A. In addition, the copper foil electrode 7
and the copper foil electrode 6 are electrically insulated by an insulating film 5, ensuring sufficient insulation against a voltage of about 20V at turn-off.

さらに本実施例には従来例にない新しい以下の効果があ
る。すなわち、第2図に示すように、カソード側接続電
極12及びゲート側接続電極15と端子20.21との
電気的な接続には太さ約1wnの銅リード線18.19
が使われており、これらを被覆するレジン26の充てん
によってこれらの材料の熱膨張係数の差によシリード線
18゜19が切断される頻度は大幅に低減される。具体
的には、従来例では約30回の冷熱サイクルで断線が発
生していたものが200回以上に耐えることが確認され
た。
Furthermore, this embodiment has the following new effects not found in the conventional example. That is, as shown in FIG. 2, a copper lead wire 18.19 having a thickness of about 1 wn is used to electrically connect the cathode side connection electrode 12 and the gate side connection electrode 15 to the terminal 20.21.
are used, and by filling them with resin 26, the frequency of the series lead wires 18 and 19 being cut due to the difference in thermal expansion coefficients of these materials is greatly reduced. Specifically, it was confirmed that in the conventional example, disconnection occurred after about 30 cycles of heating and cooling, but it can withstand more than 200 cycles.

さらに、本実施例のもう一つの効果は、作業性に関する
ものである。第1図の如きサブアセンブリの製作は以下
の方法でなされる。直径約75叫のシリコン単結晶ウェ
ハに燐、ボロンあるいはガリウム等のドーパントの拡散
によシ所定形状の接合を形成したあと、n=層及びpx
層表面にCr−Ni−AgあるいはTi−Ni−Agな
どの厚さ数μmのカソード及びアノード電極膜を蒸着し
、ホトエツチング技術により所定形状にパターンニング
を行う。この段階では1枚のシリコンウエノ・。
Furthermore, another effect of this embodiment relates to workability. The subassembly shown in FIG. 1 is manufactured in the following manner. After forming a junction of a predetermined shape on a silicon single crystal wafer with a diameter of about 75 cm by diffusion of a dopant such as phosphorus, boron, or gallium, the n=layer and px
Cathode and anode electrode films of several μm in thickness, such as Cr-Ni-Ag or Ti-Ni-Ag, are deposited on the surface of the layer, and patterned into a predetermined shape by photo-etching. At this stage, there is only one piece of silicone ueno.

−に約100個の半導体基体が整列されている。- about 100 semiconductor substrates are aligned.

接合及び電極の形成を終えたウニ・・−上に、予め所定
の形状にパターンニングされた銅箔電極が接着された有
機絶縁性フィルム5(例えばポリイミド、カプトンフィ
ルム)を重ねてPb−8n −Agはんだで両者を接着
する。次に、カッタにてウニ・・−から半導体基体を切
シ出す。その後この半導体基体を第2図の構成に作り上
げ、pb−snはんだにて各々接続電極、リードを接続
し、しかる後にレジンを流し込んで完成する。
On top of the sea urchin after bonding and electrode formation, an organic insulating film 5 (e.g. polyimide, Kapton film) to which a copper foil electrode patterned in a predetermined shape is adhered is placed over the Pb-8n- Bond both together with Ag solder. Next, the semiconductor substrate is cut out from the sea urchin with a cutter. Thereafter, this semiconductor substrate is fabricated into the configuration shown in FIG. 2, connection electrodes and leads are connected using pb-sn solder, and then resin is poured to complete the structure.

以上のように、本実施例の構造では、ウエノ・・−よシ
半導体基体を切シ出す前に箔電極を接着できるので、箔
電極と半導体基体との位置合せはウェハ一段階で出来る
ことになり、1度の接着にて100個の半導体基体に対
する箔電極の接着が可能である。半導体基体を切り出し
た後、個々の半導体基体に位置合せして箔電極をはんだ
付けしていた従来法に比べてこれに要する作業時間はV
l、0以下に短縮できる。また、本実施例では、直径7
5陥のシリコンウェハ全面に対して梢度よく箔電極を接
着する必要がめシ、両者の熱膨張の差による位置合せの
ズレの問題が残るか、これに対しては、箔電極のパター
ンニングの際、予めこれを考慮した形状にするか、もし
くは絶縁性フィルムの熱膨張係数がシリコンに出来るだ
け近いもの金選ぶのが望ましい。例えばエポキシガラス
チーブ材等は3X10−’/Cの熱膨張率を治し、本発
明の絶縁性フィルムとして好適である。
As described above, in the structure of this embodiment, the foil electrodes can be bonded before cutting out the semiconductor substrate from the wafer, so the alignment of the foil electrodes and the semiconductor substrate can be done in one step on the wafer. Therefore, it is possible to bond foil electrodes to 100 semiconductor substrates in one bonding process. Compared to the conventional method of cutting out the semiconductor substrate, aligning it to each semiconductor substrate, and soldering the foil electrode, the working time required for this process is V
l, can be shortened to less than 0. In addition, in this example, the diameter is 7
It is necessary to bond the foil electrode to the entire surface of the silicon wafer in five cavities with good adhesion, but the problem of misalignment due to the difference in thermal expansion between the two remains. In this case, it is desirable to take this into account in advance when designing the shape, or to select gold whose coefficient of thermal expansion is as close as possible to that of silicon. For example, epoxy glass material has a coefficient of thermal expansion of 3X10-'/C and is suitable as the insulating film of the present invention.

第3図は本発明になる他の実施例を示す。これは300
〜450A以上の大電流を扱う電力用GTOサイリスタ
に適用した例である。各部の符号は同じ部分を示してい
る。先の実施例と違ってこの場合は円板状のシリコンか
ら成る半導体基体となシ、カソード、ゲート、アノード
側接続電極12.15.11は各々ドーナツ状、円板状
となし、直径約40■と大型になるのでその材質もMO
,WあるいはCu−Cなど熱膨張率の小さな金属材料が
使われる。また、半導体基体1の端部には表面のpn接
合の露出する部分はシリコーン樹脂101で被覆されて
いる。この実施例では絶縁フィルム5に接着された厚さ
数10μmの銅フィルム6.7によって主としてゲート
電極円の横抵抗が115〜1/10に低減される。これ
によって、大口径半導体基体内の複数個のnE層のター
ンオフ動作の一様性が著しく向上し、従来ゲートの横抵
抗によって生ずる不均一によシ制限されていた最大遮断
可能電流は150%以上増大した。
FIG. 3 shows another embodiment of the present invention. This is 300
This is an example applied to a power GTO thyristor that handles a large current of ~450 A or more. The reference numerals of each part indicate the same parts. Unlike the previous embodiment, in this case, the semiconductor substrate is made of disk-shaped silicon, and the cathode, gate, and anode side connection electrodes 12, 15, and 11 are donut-shaped and disk-shaped, respectively, and have a diameter of about 40 mm. ■Since it is large, the material is MO as well.
, W, or Cu-C, a metal material with a small coefficient of thermal expansion is used. Further, at the end of the semiconductor substrate 1, the portion where the pn junction on the surface is exposed is covered with a silicone resin 101. In this embodiment, the lateral resistance of the gate electrode circle is reduced by 115 to 1/10 mainly due to the copper film 6.7 having a thickness of several tens of micrometers bonded to the insulating film 5. As a result, the uniformity of the turn-off operation of multiple nE layers within a large-diameter semiconductor substrate is significantly improved, and the maximum current that can be interrupted, which was conventionally limited by non-uniformity caused by the lateral resistance of the gate, is increased by more than 150%. It increased.

本実施例ではn1層を放射状に配列した例を示したが、
ゲート電極の横抵抗が低減できる本発明ではr3B層の
配列はこのように一方リング状の配列のみにとどまらず
、多重リング状の配列も可能である。さらには、nE層
を縦・横に整列配列した場合でも動作の均一性は大幅に
そこなわれることはない。また、接続電極11,12.
15と外部端子との接続法については図面にて例示しな
いが、これら接続′電極にはんだ付けにて接続したシ、
あるいは外部からの加圧圧接にて接触させたりすること
もできる。
In this example, an example in which the n1 layers were arranged radially was shown.
In the present invention, which can reduce the lateral resistance of the gate electrode, the arrangement of the r3B layer is not limited to the one-ring arrangement as described above, but also a multi-ring arrangement. Furthermore, even when the nE layers are aligned vertically and horizontally, the uniformity of operation is not significantly impaired. In addition, connection electrodes 11, 12 .
Although the method of connecting 15 and external terminals is not illustrated in the drawings, the terminals connected to these connection electrodes by soldering,
Alternatively, the contact may be made by pressure welding from the outside.

第3図の実施例の場合、従来はpa層の表面をエツチン
グにより掘り下げ、その表面にゲート電極4を低抵抗接
触させることにより、ゲート、カソード側接続電惚の接
触によるトラブルを防止していたものであるが、本実施
例では、かかる′g雑な作業が省略でき、かつ、ゲート
・カソード間は絶縁性フィルム5にて十分電気絶縁され
ることになる。
In the case of the embodiment shown in Fig. 3, conventionally, the surface of the PA layer was dug down by etching, and the gate electrode 4 was brought into low resistance contact with the surface to prevent troubles caused by contact between the gate and the cathode side connection electrode. However, in this embodiment, such tedious work can be omitted, and the gate and cathode are sufficiently electrically insulated by the insulating film 5.

第4図は本発明に適用する金属箔付き絶縁性フィルムの
他の変形例を示す。絶縁性フィルム5のもう一方の面に
も金属フィルム201が接着されているところが先の実
施例と異なる。絶縁フィルム貫通穴14の部分において
表裏の金属フィルムが電気的に接続されている。その接
続手段としてはんだによる方法あるいは電気めっき法な
どによる金属層のめつきで連結する方法もある。
FIG. 4 shows another modification of the insulating film with metal foil applied to the present invention. This embodiment differs from the previous embodiment in that a metal film 201 is also adhered to the other surface of the insulating film 5. The front and back metal films are electrically connected at the insulating film through hole 14. As a means of connection, there are also a method of connecting by soldering or a method of plating a metal layer by electroplating or the like.

又、第5,6図は本発明の他の変形例を示すもので、カ
ソード電極あるいはゲート電極が必ずしも半導体基体上
で複数個に分離されている場合に限らず、これらの図の
ようにいずれか一方もしくは両方が連結している場合に
も本発明は適用できる。
Further, FIGS. 5 and 6 show other modified examples of the present invention, and the cathode electrode or the gate electrode is not necessarily separated into a plurality of pieces on the semiconductor substrate. The present invention is also applicable when one or both of them are connected.

又、nE層が細長い形状のものを例示したが、方形又は
円形であってもよく、カソード電極もしくは制御電極の
いずれが一方が横方向に伸びた形状のスイッチング素子
全搬に適用できるものである。
Further, although the nE layer has an elongated shape as an example, it may be rectangular or circular, and can be applied to all switching elements in which either the cathode electrode or the control electrode has a shape that extends in the lateral direction. .

又、電極間の電気接続には全てはんだを使用した場合を
例示したが、金属間反応による連結としてもよい。
Furthermore, although solder is used for all electrical connections between the electrodes, the connections may be made by metal-to-metal reaction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基体表面に配線される電極の横
抵抗が従来の115〜1/10に低減されるので、これ
によって、ターンオフ動作の一様性が向上し、GTOサ
イリスタの最大遮断可能電流が150〜200%に増大
する効果がある。
According to the present invention, the lateral resistance of the electrode wired on the surface of the semiconductor substrate is reduced to 115 to 1/10 of that of the conventional one, which improves the uniformity of the turn-off operation and enables maximum shutoff of the GTO thyristor. This has the effect of increasing the current by 150-200%.

本発明によれば、半導体基体表面に配線された微細パタ
ーンの金属箔電極と各々の外部端子への連結が太い金属
リードもしくは金属ブロックによって行なえるので、封
入レジンとの熱膨張率の差による断線の問題が解消され
、半導体スイッチング素子の長期間使用による信頼性が
向上する。
According to the present invention, since the finely patterned metal foil electrode wired on the surface of the semiconductor substrate can be connected to each external terminal using a thick metal lead or metal block, disconnection due to the difference in thermal expansion coefficient with the encapsulated resin can be achieved. This problem is solved, and the reliability of the semiconductor switching element during long-term use is improved.

本発明によれば、半導体基体表面への箔電極の位置合せ
接着が、ウェハ状態で可能となシミ極・目けの作業性が
約数倍に改善された。
According to the present invention, the workability for positioning and adhering foil electrodes to the surface of a semiconductor substrate in a wafer state has been improved several times as much as possible for stain removal and marking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明素子の一実施例を示す平面図及縦断面図
、第4図は本発明の異なる実施例の縦断面図、第5図及
び第6図は本発明の変形例の平面図である。 1・・・半導体基体、2,3.4・・・電極、5・・・
絶縁性フィルム、6,7・・・箔電極、8,9.10・
・・はんだ層、11・・・アノード側接続電極、12・
・・カソード側接続電極、15・・・ゲート側接続電極
、13゜16・・・貫通穴、141,142.23・・
・半田層、17・・・アルミナ絶縁板、18.19・・
・カソード。 ゲート、リード、20,21.22・・・外部端子、2
4・・・放熱板、25・・・レジン外装板、26・・・
レジン。 ’lt  図 亙2図 ′43 図 14図 /2 \
FIG. 1 is a plan view and longitudinal cross-sectional view showing one embodiment of the device of the present invention, FIG. 4 is a longitudinal cross-sectional view of a different embodiment of the present invention, and FIGS. 5 and 6 are plan views of modified examples of the present invention. It is a diagram. 1... Semiconductor base, 2, 3.4... Electrode, 5...
Insulating film, 6, 7... Foil electrode, 8, 9. 10.
...Solder layer, 11...Anode side connection electrode, 12.
...Cathode side connection electrode, 15...Gate side connection electrode, 13°16...Through hole, 141, 142.23...
・Solder layer, 17...Alumina insulating plate, 18.19...
・Cathode. Gate, lead, 20, 21. 22...external terminal, 2
4... Heat sink, 25... Resin exterior plate, 26...
resin. 'lt Figure 2 Figure 2 '43 Figure 14 Figure/2 \

Claims (1)

【特許請求の範囲】 1、一方導電型の第1の領域と、第1の領域に隣接し第
1の領域との間に第1のpn接合を形成する他方導電型
の第2の領域と、第2の領域に隣接し第2の領域との間
に第2のpn接合を形成し、細長い形状を有し一定の規
則性をもって並設された一方導電性の複数個の第3の領
域とを持つ半導体基体、 第3の領域表面にそれぞれオーミック接触した複数個の
第1の電極、 第2の領域表面にオーミック接触し、第3の領域の周囲
に沿って延びるように配置された第2の電極、 それぞれの一方面は絶縁性フィルムの一方面に支持され
、他方面はそれぞれ第1の電極及び第2の電極に接着さ
れた第1及び第2の箔電極、絶縁性フィルムの他方面側
に位置し、絶縁性フィルムを貫通してそれぞれ第1及び
第2の箔電極に接着された第1及び第2の接続導体、を
具備することを特徴とする半導体スイッチング素子。
[Claims] 1. A first region of one conductivity type, and a second region of the other conductivity type that is adjacent to the first region and forms a first pn junction between the first region and the first region. , a plurality of third regions that are adjacent to the second region, form a second pn junction between the second region, have an elongated shape and are arranged in parallel with a certain regularity, and are electrically conductive. a plurality of first electrodes each in ohmic contact with the surface of the third region; a plurality of first electrodes in ohmic contact with the surface of the second region and arranged to extend along the periphery of the third region; 2 electrodes, one side of each supported on one side of the insulating film, and the other side of the first and second foil electrodes adhered to the first electrode and the second electrode, respectively, and the other side of the insulating film. 1. A semiconductor switching element comprising first and second connection conductors located on one side, penetrating an insulating film and bonded to first and second foil electrodes, respectively.
JP20935182A 1982-12-01 1982-12-01 Semiconductor switching element Pending JPS59100567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20935182A JPS59100567A (en) 1982-12-01 1982-12-01 Semiconductor switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20935182A JPS59100567A (en) 1982-12-01 1982-12-01 Semiconductor switching element

Publications (1)

Publication Number Publication Date
JPS59100567A true JPS59100567A (en) 1984-06-09

Family

ID=16571506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20935182A Pending JPS59100567A (en) 1982-12-01 1982-12-01 Semiconductor switching element

Country Status (1)

Country Link
JP (1) JPS59100567A (en)

Similar Documents

Publication Publication Date Title
US4996586A (en) Crimp-type semiconductor device having non-alloy structure
US5047833A (en) Solderable front metal contact for MOS devices
US7880285B2 (en) Semiconductor device comprising a semiconductor chip stack and method for producing the same
US6396138B1 (en) Chip array with two-sided cooling
EP1906452B1 (en) Semiconductor device
JPH07118514B2 (en) Solder bump type semiconductor device
CN105103272A (en) Method for manufacturing semiconductor device
US4719500A (en) Semiconductor device and a process of producing same
CN103426837A (en) Semiconductor packages and methods of formation thereof
JP2019186326A (en) Semiconductor device and manufacturing method of the same
CN105336718A (en) Source down semiconductor devices and methods of formation thereof
JP2002076326A (en) Semiconductor device
EP0051459B1 (en) A semiconductor device having electrodes and conducting members bonded to the electrodes, and a method of manufacturing the same
US7368380B2 (en) Method of manufacturing semiconductor device
US3266137A (en) Metal ball connection to crystals
US10937767B2 (en) Chip packaging method and device with packaged chips
JP4409064B2 (en) Semiconductor device including power element
JPS59100567A (en) Semiconductor switching element
JP2001044414A (en) Semiconductor device
JP2001332660A (en) Semiconductor device and manufacturing method therefor
GB2535484B (en) Wafer metallization of high power semiconductor devices
JP4165952B2 (en) Semiconductor device
GB2452594A (en) High voltage semiconductor device package for an aircraft ignition circuit
JP2000100864A (en) Semiconductor device and assembly thereof
JPH1022336A (en) Manufacture of semiconductor device